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Abstract—The fuzzy partition clustering algorithms are most

based on Euclidean distance function, which can only be used to detect
spherical structural clusters. Gustafson-Kessel (GK) clustering
algorithm and Gath-Geva (GG) clustering algorithm, were developed
to detect non-spherical structural clusters, but both of them based on
semi-supervised Mahalanobis distance needed additional prior
information. An improved Fuzzy C-Mean algorithm based on
unsupervised Mahalanobis distance, FCM-M, was proposed by our
previous work, but it didn’t consider the relationships between cluster 
centers in the objective function. In this paper, we proposed an
improved Fuzzy C-Mean algorithm, FCM-MS, which is not only
based on unsupervised Mahalanobis distance, but also considering the
relationships between cluster centers, and the relationships between
the center of all points and the cluster centers in the objective function,
the singular and the initial values problems were also solved. Three
real data sets was applied to prove that the performance of the
FCM-MS algorithm gave more accurate clustering results than the
FCM and FCM-M methods, and the ratio method which is proposed
by us is the better of the two methods for selecting the initial values.

Keywords—FCM-MS, FCM-M, GK algorithms, GG algorithms,
Mahalanobis distance.

I. INTRODUCTION

Lustering plays an important role in data analysis and
interpretation. It groups the data into classes or clusters so

that the data objects within a cluster have high similarity in
comparison to one another, but are very dissimilar to those data
objects in other clusters.

Fuzzy partition clustering is a branch in cluster analysis, it is
widely used in pattern recognition field. The well known ones,
such as, C. Bezdek’s “Fuzzy C-Mean (FCM)” [1], are all based 
on Euclidean distance function, which can only be used to detect
the data classes with same super spherical shapes.
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Extending Euclidean distance to Mahalanobis distance, the
well known fuzzy partition clustering algorithms,
Gustafson-Kessel (GK) clustering algorithm [3] and Gath-Geva
(GG) clustering algorithm [2] were developed to detect non-
spherical structural clusters, but these two algorithms fail to
consider the relationships between cluster centers in the
objective function, GK algorithm must have prior information
of shape volume in each data class, otherwise, it can only be
considered to detect the data classes with same volume. GG
algorithm must have prior probabilities of the clusters.

On the other hand, When any dimension of a class is greater
than the sample size of which class, the estimated covariance
matrix of which class may not be full rank, it induces the
singular problem of the inverse covariance matrix, it is an
important issue without generally consider in above algorithms.
Focusing the above two faults, we added a regulating factor of
covariance matrix to each class in objective function, and
deleted the constraint of the determinants of covariance
matrices in GK Algorithm, An improved algorithm, based on
Mahalanobis distance, “Fuzzy C-Mean based on Mahalanobis
distance (FCM-M)” is proposed by our previous work [4].Yin et 
al. [5] described an extended objective function consisting of a
fuzzy within-cluster scatter matrix and a new between-cluster
centers scattering matrix. The corresponding fuzzy clustering
algorithm assures the compactness between data points and
cluster centers and also strengthens the separation between
cluster centers based on the separation criterion. Then clustering
algorithm solved the relationships between cluster centers
question, but they did not consider the distance between the
center of all points and the center of each cluster. This problem
was also solved and presented in this paper. Moreover, In this
paper, an improved fuzzy clustering algorithm, denoted
FCM-MS, was developed based on FCM-M to obtain better
quality clustering results with new separable criterion and better
initial value. The improved equations for the membership and
the cluster center were derived from the alternating optimization
algorithm. The distance between the center of all points and the
center of each cluster was considered by the authors of this
paper, the singular problem was also solved. A real data set was
applied to prove that the performance of the FCM-MS
algorithm gave more accurate clustering results than the
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FCM-M and FCM methods, and the ratio method which is
proposed by us is the better of the two methods for selecting the
initial values.

II. LITERATURE REVIEW

Fuzzy C-Mean Algorithm (FCM) is the most popular
objective function based fuzzy clustering algorithm, it is first
developed by Dunn [6] and improved by Bezdek [1].The
algorithm of fuzzy C-Means Algorithm are the foundations of
this study. The algorithm will be discussed as follows.

A. Fuzzy C-Mean Algorithm

The objective function used in FCM is given by
Equation (1).
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 0,1ij is the membership degree of data object

jx in cluster
iC and it satisfies the following constraint

given by Equation (2).

