
 

 

  
Abstract—we propose a new perspective on the identification of 

linear dynamic system using structural similarity. The proposal 
consists in the meaningful exploration of each model, specifically 
behavior of the state variable.  

The decomposition of the behavior of a state variable in different 
modes of behavior of a system, each one has a different set of 
weights and shows different patterns of behavior. These weights are 
more significant than eigenvalue to develop a new technique for 
identifying linear system and invariants over time.  

 We use two methods based on different areas of knowledge such 
as linear algebra and statistics. This paper is a conceptual proof that 
enriches the implementation and validity not only from point of view 
algorithmic likewise physic mathematical. 
 
 

Keywords—Dynamic System, System Identification, 
Linear Algebra, Dynamic Pattern Recognition   

I. INTRODUCTION 
N  follow section , we show how the behavior of any state 
variable in a linear system can be broken down into  

different modes of behavior , each being characterized by an 
eigenvalue. This paper is concerned with linear system, but it 
is hoped that it will enriched with new techniques for non 
linear systems.  The temporal trajectory of a state variable i  
 

1 1( ) ( ) ... ( ) ... ( )i i ij j in n ix t w m t w m t w m t u= + + + + +  

 

(1) 

Where ( )ix t is the value of a state variable i in the instant t ; 

ijw is a constant term which represents the significance mode 
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j to the variable i ; ijm  is the value of thj mode behavior in 

time t ; iu  is a constant term. The mode of behavior of a linear 
system is a function of the eigenvalue of  
The Jacobian matrix which characterized the system (Oagata 
1990) 
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(2)

If the eigenvalues do not have an imaginary part, the part of 
the behavior mode is expressed by   the first answer of the last 
equation (2) and is characterized by growth exponential 
function if the real part of the eigenvalue is positive y 
decrease exponential function if the real part of the eigenvalue 
is negative.  
 
If an eigenvalue has an imaginary part that is different from 
zero, this means that the two eigenvalues are a conjugated pair 
(with the same real part) and together they generate the 
oscillating mode represented by the second expression of the 
last equation[ ]13 . 

  
If the real part of the conjugated pair of eigenvalue is positive, 
an expanded oscillation mode is produced. If it is equal to zero 
a sustained oscillation mode is produced and if it is negative a 
dampened oscillation mode is produced. (See figure 1) 
 

 
 
   

Fig 1 Eigenvalue placement in complex plane    
 
The breakdown of the temporary trajectory of state variable 

info behavior modes produces a useful set of diagnostics, not 
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only to understand the sources of behavior of the variables, 
but also to identify the degree of interaction between system 
variables.  Furthermore, the significance of the behavior mode 
of variable ijw  can also be used as a way of identifying the 

elements the structure responsible for the observed 
behavior[ ]12 . 

 
The aforesaid is articulated through the sensitivity valuation 

between the weight model and gain link model.  The gain link 
between two variables is defined as the derived partial of the 
output variables with regards to the input variables 

a
ag b

∂= ∂ and also the elasticity of the weight for a gain is 

defined as the relationship between a fractional change in the 
weight and a fractional change in the gain, for example 

w
w

g
g

ε

∂

= ∂  

 

II. ANALYSIS OF THE EIGENVALUES OF LINEAL MODELS 
 
We can breakdown the temporal trajectories of a state 

variable info many behavior modes.  The temporal trajectories 
of a state variable are a mathematical function that specifies 
the value of the state variables in any instant of time. The 
departure point is the structure of the model, which in the case 
of linear models can be represented by the following compact 
matrix equation: 

 

( ) ( )t t= +x Gx b&  (3) 

Where x the vector of the state variables is, x& is the vector 
of the first derivatives of the state variable (rates).  b Is a 
constant vector and G is the Jacobian matrix or gain matrix 

specified this  ij i

j

x
x

∂
=

∂
G

&
 . In linear system G is constant at 

least when the system is not lineal, where it is a function of 
the state variables and external entrance and consequently 
varies in time. G  Is a constant in linear systems with zero 
variables or external constant, with the exception of non linear 
systems[ ]12 . 

