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The influence of noise kurtosis on the dynamics o
a harmonic oscillator with fluctuating frequency

Katrin Laas, Romi Mankin, Astrid Rekker

Abstract—The influence of noise kurtosis on underdamped techniques of nanoobjects [18], [22]-[24]. For example, the
motion of a harmonic oscillator with fluctuating frequency feasibility of particle transport by man-made devices has been
subjected to an external periodic force and an additive thermal experimentally demonstrated for several ratchet types [25].
noise is considered. The colored fluctuations of the oscillator . - S . .
frequency are modeled as a trichotomous noise. It is established On'e of t.he objects O_f Spe?'al attention in th'sl Come.Xt IS the
that the spectral amplification and variance of the output signal Noise-driven harmonic oscillator. The harmonic oscillator is
exhibits a nonmonotonic dependence on the noise kurtosis, the simplest toy model for different phenomena in nature and

thus demonstrating the phenomenon of noise kurtosis controlled as such it is a typical theoretician’s paradigm for various
stochastic resonance. Some unexpected effects such as hyperse'ﬂ]ndamental conceptions [26]

sitive response of spectral amplification to small variations of ) ] ) .
noise amplitude, encountered in the case of a large kurtosis of ~The problem of noise-driven dynamics of a Brownian
colored noise are also discussed. harmonic oscillator was earlier formulated and solved by

Index Terms—Hypersensitive response, noise kurtosis, thermal Chandrasekhar [27], using the Langevin and FokkerjPIanck
noise, trichotomous noise, stochastic resonance, stochastic oscilequations. Since then the Chandrasekhar model and its many
lator. variants have been reappearing in literature. For example, the
study of a harmonic oscillator with random frequency is a
subject that has been extensively investigated in different fields
including physics [28], biology [29], chemistry [30], etc. In

One of the key issues in ecology is how environmentahost of the previous analysis the influence of white noise
fluctuations and species interactions may determine the &s-considered. However, more realistic models of physical
cillations in population sizes displayed by many organisms 8ystems, such as, e.g., the dynamics of a dye laser and the
nature as well as in laboratory cultures [1]- [6]. Ecologistsansport of proteins in cells in the presence of thermal noise
have mainly been interested in the dynamical consequenessl colored noise of biological origin, require considering
of population interaction, often ignoring environmental varia system simultaneously driven by white noise and colored
ability altogether. However, the essential role of environmeneoise. It has been shown that the influence of colored noise
tal fluctuations has recently been recognized in theoretical the oscillator frequency may lead to different resonant
ecology. Noise-induced effects on population dynamics hapbenomena.

been subject to intense theoretical investigations [7]- [11].First, it may cause energetic instability, which manifests it-
Moreover, ecological investigations suggest that populationseif in an unlimited increase of the second-order moments of
dynamics is sensitive to noise correlation time (noise color)ihe output with time, while the mean value of the oscillator
[11]- [16]. In spite of the obvious significance of this circum- gisplacement remains finite [28], [31]. This phenomenon is a
stance, the role of nonequilibrium fluctuations (colored noise)stochastic counterpart of classical parametric resonance [28],
of environmental parameters has not been much investigategso),

in the context of ecosystems [15]- [17]. o Second, if the oscillator is subjected to an external periodic
Recently, noise-induced anomalous transport phenomeng,ce and the fluctuations of the oscillator frequency are
of Brownian particles in nonlinear periodic structures have .giored. the behavior of the amplitude of the first moment

been the topic of a number of physical investigations. Amongspas a nonmonotonic dependence on noise parameters, i.e.,
them, we can mention the ratchet effect [18], hypersensitivesiochastic resonance [33], [34].

response [19], noise-enhanced stability [20], and absolute . . . .