(2)

C is the number of clusters, m is the fuzzifier, m>1,
which controls the fuzziness of the method. They are both
parameters and need to be specified before running the
algorithm. 22

ij j id x a  is the square Euclidean distance

between data object jx to center ia .Minimizing objective

function (1) with constraint (2) is a non-trivial constraint
nonlinear optimization problem with continuous
parameters ia and discrete parameters ij . So there is no
obvious analytical solution. Therefore an alternating
optimization scheme, alternatively optimizing one set of
parameters while the other set of parameters are
considered as fixed, is used here. Then the updating
function for ia and ij is obtained as (3) ~ (5).

Step 1: Determining the number of cluster; c and
m-value (let m=2), given converging error, 0 (such
as 0.001 ), randomly choose the initial membership
matrix, such that the memberships are not all equal

(3)

Step 2: Find

(4)

(5)

Step 3: Increment k; until .

B. FCM-M Algorithm

Mahalanobis, an Indian statistician , introduced this
distance in the 1930s. The Mahalanobis distance is a
distance using the inverse of the covariance matrix as the
metric. It is a distance in the geometrical sense because
the covariance matrices as well as its inverse are positive
definite matrices. [9]

We call clusters using the Mahalanobis distance as
covariance clusters. The metric defined by the covariance
matrix provides a normalization of the data relative to
their spread. Using the Mahalanobis distance is done as
follows: 1.The covariance matrix of the measured
quantities, V, is determined over a calibrating set. 2.One
compute the inverse of the covariance matrix, V-1. 3.The
distance of a new object to the calibrating set is estimated
using equation 2 1( ) ( ).T

Md x x V x x   ; if the distance is
smaller than a given threshold value, the new object is
considered as belonging to the same set.

One interesting property of the Mahalanobis distance
is that it is normalized. Thus, it is not necessary to
normalize the data , provided rounding errors is inverting
the covariance matrix are kept under control. If the data
are roughly distributed according to a normal distribution,
the threshold for accepting whether an object belong to
the calibrating set can be determined from the 2

distribution. The Mahalanobis distance can be applied in
all problems in which measurements must be classified.

A good example is the detection of coins in a
vending machine. When a coins is inserted into the
machine, a series of sensors gives several measurements,
between a handful and a dozen. The detector can be
calibrated using a set of good coins forming a calibration
set. The coin detector can differentiate good coins from
the fake coins using the Mahalanobis distance computed
on the covariance matrix of the calibration set, reference
the following Figure 1.
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FIG.1. Use the Mahalanobis distance to detect the fake coins.
(Convert from Besset D. H. p619, FIG. 12.2)

Another field of application is the determination of
cancer cells from a biopsy.Parameters of cells can be
measured automatically and expressed in numbers. The
covariance matrix can be determined using either
measurements of healthy cells or measurements of
malignant cells. Identification of cancerous cells can be
automated using the Mahalanobis distance.

The final goal of the object implementing the
Mahalanobis distance is to compute the square
Mahalanobis distance as defined in equation

2 1( ) ( ).T
Md x x V x x  

Implementation of the Mahalanobis distance is
dictated by its future reuse in cluster analysis. There, we
need to be able to accumulate measurements while using
the result of a preceding accumulation .Thus,
computation of the center and the inverse covariance
matrix must be done , see the figure 2.explicitly with the
method computer Parameters. There are two ways of
creating a new instance. One is to specify the dimension
of the vectors that will be accumulated into the object.
The second supplies a vector as the tentative center.

The normalizing properties of the Mahalanobis
distance make it ideal for this task. When Euclidean
distance is used , the metric remains the same in all
directions. Thus, the extent of each cluster has more or
less circular shapes. With the Mahalanobis distance, the
covariance matrix is unique for each cluster. Thus,
covariance clusters can have different shapes since the
metric adapts itself to the shape of each cluster. As the

algorithm progresses, The metric changes
dynamically.[10]

FIG.2. Method for successive approximation.
(Convert from Besset D. H. p118, FIG. 4.4)

For improving the above two problems, our previous
work [4] proposed the improved algorithm FCM-M
which added 1ln i

  a regulating factor of covariance

matrix to each class in objective function, and
deleted i iM  the constraint of the determinant of
covariance matrices in GK Algorithm as the objective
function (6).