 
If we differentiating equation (4) with respect to time we 

find the expression follow: 
 

( ) ( )t t=x Gx&& &  (4) 

Where x&& is the vector curvature (the vector of the second 
derivates of the state variables). The gain matrix G  relates 
the slope vector with the curvature vector in a standard space 
n- dimension in n� . 

 
The solution for a system of differential equations, 

specified by equation (4) gives the temporal trajectories of the 
system slope vector.  The eigenvalue model will be use to 
resolve slope differential equations (Luenberg, 1979) for the 
temporary trajectory. 

 
The n eigenvalues and their right eigenvectors associated 

to the gain matrix G are defined as  k k kλ=Gr r  . The case 
of absence means having different eigenvalue and thus the 
right eigenvectors are linearly independent (Luenberg 1979) 
and cross in the space of n-dimension n� . Consequently, the 
slope vector can be expressed as a linear combination of right 
eigenvectors as  

 

1 1 2 2( ) ( ) ( ) ... ( )n nt t t tα α α= + + +x r r r&  (4) 

Where kα the slope vector components are in the new 

system of coordinates and ir are the constant sets of 
eigenvectors.  The differential equation solution of (5) with 
respect to time produces the components kα& the curvature 
vectors in the new system of coordinates as: 

 

1 1 1 2 2 2 ( ) ( ) ( ) ... ( )n n nt t t tα λ α λ α λ= + + +x r r r&&  (5) 

It is clear that only the determining factor of dynamic 
toward a particular coordinates, for example an eigenvector is 
the eigenvalue associated with the same coordinate. By 
substituting the solution for dynamic behavior of each kα  in 
the equation (5) a temporal trajectory of slope vectors is 
produced toward the dimension of own space, 
 

( )( ) ( )1 20 0 0
1 1 2 2   ( ) ( ) ( ) ... ( )

tt t n

n nt t e t e t e
λ τλ τ λ τ

α α α
−− −

= + + +x r r r& (6) 

If we integrate the former equation of slope trajectories 
with respect to time (from τ  time to t time) and defining  

0

( )k
k

k

α
λ=kw r  the following expression is obtained: 

( )( ) ( )1 2 ( ) ...
tt t nt e e e

λ τλ τ λ τ −− −

= + + + +1 2 nx w w w u  (7) 
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This decomposes the state trajectories into many forms of 
behavior, which are characterized by an eigenvalue. 

In the case of conjugate eigenvalue, their weight is also 
conjugated and they combine within oscillatory forms of 
behavior. It is assumed without loss of generality that 

0τ = and let us consider a pair of eigenvalues in the equation 
(7) as: 

 
( ) ( )1 2  ( )
t t

i i i it e e
λ τ λ τ− −

= + +1 2x w w u  (8) 

Where 1 a bi= +w and 2 a bi= −w  

and  c idλ = +1 2 c idλ = − , u 2a= −1  
The aforementioned equation with the former changes 
produces the following equation: 

 

   ( ) ( ) ( ) 2
idt idtct ct

i t e a ib e e a id e a
−

= + + − −x (9) 

Using the Euler formula for in the complex analysis and 
simplifying we arrive at the following expression:  
 

2 2 ( ) 2 [ ( )] 2ct
i t a b e sen dt aθ= + + −x  (10) 

 A conjugate pair was reduced by a simple form of 
oscillatory behavior  [ ( )]cte sen dtθ + and the weight of the 

behavior mode ix was identified, by 2 22 a b+ and the 

vector contribution u in 2a− . 
 

III. PARAMETRIC STRUCTURE OF THE DESCOMPOSITION OF 
DYNAMIC SYSTEM BEHAVIOR 

 
In the first part of this document, a mathematical equation 

was developed for the state trajectory behavior of dynamic 
system (see equation 7). In this section, the origin of each 
component of the state trajectory will be identified[ ]12 . 

 
In an interpretation of figure 2, the basic component is: 
The eigenvalue kλ , the right eigenvector kr   the initial 

values of the slopes kα and parameters.  
 