negative mobility [21], to name but a few. Active analytical 0 avoid m|sgnderstand|ngs, Iet. us me_ntlon that we use the

and numerical investigations of various models in this fielfm stochaspc resonance (SR) in the vy|de Sense, meaning the

have been stimulated by their possible applications in chemi& pmonotonlc behavior of t'he outpqt S|gngl or some'functl'on

physics, molecular biology, nanotechnology, and for separatiB it (moments, auFocorreIatlon functions, signal-to-noise ratio)
In response to noise parameters [33].
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Thus motivated, we consider a model similar to the orfductuations of the frequency? are expressed by a Markovian
presented in [33], except for some details of the noises, i.tichotomous noiseZ(t), which consists of jumps between
a harmonic oscillator with fluctuating frequency subjected tbree valuesz; = a, 2o = 0, 23 = —a, a > 0 [16]. The
an external sinusoidal force and an additive thermal noigamps follow, in time, the pattern of a Poisson process, the
The fluctuations of the frequency are modeled as a threaelues occurring with the stationary probabilities
level Markovian noise (trichotomous noise) [35]. Note that (a) = ps(—a) = 0)=1-2 3)
in the model presented in [33] the thermal noise is absent ps ps @ ps @
and the colored fluctuations of the frequency are assum&biere0 < ¢ < 1/2. In a stationary state the fluctuation
to be a dichotomous noise. Although both dichotomous aRfiocessZ(t) satisfies
trichotomous noises may be useful in_ mod_eling r_1atura| colored (Z(t)) =0, (Z(t+71)Z(t)) = 2qae™"7, (4)
fluctuations, the latter is more flexible, including all cases o . ) .
of dichotomous noise. Furthermore, it is remarkable that féfhere the switching rate’ is the reciprocal of the noise
trichotomous noises the kurtosisin contrast to the GaussianCorrelation time
colored noise,x = 0, and symmetric dichotomous noise, Te=1/v, (®)

x = —2, can be anything from-2 to co. This extra degree of je., Z(t) is a symmetric zero-mean exponentially correlated
freedom can prove useful in modeling actual fluctuations. noise. The trichotomous process is a particular case of a

The main contribution of this paper is as follows. We&angaroo process [36] with the kurtosis
provide exact formulas for the analytic treatment of the de- (Z41)) 1
pendence of SR characteristics (variance of the output signal, K= oris —3=5—3. (6)
and spectral amplification) on various system parameters: viz. (22(t)) 2q
temperature, correlation time, kurtosis, noise amp"tude, al’ﬂjthls work we will restrict ourselves to the case Where, for all
frequency of the input signal. On the basis of exact expressigigtes of the trichotomous noise, the frequency of the oscillator
for the SR characteristics we find a number of cooperatidt POSItIVe, 1.e.,

effects arising as a consequence of interplay between multi- a<w (7)
plicative trichotomous noise, thermal noise and a deterministicTg find the first and second moments &F we use the
force, e.g.: well-known Shapiro-Loginov procedure [37], which for an
o a resonant-like behavior versus the noise kurtosis of tegponentially correlated noisé(t) yields

output variance and spectral amplification (SPA); d dm
o for large values of the noise kurtosis the SR characteristics Zp\4m) = <Zg> —v{Zm), (8)

are very sensitive to small variation of noise amplitude ~Bherem is some function of the noisen — m(Z)

phenorner?on called hyperse'ns.,ltlve. response;” From Egs. (1) and (8), we thus obtain an exact linear
o the noise-induced doubly unidirectional transitions betweelsiem of six first-order differential equations for six variables,
the stable regimes and unstable energetic states of M?1 = (X), Mys = (X), Mys = (ZX), My.4 = (ZX)

oscillator. . _ M5 = (Z2X), My s = (Z2X):
The structure of the paper is as follows. In Section 2 we .
present the model investigated. A description of the output 11 = Mz,
SR quantifiers is given and exact formulas are found for My = —yMis—w?Myq— M3
analysing the long-time behavior of SPA and variance. In +Ag sin(Qt),
Section 3 the conditions of energetic instability are considered. : _
Mys3 = My 4—vM 3,

The SR phenomenon versus noise kurtosis is demonstrated in )
Section 4. In Section 5 we analyze the dependence of the SR M1’4 —(Y+ ) Mg —w M3 — Mys,
characteristics on noise amplitude, while the conditions for the M5 My —vMi5+ 2qf12vM1,1,
appearance of hypersensitivity are also discussed. Section 6 pp . = —(y+ V)M — WMy 5 —a® M 3

)

contains some brief concluding remarks. +2qav M, 5 + 2qa® Ap sin(Q1), )

where M = dM/dt. The solution of equations (9) can be
. . represented in the form
As an archetypical model for an oscillatory system strongly 6

coupled with a noisy er)vironment, we consider the stochastiMLi = Agi_1 sin(Qt) + Ag; cos(Qt) + ZCjLi’jepjtj (10)
cally perturbed harmonic oscillator with a random frequency