Using the Lagrange multiplier method, We can
minimize the objective function (6). Constraint (7) with
respect to the parameters ia , ij , and i, we can obtain

the solutions as (10), (11), and(13).
We want to avoid the singular problem and to select

the better initial membership matrix, the updating
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functions for ia , ij and i are obtained as (8) ~ (3-8).

Both of FCM and FCM-M can not exploit all of the
memberships with the same value. FCM is a special case
of FCM-M, when covariance matrices equal to identity
matrices by our previous work [8].

(6)

Constraints: membership,

(7)
 1 2, ,..., c  is the set of covariance of cluster.

Step 1: Determining the number of cluster; c and
m-value (let m=2), given converging error, 0 (such
as 0.001 ).

Method 1: choose the result membership matrix of
FCM algorithm as the initial one.

Method 2: let 0 , 1,2,...,ia i c be the result centers of
k-mean algorithm, And be distances between
data object jx to center 0

ia .
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Step 3: Increment k; until   1
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C. FCM-MS Algorithm[13]

The clustering optimization was based on objective
functions. The choice of an appropriate objective
function is the point to the success of the cluster
analysis.[14] In FCM-M algorithm, it didn’t consider the
relationships between cluster centers in the objective
function, now, we proposed an improved Fuzzy C-Mean
algorithm, FCM-MS, which is not only based on
unsupervised Mahalanobis distance, but also considering
the relationships between cluster centers, and the
relationships between the center of all points and the
cluster centers in the objective function, the singular and
the initial values problems were also solved. Let {x1, x2,
x3,…,xn} be a set of n data points represented by
p-dimensional feature vectors p

j 1j 2j pjx =(x , x , ..., x ) R .

The p×n data matrix Z has the cluster center matrix
A=[a1, …, ac] , 1<c<n and the membership matrix

[ ]ij cxnU  , where ij is the membership value of xj

belonging to ai. [ ]ik cxcV v express the weighting matrix,
and ikv is the weighting value between vi and vk. The
fuzzy exponent m is greater than 1 [7]. Thus, the proposed
objective function is
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The goal of the clustering algorithm is to identify the
cluster centers and the membership values by solving an
optimization problem. Alternating optimization is a
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popular mathematical tool for the regular objective
function-based fuzzy clustering algorithms.

The optimal update equations can be obtained using
the Lagrange method by setting the partial derivative of
the Lagrange with respect to vi and with respect to ij

equal to zero. Setting / ijJ   equal to zero gives the update

equation for ij .
The new fuzzy clustering algorithm can be summarized in

the following steps:
Step 1: Determining the number of cluster; c and

m-value (let m=2), given converging error, 0 (such
as 0.001 ).

Method 1: choose the result membership matrix of
FCM algorithm as the initial one.

Method 2: let 0 , 1,2,...,ia i c be the result centers of
k-mean algorithm, and be distances between data
object jx to center 0

ia .
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Step 3: Increment k; until .

D. 2.4 Fuzzy Possibilit y C-M ean Algorithm[12]

Combining FCM and PCM, the improved fuzzy partition
clustering algorithms “Fuzzy Possibility C-Mean (FPCM)”, was 
proposed
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Now, for improving the above problems, we
added a regulating factor of covariance matrix,

1ln i
  , to each class in objective function. The

improved new algorithm,“Fuzzy Possibility C-Mean
based on Mahalanobis distance (FPCM-M)”, is 
obtained. Using the Lagrange multiplier method, to
minimize the objective function (34) with constraint
(35) respect to parameters

ia , ij , ijt , i , we can
obtain the solutions as (38), (39), (41),and(42),To
avoid the singular problem and to select the better
initial membership matrix , the updating functions
for

ia , ij, and i are obtained as (36)~ (42).Note,

(i) All of the fuzzy partition clustering algorithms can not
exploit all of the memberships with the same value

(ii) FPCM is a special case of FPCM-M ,when Adding a
regulating factor of each clusters covarince in objective
function, we proposed the fuzzy possibility c-mean based on
mahalanobios distance (FPCM-M) as following.
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1 1

, , , ln
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FPCM M ij ij j i i j i i
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constraints：menbership
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Step 1: Determining the number of cluster; c and m-value (let
m=2), 3 ,