 We notice the use of delay links to indicate eigenvalue, 

right eigenvectors and alphas controls of the future trajectories 
of the state variables.  

 
 
 

 
Fig 2 Parametric Structure of Identification 

 
An analysis of the eigenvalue will be included as they can 

play an import role in modeling of behavior. For example, if 
was shown that a simple linear model with a positive feedback 
cycle can generate an exponential behavior decrease, rather 
than an exponential growth ; if the initial slope vector was 
orthogonal with the right eigenvector associated with el 
positive eigenvalue(Saleh and  Davinsen ,2001) 

 
When observing the eigenvalues, we see that they only 

originate from the model structure; or more specifically from 
the gain matrix G . The gain matrix is used as a condensed 
representation of the structure of the model and was used in 
section 1 as a starting point for the state trajectory 
decomposition in different modes of behaviors  

 
 Furthermore , it can be observed that in linear models , the 
gain matrix  G , depends on the parameters of the model 
(constant in the model) , although , for each eigenvalue  it is 
possible to formulate the eigenvalues (depend variable) and 
the parameters of the model (independent variable) however 
for simplification instead of formulating a simple complicated 
function , relating an eigenvalue with all the parameters of the 
model, it is possible to develop many mathematical functions , 
where each function relates an eigenvalue to a single 
parameter[ ]1 .  In our investigation we used Matlab Toolbox 

to automate the aforementioned process. 
 
Similarly, the eigenvector only originates from the gain 
matrix. It is possible to formulate mathematical functions 
relating any eigenvector (dependent variable) for any 
parameter (independent variables). 
The initial value of each alpha (for example 0

kα ) represents 
the initial slope vector projection along the specific right 
eigenvector (for example a specific coordinate in own space).  
For example, the initial value of the alpha are depend in the 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 2, 2008 495



 

 

initial value of net rates (values at the beginning of the 
simulation) and the right eigenvectors. 
  
To sum up, for each component in state trajectory (equation 7) 
it is possible to formulate mathematical functions relating the 
component with any parameter.  This means that a compound 
mathematical function can be developed relating the future 
values in any given moment in time, of a state variable 
(dependent variable) with any parameters (independent 
variable). The partial differentiation in any moment in time of 
this compound function with respect to the parameter 
produces the future value sensitivity (of the state variable) 
with this parameter. 
 
The state of transition of the dynamic system in the internal 
space and the mapping from the space of internal states to the 
space of observations is modeled by the following linear 
equations: 

( ) ( ) ( )
1

1

i i i
t t t

t t t

x F x g w
y Hx v

−

−

= + +

= +
 

 
    Where ( )iF  is a transition matrix; ( )ig  is a bias vector. H  
Is a transition matrix that defines the lineal projection from a 
space of internal state to the observation space, Notice that 
each dynamic system has, ( )iF  ( )ig y ( )i

tw  individually.  It is 

assumed that each ( )iw  is noise identifier and v  has normal 

distribution ( )( )0,
t

i
xN Q and ( )0,yN R  respectively. 

 
    The classes of dynamic systems can be categorized by the 
eigenvalue of the transition matrix which determines answers 
of the input zero of the system. In other words, these 
eigenvalues determine the general behavior of patterns 
(trajectories) with temporary variation in the space of states. 
 
 

A.  Decomposition of Eigenvalue starting from the Gain 
Matrix 

The general class of dynamic pattern (corresponding to 
trajectories at point in the states space) of a linear dynamical 
system can be described by the eigenvalues of the gain matrix. 
For the concentration of the temporal evolution of states in 
dynamical system, it can be assumed that the bias and the 
noise process are zero in equation 1, using the decomposition 
of the eigenvalue of the gain matrix; we arrive at the 
following equations[ ]6 : 

 
[ ] ( )[ ] 11

1 1 1  ,..., ,..., ,...,n n nG E E e e diag e eλ λ −−= Λ =  (11) 

The state in time t can be resolved with initial conditions 0x  
as follows:  

( )1
0 0

1
0

1

  