II. MODEL

j=1
X +9X + [W? + Z ()] X = Agsin Qt + £(t), (1) Wwhere the coefficientd;;, i,j = 1,...,6, are given by

where X = dX/dt, X(t) is the oscillator displacement, is Ly =1, Laj=pj
a damping parameter, and the driving foege) is a Gaussian Lz; = —[w?+pilp; +7)],
white noise with a zero mean and with a delta-correlated Ly; = (pj+v)Ls;,
correlation function given b ’ '
9 y Ls; = —La;l(pj +v)(pj +v+7) +w?,

(E@ER)) =2Do(t —t'). (2 Le; = (pj+v)Ls;—2qa’v, (11)
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C; are constants of integration determined by the initial Mg,g = —(27+1/)M279—2w2M2’6
conditions, and{p;,j = 1,...,6} is the set of roots of the —2a2 My 4 + 2qa>v My 7

algebraic equation 949 g sin(S2) + 490D s)
wW? + plp+ N’ + (p+v)(p+v+7)) o
—a®[w? + plp+7) + 2qv(2p + v +v)] = 0. (12) Wwith M = dM/dt.

Starting from Egs. (18) and (13), we obtain that in the limit
Note that the moments/; ; are independent of the thermal, _, _ e momentsM( ) — M, e are given by

noise £(t). One can check up the stability of the solution

(10), which means that the solution of Eq. (12) cannot have (as) )
roots with a positive real part. According to the Routh-Hurwitz My;” = Ni+ Joi—18in(2Qt) + Ja; cos(202),
theorem this requirement is met by the sixth-order polynomial i=1,...,9, (19)

in p in Eq. (12) for all values of the parameters, if the

inequality (7) holds. Thus in the long time limit, — oo, where the constantd; and J, are determined with sets of
the moments\/; ; are given by algebraic linear equations. Note that the result (19) is correct
only under the implicit assumption of energetic stability, i.e.,
the roots of the characteristic polynomial equation of the
nine first-order differential equations determining the moments
Msy;, i = 1,...,9, cannot have positive real parts. This
characteristic polynomial equation reads

My oo = My aé) = Ag;_1sin(Q) + Ay; cos(Q), (13)

wherei = 1,...,6. Particularly, the first momenM(‘”)
(X)qs reads

(X)qs = Asin(Qt + @), (14)
where U2 4 G + 200 (p+7+V){(p+7)(p+7+V)[4w2
+ (f2 +
A=A ag= TR 09 Folp+ 29U + o+ 0) o+ v+ 2P
—16a2} — 8qa2v{v[dw? 2
fan g — f1f3—f4(f2+2qa2)7 16) a } qa { [ C‘; +P(p+ 'Y)]
f1f4 =+ f3(f2 —+ 2qa2) +(2p + 2’)/ + V) }} =0. (20)

and the quantitieg;, (i = 1,...,4) are determined by
By the condition (7), Eq. (20) and the Routh-Hurwitz theorem

— 2 2
o= QQ(V+2V)[V(27+V2)2+W -7 yield the necessary and sufficient condition for energetic
fo = ly+v)+w - Q7 stability, namely
792(7+21/)2 —a?, , , ,
fs = [f2(w® = Q%) — Qvfi] — 2¢a”v(v + ), a? <a? = Wiy + v)[A” + 2y + )] . (21)
fi = b+ - 0)A] -l (@) 100y 2t @y )

Our next task is to evaluate the long-time behavior of th&/e note that in the case of dichotomous noise this condition
moments: M, = (X2), May = (XX), Mys = (ZX2> for stability is in accordance with the results of [31]. Hence-

My = = (ZXX), My5 = <Z2X2> My = (ZQXX> My 7 = forth in this Section we shall assume that the condition (21) is