Given converging error 0 (such
as 0.001 ) choose the result membership matrix
of FPCM-M algorithm as the initial one and the
normalized result typicality matrix of PCM-M
algorithm as the initial one respectively;
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Step 3: Increment k; until   1
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F. The G-K Algorithm

The well-known Gustafson & Kessel algorithm (G-K
algorithm) was proposed by Gustafson & Kessel (1979). It is a
fuzzy partition clustering algorithms based on Mahalanobis
distance and an extension of the fuzzy c-means algorithm on an
adaptive norm, which will provide information about the
clusters of various shapes in a data set. Each cluster is
characterized by its normalization matrix iM M . The

matrix iM is applied as the optimization of variables in the

c-means functional. Each cluster is able to adapt its own norm,
in accordance with a topology data of a specific region. The
objective function is defined as the equation of (43).
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constraints：membership
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Each groups of the determinent of standardization
covariance matrix of cluster I,

, 1 , 2 , . . . ,i iM i c   (45)
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If there is no prior information about i , then

1, 1,2,...,i i c  . The algorithm is described as follows.

Step 1: Determining the number of cluster c, m-value (let m=2),
and the converging error, 0 (such as

0.001 ), and choosing the initial membership
matrix.
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Step 2: To calculate
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Step 3: Increment k; until   1
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III. DATA RESOURCE

We have two real data sets was applied to prove that the
performance of the FCM-MS algorithm gave more accurate
clustering results than the FCM and FCM-M methods, and the
ratio method which is proposed by us is the better of the two
methods for selecting the initial values.

A. Experiment of Mathematics Teaching Data

A real data set of students with sample size 493 from
elementary schools was selected. These data included the
independent variables, test scores of four mathematics concepts
(division, ordering, multiplication, and place value) and 10

questions. The samples were assigned to 4 clusters. The results
were shown in Table 1.

Table 1. The Characteristics of 4 Clusters

Cluster Sample
size

Mathematics
concepts

Average
distance

from points
to center

1 115 division 1.2576760
2 128 ordering 1.2968550
3 168 multiplication 1.1244569
4 82 place value 1.7861002

Each 15 sample points were randomly drawn from Cluster
1, cluster 2, and cluster 3, respectively, and 5 from cluster 4.
How to select the better initial value to improve the cluster
accuracy is an important issue. In order to test the FCM-M
algorithm, developed by the authors of this paper, the four .25
were selected as initial value. After calculating, the results were
found that the memberships were all equal to .25 too. This
evidence displayed that the FCM-M algorithm was work
correctly. There were 2 methods (Ratio, Random) to calculate
the Normalized initial number. which satisfied the Equation (2) .

The steps of Ratio Method were as follows.
Step 1: The distance between observing value and every cluster
center of every Point, say d. Compute the average distance of
clustering result marking group.

 10

1

, Re
in

i j i i
j

cd d n n number of sult Marking Group i




Step 2: Compute the difference of d and the average

distance of clustering result marking group
1,2,..., , 1,2,...,ij j i il d cd j n i c   

Step 3: Find the values of maximum and minimum

.
Step 4: Compute the initial membership Difference of

every Point .
The steps of Random Method were as follows. Choose any

4 random numbers, r1, r2, r3, r4 .

Table2.Classification Accuracies of Testing Samples
Choosing the

initial membership
Computing

distance
Classification
Accuracies (%)

FCM-MS 54
FCM-M 50Ratio

FCM 40
FCM-MS 50
FCM-M 30Random

FCM 26

1( )( )ij ijM l M m   

 
 

max 1,2,..., , 1,2,..., ,

min 1,2,..., , 1,2,...,

ij i

ij i

M l j n i c

m l j n i c

  

  
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From the data of Table 2, we found that the
FCM-MS algorithm presented the best clustering
accuracies, up to 54% and the Ratio method of
FCM-MS could obtain the better results.

B. Experiment of Teaching Fraction Data

Another real data set of students with sample size 146 from
elementary schools was selected. The main factors of the data
were calculated by using factor analysis. According to the main
factors, the samples were assigned to 4 clusters based on the
clustering analysis. The results were shown in Table 4.