   

Tt
t

n
T t

p p p
p

x F x E E x

E E x eα λ

−

−

=

= = Λ

Λ =∑
 (12) 

Where pλ and pe are the corresponding eigenvalue and 

eigenvector. The weight value pα is determined from the 

initial state 0x by the determination on the complex plane as:  
 

[ ] 1
1 0,..., T

n E xλ λ −=  (13) 

From here, the general patterns of a system can be categorized 
by using the position of the eigenvalues (poles) 1,..., nλ λ on 
the complex plane. The determination of the oscillatory state 
is determined by its argument values (angles), according to the 
following rules: 
 

• Oscillation if at least one eigenvalue is negative or 
complex 

• No oscillating if all the eigenvalue are real numbers 
 
The absolute value of the eigenvalue determines the state of 
convergence or divergence of the form: 
 

• Diverges if at last one the eigenvalue is above one 
• Converges if all the absolute values of the eigenvalue 

are less than one. 
 
The system can generate pattern due to temporal variation if 
and only if 1  1p for p nλ < ≤ ≤ ; this pattern converges at 

zero. (In control terms it is said that the system is stable) 
The system can generate monotonic or cyclical patterns if the 
imaginary part of the eigenvalue is different to zero. 
 

B Identification through the Estimation of the Gain Matrix 
 
The identification of the system with no restrictions is 
conditioned a ranges temporal [ ],b e are represented by the 

dynamic linear system iD , thus the transition matrix can be 

estimated ( )iF and the bias vector ( )ig of the 

sequence ( ) ( ),...,i i
b ex x  of internal states.  This problem of 

parameter estimation becomes a problem of minimization of 
error prediction[ ]6 . 

This error prediction vector can be determined using the 
discrete equations for dynamical linear system and after 
having estimated the matrix of ( )iF  the bias vector ( )ig . The 
formulation is as follows: 
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( )( ) ( ) ( ) ( )
1

i i i i
t t tx F x gε −= − +      (15) 

Thus, the sum of the norms of the squares of all of the error 
vectors in the range [ ],b e  becomes:  

( )
2

22 ( ) ( ) ( )
1

1 1

e e
i i i

t t t
t b t b

e x F x g−
= + = +

= − +∑ ∑      (16) 

 
Finally, the optimum values of ( )iF and ( )ig  can be estimated 
by solving the following problem of least minimums square 
as: 

(i) ( )

2e
(* ) (* )

t
F , t=b+1

, arg  min min e
i

i i

g
F g = ∑        (17)

IV. DEFINITION OF THE PROBLEM 
The principal motivation of this work is to develop some 

methods or techniques which allow the study of complex 
systems, in the sense of finding their underling structure or 
structural similarity with known systems. 

 
This enables us to look for data structures and their 

classification into categories in such way that the similarity 
between structures of the same category is high and the 
different categories of similarity values low. Traditional 
approaches to system analysis –e.g. trying to find a 
mathematical model that describes  output as a function of 
state variable and due to the fact that  input perform poorly 
when dealing with complex systems. 

 
 This may be due to their nonlinear, time-varying nature or 

to uncertainty in the available measurement[ ]1 . We can 

approach the analysis of dynamic systems in two different 
ways: the first is based on the existence of a state measuring 
mechanism in the form of a mathematical model; In the 
absence of such a measuring mechanism, we must resort to 
some perceptual mechanism, that allows us to perceive the 
underling structure of the system, based on the behavior of the 
dynamic system.  

 
The similarity measure is one the possible perceptual 

mechanism that can be used to analyze such systems. One of 
the motivations of this dissertation is to discover ways to use 
structural similarity as mechanics to study dynamic systems.  

The classic methods of recognition of patterns should be 
tuned to consider desirable problems from the dynamic point 
of view, that is to say the process of objects are described with 
sequences of temporary observations. 

 
     In the design of dynamic systems and analysis in the 

domain of time, the concept of states of a system is used; a 
dynamic system is usually modeled by a system of differential 
equations.  