<X ), Mg = (ZX2> Mg = (ZQX2> fulfilled. Turning now to Eq. (19), we consider the quantiy
From Egs. (1) and (8) nine linear differential equations cdi more detail. It follows from Egs. (18) and (19) that the time-
be obtained for the moment¥/, ;, i = 1,...,9. homogeneous part of the second momM'éf“ (X?),, is
. ’ given by
Moy = 2Mso,
: _ 2 1
Map = M7z —~yMs—w Myy — Mg N, §{51 +2D(v + ) [4w® + v(v + 27)]?
—‘y—A()Ml’l Sin(Qt), 2 2
May = —2yMaq—2u2Mys — 2Ms 4 —16a%(1 - 29)]}, (22)
) +2AQM1’2 SlIl(Qt) + 2D, where
Mz = —vMy3z+2My4,
Myy = Mag—(y+v)Myy—w?Myg— My S1 = Ao{(2v+v){8A11 +4(2v+v)Ag
+AOM1’3 SiIl(Qt), —[4&)2 + V(Q’}/ =+ V)][2A7 —+ 2’7 + V)A5]}
Myg = —(2y+v)Mag— 2w My —2Myg +(7 +v)(YAL + As){[4w® + v(2y + V)]
+2A0 M 48in(Q), —16a%} + 8¢a’v (243 — vA,)},
Myys = —vMsgs+2Myg+ 2ga’v My,
Mss = Mog—(y+v)Mas— w2M2,5 - a2M273 9 9 ) a \2 )
+2qa21/M2,2 + A0M175 SiIl(Qt)7 SQ = 2w 7(7 + V)[4w + I/(2’Y * V)} 1= Qer ’ ( 3)
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and 10°
A 2qa?
A, = olf1fa +2f3(f22+ qa )}7 10t
f5+ fi
Ay = Aolf1f3 *2f4(f22+ 2qa?)] 7 101
f3+ 13 .
Az = —QA;, Ay = QA 10-2
As = Ag+ (0 —w?) A + A,
AG = (Q2 — w2)A2 — Q"}/Al, 10_5
A7 = vAy+ (0 —w?) +90%A4
+Q[vy — (92 — w?)] Ay, .y
Ag = QAg+ Q[ —w?) —19]Al
2 2 2 Fig. 2. A plot of the phase diagram in the- v plane atw = 1. The shaded
T2 +v(Q° - w)] Ay, domain in the figure corresponds to the region where noise-induced energetic
Ay = QAg— w2A5 — (v +7)A; instability is possible. The lines depict the borders of the energetic instability
9 ’ regions for two values of the noise paramefefsee Eq. (29)]. The curves
Ay = QA7 —wlg— (v+7v)As, (1) and (2) correspond to the values of the paramegter 0.1 andg = 0.5,
Ay = vAg— QA — 2qa21/A1, respectively.
A12 = QAQ + Z/A10 — 2qa2VA2. (24)

Particularly, the time-homogeneous part of the variance Lpe crlt_|cal dam_plng parameter” is given by the system of
the oscillator displacement can be expressed as algebraic equations:

2
0 [0 A2 d 5 _ az s _
PO =g [ (X~ (X = i - G (25) i) =0 getel) =0 (26

9 o :
Evidently, if the noise amplitude tends to the critical value Whe,reacr(y) IS given by Eq. (21). F,O,r example, in the case
4., the second momenity2),, diverges. of dichotomous noisey = 1/2, the critical parameter

Finally, we emp_hasizg that for all figl_Jres throughout this ()2 = (3\[_ 5)w?. (27)
work we use a dimensionless formulation of the dynamics
with w =1 and 49 = 1. Second, in the case of < ~*, Eq. (21) demonstrates that
the functional dependence af, on the noise correlation
1. VARIANCE INSTABILITY time 7. = 1/v exhibits a resonance form ag is varied [cf.
Surve (2) in Fig. 1]. For increasing values of the critical

Our next task is to find the boundaries of the region . 5 :
L . noise amplitude:., starts from the value)®, increasing to a
energetic instability in the parameter spaeey). From Eq. . . -
} . . .. Jocal maximuma,, ..z, NEXt it decreases, attaining a local
(21) one can discern two cases (see Fig. 1). First, if t%:’mimuma  nd thena... tends to infinity 8 — oo
damping is sufficiently strongy > ~*, then the function . er_mans < ' y ’
a?,(v) increases monotonically from the valué to infinity Relying on Egs. (7) and (21) one can find the necessary and

acsrthe switching rate increases. Thus. by the condition (7)sufficient conditions for the emergence of energetic instability
the svstem is s?table ie. no e.ner eti’c i)r/13tabilit can occ(?nd reentrant transition) due to noise correlation time varia-
y o 9 y fins. Namely, energetic instability appears for the parameter

values:

2 4 2 2 4
<A, aL <wtan g < 0° <wt, (28)