From the data of Table 5, we found that the Ratio method
could obtain the best results. A real data set was applied to prove
that the performance of the FCM-MS algorithm gave more
accurate clustering results than the FCM-M and FCM methods.

Table 4. the characteristics of 4 clusters

Cluster Sample
size

mathematics
concepts

average distance of
the points from
center of cluster

1 36 Partition -.14984
2 89 Unit .21161
3 16 Fraction -.30416
4 5 Unknown unit -.74490

Each 15 sample points were randomly drawn from Cluster
1, cluster 2, and cluster 3, respectively, and 5 from cluster 4.

The classification accuracies of testing samples were
shown in Table 5

Table5.Classification Accuracies of Testing Samples
Choosing the

initial membership
Computing

distance
Classification
Accuracies (%)

FCM-MS 56
FCM-M 38Ratio

FCM 36
FCM-MS 44
FCM-M 30Random

FCM 24

From the data of Table 5, we found that the FCM-MS
algorithm presented the best clustering accuracies, up to 56%
and the Ratio method of FCM-MS could obtain the better
results.

C. Experiment of Teaching Geometry Data

A real data set of sample size 968 students from elementary
schools was selected. These data included the 10 mathematics
questions.

At first, the main factors of 968 data were calculated by
using factor analysis. Next, according to the main factors, the
samples were assigned to 4 clusters based on the clustering

analysis using the k-mean clustering of SPSS for Windows 10.0.
The results were shown in Table 6.

Table 6 The characteristics of 4 clusters

Cluster Samples size Grade average distance of the
points from center of cluster

1 220 2 2.082132
2 435 4 1.433158
3 275 3 2.032674
4 56 1 2.356698

From Cluster 1, 15 samples randomly were selected, 15
from cluster 2, 15 from cluster 3, and 5 from cluster 4.The
combination the method of choosing the initial membership
with distinct computing distance was shown in Table 7.

Table 7 Data Cluster and Sample sized
Cluster Number of Samples
1 15
2 15
3 15
4 5

From the data of Table 8, we found that the algorithm
based on unsupervised Mahalanobis distance of FCM-M is
better classification accuracies than based on Euclidean
distance of FCM , up to 52%. Similarly, Presented the best
classification accuracies 58% is also based on unsupervised
Mahalanobis distance of FPCM-M[13], up to 58%.

Table 8 Classification accuracies of testing samples.

Computing distance Classification
Accuracies (%)

FCM 32
FCM-M 52
FPCM 30
FPCM-M 58

IV. CONCLUSIONS

Extending Euclidean distance to Mahalanobis distance,
Gustafson-Kessel (GK) clustering algorithm and Gath-Geva
(GG) clustering algorithm, are developed to detect
non-spherical structural clusters, but both of them based on
semi-supervised Mahalanobis distance, these two algorithms
fail to consider the relationships between cluster centers in the
objective function, needing additional prior information.

When some training cluster size is small than its
dimensionality, it induces the singular problem of the inverse
covariance matrix. It is an important issue. The other important
issue is how to select the better initial value to improve the
cluster accuracy[15]. In this paper, focusing attention to above
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two problems, an improved new fuzzy clustering algorithm,
FCM-MS, is developed to obtain better quality of fuzzy
clustering results. The objective function includes a fuzzy
within-cluster scatter matrix, a new between-prototypes scatter
matrix, the regulating terms about the covariance matrices, and
the regulating terms about the relationships between cluster
centers, the relationships between the center of all points and the
cluster centers. The update equations for the memberships and
the cluster centers and the covariance matrices are directly
derived from the Lagrange’s method, which is different from the 
GK and GG algorithms.

The singular problem and the selecting initial values
problem are improved by the Eigenvalue method and the Ratio
method. Finally, a numerical example shows that the new fuzzy
clustering algorithm FCM-MS gives more accurate clustering
results than the FCM and FCM-M algorithms for a real data set,
the ratio method which is proposed by us is the better of the two
methods for selecting the initial values.

APPENDIX

Proof the initial memberships of FCM-M Algorithm and
FCM Algorithm can not be all equal.

[Proposition]The initial memberships of FCM-M
Algorithm and FCM Algorithm can
not be all equal.

[ proof：] (i) In FCM-M Algorithm, Let

We get

The proof is completed.

(ii) In FCM Algorithm, The proof is similar
as above.
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