 
To obtain dynamic systems by differential equations that 

represent the relationship between the input 
variables 1 2( ), ( ),..., ( )pu t u t u t  and the output 

variables 0 1( ), ( ),..., ( )qy t y t y t , the intermediate variables 

receive the name of state variables 1 2( ), ( ),..., ( )nx t y t x t . A 
set of state variables in any instant determines the state of the 
system at this time[ ]13 . 

 
    If the current state of a system and the value of the 

variables are given for 0t t> , the behavior of the system can 
be described clearly. The state of the systems is a set of real 
numbers in such a way that the knowledge of these numbers 
and the values of the input variables provide the future state of 
the system and the values of the output variables by the 
equations that describe the dynamics of the system. 

 
 The state variables determine the future behavior of the 

system when the current state of the system and the values of 
the input variables are known. The multidimensional space of 
observation induced by the state variables receives the name 
of space of states.  

 
The solution of a system of differential equations can be 

represented by a vector ( )tX  that corresponds to a point in 
the state space in an instant of time t . This point moves in the 
space of states like steps of time. The appearance or the way 
to this point in the space of states is known like as trajectory 
of the system.  

 
For an initial state and   end state given 1 an infinite number 

of input vectors exist that correspond to trajectories with start 
and end points.   On the other hand, through a point on the 
state space only one trajectory passes.  

 
Considering dynamic systems in the control theory, a lot of 

attention has been paid to adaptive control[ ]1 . The main 

reason to introduce this area of investigation is to obtain 
controllers whose parameters can adapt to the changes in the 
dynamic process dynamic to perturbation characteristic. 

 

V. RESULTS 
 
There is an identification method know as identification of 

dynamic system with no restriction in the eigenvalue which 
allows us to estimate the gain matrix starting from an interval 

[ ],b e  that represents a behavior mode of the state trajectory , 
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specified by ( )ix  . Taking the discrete equation form for 
dynamic system 1i ix Gx u+= + , we begin our method with 
the following expressions: 

 
( ) ( ) ( ) ( ) ( )
0 0 1 0

( ) ( ) ( ) ( ) ( )
1 1 1 1

,...,

,...,

i i i i i
b e

i i i i i
b e

X x m x m

X x m x m

−

+

⎡ ⎤= − −⎣ ⎦
⎡ ⎤= − −⎣ ⎦

)

)  (18) 

Where ( )
0
im  and ( )

1
im are the middle value of columns in 

( )
0

iX  and ( )
1

iX respectively and which are formulated in this 

way:  
1

( ) ( )
0

( ) ( )
1

1

1
1

1
1

e
i i

t
t b

e
i i

t
t b

m x
l

m x
l

−

=

= +

−

−

∑

∑

�

�

 (19) 

The gain matrix and the bias term can be calculated, for 
each interval in the state trajectory in the follow form: 
 

( ) ( ) ( )
1 0

( ) ( )*
1 1

*i i i

i i

G X X

u m G m

+=

= −

) )

  

 
Where ( )

0
iX + a Moore Penrose[ ]2  is is generalized inverse 

(Moore Penrose pseudo inverse) of ( )
0

iX . The inverse matrix 

X + can be defined as : 

( )
( )

2

2

12

0

12

0

lim

lim

T T

T T

X X XX I

XX I X

δ

δ

δ

δ

−+

→

−

→

= +

= +
 (20) 

Where I is the unit matrix and δ is real value different to 

zero[ ]6 . 

 
The first example to be identified will be a first order 

system with behavior in S (Sigmoidal), which is characterized 
by two perfectly differentiated behaviors in the transitory 
regime, the first phase of the transitory regime corresponds to 
an exponential decrease behavior, very similar to those found 
in positive feedback system; the second phase of the transitory 
regime corresponds to a asymptotic decrease behavior very 
similar to those found negative feedback systems. See figure 3 
and 4. 

 
     Fig 3 Sigmoidal First Order Dynamic System  

 
In figure 4 is import to establish that colors red and green 

refer to the transitory regime and yellow corresponds to the 
permanent regime. 