1.04}

where a2, ., corresponds to the local minimum of the
function a2, (v). This case is characterized by the following
scenario: For small values of the switching rates v4, where
. a < aq-(v), the system is stable. At = vy, i.e.,a = a..(11),
% T the system becomes unstable. In the intemval< v < v
of the switching rate there appears an instability, where the
I Rt second moments of the oscillator displacements diverge. At
0.98k - - - - v = vy, Wherea = a..(12), the energetic instability dis-
0 0.2 0.4 0.6 08 10 appears and the system approaches the stable regime, thus
% making a reentrant transition. Now, we will briefly consider
the necessary condition for instability?, < w*.
Fig. 1. Dependence of the critical noise amplitudie on the noise switching Figure 2 shows a phase diagram in the- v plane at two
e e P i ecVglUes ofg. AS the damping parameterincreases the region
the damping parametey = 0.335 and~ = 0.295, respectively. Note the Of instability narrows down and disappears at the critical value
nonmonotonous dependenceag. on v for - = 0.295. of the damping parametey...(q). Hence, there is an upper
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041 is induced by a superharmonic perturbation with the frequency
L wp & 2w, [32]. Thus, the minimal value of the noise amplitude
0.3 F at which the instability of the oscillator develops corresponds
r to the noise switching rate, which coincides with the leading
Soo2l frequency of the parametric resonance for a deterministic
L oscillator.
01 a IV. RESPONSE TO NOISE KURTOSIS
i The qualitative behavior of the SR characteristits and
O o2 versus the noise kurtosis is sensitive to values of other
0 0.1 0.2 0.3 0.4 0.5 system parameters. In the case exposed in Fig. 4 the variance

q exhibits a single-peak form of SR at small and moderate
values of the noise switching rate As v increases the SR
phenomenon disappears and in this case the variance is rather
an increasing function of = 1/[2(x + 3)]. It is remarkable

that in the transition regime (& 0.25 in Fig. 4) the variance

limit ~.,(q) for the damping parameter at greater values & nearly constant over a finite rangerofalues. In contrast to
which the instability cannot occur. The boundary of the regidhe variance, SPA (2) is a monotonically decreasing function

of the instability phase and the critical parameter(¢) are ©f ¢, i.e., in this parameter regime the SR phenomenon for SPA

Fig. 3. Dependence of the critical damping paramejgr on the noise
parametelg atw = 1.

given by the fourth-order polynomial equation is absent (see Fig. 5).
The phenomenon of noise-kurtosis-induced SR is not re-
(v +27) + 4w?]pw® =y (v +7) (v + 27)] stricted to the simple-peak form of SR. Figure 6(a) depicts a
= (1 = 2q)w?[dw’v + (v + 27)3]. (29) more complicated behavior of the variance as a function of

) ) noise kurtosis for different values of the noise amplitude. In
In the case of dichotomous noise= 1/2, Eq. (29) reduces o harameter regime considered by the curve (1) in Fig. 6(a),
to a second-order equation and the boundary of the instabilify increasing values of;, the variance starts from zero,
ve(y) reads increasing to a local maximum, next it decreases, attaining
a local minimum, and thew? tends to infinity asg tends
to the valueg., ~ 0.325. Such a combined SR phenomenon,
o L i.e., first an enhacement, next a suppression and finally a rapid
Thus, in this case., (5) = w(vV2-1). The tendency alpparemincrease of the output variance, is significantly associated with
in Fig. 2, viz. a decrease of.. as the kurtosiss = 5. —3 e critical characteristics of stochastic parametric resonance.
of the noiseZ increases, is a general feature0f(q) (Se€ Namely, the critical valu,, of the noise parameterat which
Fig. 3). Thus, energetic instability is possible only if the variance tends to infinity corresponds to the appearance of
v < w(V2 - 1). (31) noise-induced energetic instability [cf._ Eq. (21)]. Hence, th_e
key factor for the appearance of SR with two local extrema in
Another important critical parameter is, ,,in, because of o2 versusk is the occurrence of energetic instability at some
the conditions (28) for the occurrence of energetic instabilityalues of the noise kurtosis. As a rule, in the parameter
It follows from Eq. (21) thata?. decreases monotonicallyregimes considered in Fig. 6 the SR phenomenon for SPA is
as the noise parametgrincreases or as the damping coefabsent [see Fig. 6(b)].
ficient decreases. The functional dependenceiofon the
noise switching rate’ is more complicated, exhibiting several

1
vi(y) = 5( 2392 £ Vwt +44 —6w2y2).  (30)

extrema. To get more information, we shall study it in the 30 i

asymptotic limit of low damping. In general, the parameter o5

aer min Can be found by numerical calculations from Eqg. e

(21). In the low-damping limit, we allowy to become small 20 P -

v < 7er, and usey as a perturbation parameter. In this case & 151 .7 T~

the critical parametet,.,. ,,;,, and the corresponding switching P S~

ratev,, can be given as 10 f../ N
3 5 7/

grmmx?qu, yszw—w. (32) -j‘ ‘ o ‘
The interesting feature of the result (32) is that Eq. (32) 0 0.1 0.2 0.3 0.4 0.5
establishes a quantitative connection between stochastic oscil- q

lator instability and the parametric instability of a deterministic _ _ _

oscillator. Note that one of the trademarks of parametric redgd: 4. Variance of the output signal y versus the noise parametgifor
- . . . . ifferent values of the noise switching ratdEq. (25)]. The system parameter

nance of the deterministic harmonic oscillator with a periodigjyes: 4o = w = 2 = 1, D = 0,a = 0.8,~ = 0.1. Solid line, » = 0.05;

perturbed frequency is that the most pronounced instabilitydashed liney = 0.15; dotted line,v = 0.25
Issue 1, Volume 3, 2009 31
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Fig. 5. Dependence of the SPA $)icomputed from Egs. (15) and (17) Fig. 7. Dependence of the SP@4?2) computed from Egs. (15) and (17)
for Ap = w=Q =1,a = 0.8, vy = 0.1, on the noise parameterat for Ag =w =1, Q = 0.9, v = 0.01, on the noise parameter Solid line,
several values of the noise switching rate Solid line, v = 0.05; dashed a = 0.9, v = 1.6; dashed lineg = 0.25, v = 0.058; dotted line,a = 0.3,
line, v = 0.15; dotted line,v = 0.25. v =0.2.

As mentioned above, there are certain ranges of syste@sonance with nonmonotonic behavior of the functitiiq).

parameters for which the behavior of SR characteristics cBrom Fig. 7 one can discern two cases. First, if the noise
be qualitatively different. A plot (Fig. 7) of SPA versus theswitching ratev is relatively small, then the SR phenomenon
noise parametey for different parameters shows a typicafor SPA exhibits in the form of suppression @f at some

/ (@
2,/
N e 3
| 5 7
0.3 04 0.5
10
b
5 (b)
N 6
<
4
2
ol Nmeo e
0.4 0.5

Fig. 6. SR characteristics [(a) variange?) and (b) SPA(A2)] as functions
of the noise parameteg for different values of the noise amplitude

[Eqs (22), (25), (15), and (17)] The system parameter valdgs= w = 1,

=0,Q=1,v=10"% v = 0.4. Solid line, a = 0.04; dashed Ilne
a=0. 03 dotted line,a = 0.015. Note that energetic instability occurs for
the curve (1) in the panel (a). The critical value ft which the energetic

instability appears ig., ~ 0.325. A2 =107 A2 ando2 = 10~ 702
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values ofg [cf. curve (2) in Fig. 7]. Actually, in the case of very
small values of the damping parameterand the switching
rate v the effect of suppression can be very strong, i.e., at
the local minimum of the functiom?(q) SPA tends to zero.
Second, in the case of moderate values of the switching rate
v a local enhancement of SPA versp®ccurs [curve (1) in
Fig. 7]. It is remarkable that the peak df(q) quite strongly
depends ons as both its magnitude and its position change.
For example, ifv increases, the position of the peak shifts
towards greater values of the noise parameter

Let us note that the SR phenomenon versus kurtosis also
appears in the case of adiabatic noise. At the long-correlation-
time limit, » — 0, the SPA and variance saturate at the values:

A2 = A%{[(w2 —02)2 + Q%92 — (1 —2¢)a?)?
)Q2 2}
x{[(w2

+4a?(1 —

_ QQ)Q + 9272”(012 _ QZ _ a)2

-1
1022w — 02 4 a)? mﬂ} L @9
o? = Alga®[(W? - 02+ Q%2 +d?
“(1- 2q>1{[<w2 _) 02y
<[ — P — a)? + [ —
1
+a)? + 9272]} , (34)

respectively. From (33) it follows that by the conditions

a? > (w? - 022 - 0242 >0,

12 > 02 — 22 (35)
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the SPA reaches the minimum