 
Fig 4 Transitory Regime in Sigmoidal Dynamic System  

 
 
Also it shows, the temporal behavior of the state variable of 

sigmoidal dynamic system, which is differentiated from the 
exponential growth (green color) and continuation (point 
inflexion or transition state) the asymptotic increment 
behavior (red and yellow colors). 

 
As mentioned earlier, the transitory regime of state 

trajectories of sigmoidal system has two behaviors (green 
label and red label).  Similar to those explained in the 
identification method no restriction on the previous section. 
This implies a number equal of matrixes estimation and the 
use of Gershgorin΄s theorem for poles placement, as illustrated 
in figure 5 
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Fig 5 Eigenvalue Placement in Sigmoidal Dynamic System 
 
In the following example the structural features of an 

expanded oscillation system will be examined which may 
have expanded, over expanded or critical behavior.  

 
It is a generic structure of oscillation, with the addition of a 

negative feedback. The behavior of a generic structure of an 
oscillatory system (simulated with arbitrary parameters and 
initial values) depending on the parameters values and initial 
system values, a generic structures of an expanded oscillatory 
system can produce a wide variety of behavior , degree of 
expansion and oscillation period. In figure 6 is illustrated 

  

 
Fig 6 Temporal Behavior of an Extended Oscillatory System 
 
The purpose of decomposing of an extended oscillatory 

system is satisfied by the dynamic clustering results as shows 
in the following figure 

 

 
Fig 7 Result of Dynamic Clustering for an Extended Oscillatory 

System 
 
 
This dynamic clustering reveals a decomposition of the 

extended dynamic oscillatory system in increasing and 
decreasing asymptotic behavior corresponding to first with 
negative feedback. 

 
The previous statement whilst being true serves as a basis to 

know the system structure through a lineal combination of 
behavior modes specified by the values of the real and 
complex eigenvalue, as show in the following graphs: 

 

 
Fig 8 Eigenvalue Positive Feedback and oscillatory of an 

Extended Oscillatory System 
 
 

Now, we will illustrate the behavior of the other segments 
which allows their mode of behavior to be established, based 
on whether their eigenvalue are real or imaginary. 
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Fig 9 Eigenvalue complex of an Extended Oscillatory System 

 
  In these last result of the identification method using linear 

algebra an increasing exponential behavior is observed, 
similar to that of a first order system with positive feedback 
and an oscillatory behavior characterized by its two 
eigenvalue with complex value. 

 
Identification results using statistics methods like principal 

component analysis (PCA)[ ]11  will inform us abut the 

behavior of system, its component and the R distribution of its 
eigenvalues for the extended oscillatory system. In figure 10 
this result can see.  
 

  
Fig 10   Grid of Eigenvalue for Principal Segment the Extended 

Oscillatory System  
 

The PCA the light colors represent occurrences of high 
negative values and the dark colors represent occurrences of 
high positive values[ ]11 . Thus, areas with a similar tone 

mean that their coefficient has similar values. 
    

VI. CONCLUSION 
 

The previous results need to part from explicit data taken 
from real world abstraction methods and transformed into 
structural features  through geometric descriptors for example 
structural similarity. 

 

The features space considered is a space of slope values vs. 
curvature values as established in equation 3.  Once the 
feature vector is specified, which is no more than the 
curvature and slope vector from trajectories of states variable 
of dynamic system. These values are inputs for the process of 
dynamic clustering Castañeda Colina (DCCC) which partition 
the primary state variable trajectories into theirs respective 
behaviors. This allows get the segment to be mapped in 
temporal space for the identification process no restrict. 

 
All of the values of state variables   need to be considered 

in this features space to estimate the gain matrix, Moore 
Penrose method is used accompanied by a regularization 
coefficient, the matrix factors being curvature vector and 
slopes vector of the state variables. 

 
Once the matrix has been estimated , if is the input in the 

process know as Gershgorin΄s circle methods , which enables 
the position of the eigenvalue to be found  ,it process  
becomes  a clustering process of the eigenvalue. 

    
Furthermore, by using the statistic method know as 

principal component analysis the behavior of the eigenvalue 
can be illustrated for each mode of behavior. 

 
We consider that our model is transparent and a detailed 

analysis will prove this, although we know that numerous 
techniques which are more or less effective are know in the 
academic foundations of systems identification. 

 
   

APPENDIX 
 

Consider a complex system that assuming different states in 
the course of the time. Each state of the system in the instants 
of time is considered an object to classify. If a dynamic system 
is observed temporarily, the variable value of the features 
constitutes dependent functions of the time[ ]5 .  

However each object is not only described by one vector of 
features in any instant but also for the history of the temporary 
development of this vector of features[ ]7 .  

The objects receive the name of dynamic whether they 
represent measurements or observations of a dynamic system 
and it contains history of their temporary development.  That 
is to say each dynamic object is a temporary sequence of 
observations that is described by a discreet function in the 
time. The dependent function of the time is represented by a 
trace, or trajectory, for each object from its initial state to its 
current state in the space features[ ]8 . 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 2, 2008 500



 

 

 
Fig 11 Examples of Structural Similarity on Trajectories   

 
If the form and orientation of the trajectories is chosen then as 
similarity approach 

 The objects , , ,B D E G  they cannot be considered similar 
and they are divided in the following two groups 
{ },B D and{ },E G . If the form and orientation of the 

trajectories are considered irrelevant but their closeness space 
is then a base for a similarity definition, four clusters they are 
recognized this way:{ },A B ,{ },C D , 

{ },E F and{ },G H see figure 11[ ]9 .  

A. Class of Similarity Measure  
Consider a complex system that assuming different states in 
the course of the time. Each state of the system in the instants 
of time is considered an object to classify. If a dynamic system 
is observed temporarily, the variable value of the features 
constitutes dependent functions of the time[ ]10 .  

In the previous section we consider a criterion   for the 
comparison between two trajectories, two similarity types 
among trajectory can considers:[ ]10  

Pointwise Similarity: the smaller Pointwise distance between 
two trajectories in feature space[ ]6 .   

Structural Similarity: the better two trajectories match in form, 
evolution, characteristic, and the greater the similarity 
between two trajectories.  

For the determination of the similarity structural it is specified 
relevant aspects of the behavior of the trajectories depending 
on a concrete application. Based on physical properties of the 
trajectories (e.g. slope, curvature, smoothness, position and 
value of inflection points) can be selected, which are then 
used as comparison criteria.   

In such a way, the similarity structural is suited to situation for 
when we look at the particular patterns in trajectories that 
should be well matched. 

B. Similarity Structural Based of Slope and Curvature 
Trajectories. 

The curvature of the trajectories of each point describes the 
grade with the one which a trajectories are s bent in this point. 
This is evaluated by the coefficient of second derivative of a 
trajectory in each point that can be defined by the following 
equation (for a trajectory one-dimensional). 

1
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Where kx&  denotes the coefficient of the first derived in the 

point kx and given for: 
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Substituting the previous equation in the equation of the bend, 
you arrive to the following equation based on the values of the 
original trajectories 
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C. Segment Methods for  Characteristic of trayectories 
 

The distinctive characteristic when it is considered the 
curvature, it is the sign of the coefficient of second derivate. If 
the coefficient is positive in certain period of time, then the 
trajectory is convex in the interval (near to the end). If the 
coefficient is negative in certain period of time, the trajectory 
is concave (near to the low point). If the coefficient is similar 
to zero in some point that inflection point is called, bend is not 
presented in this point[ ]9 . 

 
Fig 12   Segment Pattern of Trajectories  

 

In a trajectory, they can be distinguished seven types of 
segments (tendencies), each one of those which this 
characterized by a constant sign in the first one and second 
derived. Such a triangular representation of tendencies 
provides qualitative characteristic for a description of 
segments.[ ]7   
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To derive quantitative information starting from the segments, 
these they are described by the group of 
parameters ( )t a ; ( )t b  they are the instants of initial and final 
time of the segment.  See figure 12. 
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