Mo = AR - P{ [ - 7 8.5)
f @
HO)[(w? — Q2 — a)® + Q%] [
-1 8.0 N
RN Loh | N
< L
at . 7.5 F
q=qm = ﬁ[cf + Q%92 — (0% —w?)?]. (37) [
Note that the inequalities (35) are the necessary and sufficient 7.0 f‘ ‘ L ‘ ‘
gondltloqs for thg SR phenomenon of SPA in the adiabatic 0 0.2 0.4 0.6 0.8 10
limit. Evidently, if the damping parameter is low, the
suppression of SPA at= q,, is very pronounced, i.e42
tends to zero ag vanishes [see Eq. (36)]. The necessary 6001 I
and sufficient conditions for the existence of a resonant-like - X / (b)
amplification of the output variance® read as I I /
4 > 400 || | /
wt>a?> (w2 — 92)2 + 0242, a /
0<% < 2?02 (38) Nt') /
Relying on Eq. (34) we obtain that the maximum of the output 200 i /
variance exhibits at I / \ 7
! A
q:qmm54—2[a2+§2272+(92—w2)2]. (39) 0=t e
a 0.2 0.4 0.6 0.8 1.0
It is seen from Eq. (39) that in the adiabatic regime the SR a

phenomenon for the varianeé€ is possible only if the values
of the noise kurtosis are in the interval (-2,-1).
Fig. 8. SR characteristics [(a) SPA fand (b) variance ()] versus the
V. HYPERSENSITIVE RESPONSE noise amplitude: at several temperature®; = 0.05 (solid line), D2 = 0.5

) _ (dashed line),Ds = 2 (dotted line) [Egs. (15) and (25)]. Parameter values:
Next we consider the dependence of SR characteristics 3+ 104, v = 0.01, ¢ = 0.005, 2 = 0.8, w = Ag = 1. Note that the

on the noise amplitude:. In Fig. 8 we depict, on two critical noise amplituderc, ~ 0.9619.
panels, the behavior ofi?> and o2, for various values of
the temperatureD. In the case considered, the critical nois
amplitude (¢, ~ 0.9619) is very close to the maximal
value of the noise amplitude, = 1. Both SR characteristics
exhibit a nonmonotonic dependence on the noise amplitu%?

€., a typical SR phenomenon continues to mcreaﬁea.rl_y, .is noteworthy that in the case of dichotomous noise such an
additive thermal noise does not affect the spectral ampllflcat|8||z}eCt is absent. The effect is very pronounced at low values

2 . 5 :
A#, but the variancer® increases rapidly as the temperaturg, . switching rates and a low dampingy (see Fig. 9). To

D INCTEASES. For the parameter regime< acr, the MaN * throw some light on the physics of the above-mentioned new
contribution of the temperature appears as an additive tegi{f’ect, we shall now briefly consider the behavior of the SR

D/vin o® [cf. Egs. (22)-(25)]. characteristicsA? and¢? in the parameter regime
As shown in Fig. 8 (a) the curvel? vs a first exhibits 7 P g

a maximum and then a minimum appears, that is to say, V< < glw? - P <, gL (40)
the SR exhibited first is followed by a suppression. Mo S this case, it follows from Egs. (17) and (15) that SPA
important, we observe that the resonance of SPA occurs igﬁches the ,maximum

the noise amplitude ~ |Q? — w?|, thus the resonance of SPA

corresponds to the resonance frequency of the deterministic A%~ AZGR (24 (41)
system for the fixed colored noise state= —a. A resonance-

like peak of the variancer? at a ~ |Q? — w?| is also

observed [Fig. 8(b)]. This behavior of the variance, i.e., a

strong amplification of the variance at the resonance peakasfd the minimum
SPA, is quite robust and occurs within a broad range of system

E’articularly,a2 increases unrestrictedly as energetic instability
appears.

An interesting peculiarity of Fig. 8 (a) is the rapid decrease
'SPA from the maximum to the minimum asincreases. It

a4 = Gmax ~ |Q2 - w2|a (42)

2 ~ A202.2 2 2 2\4
parameters. With increasing the noise amplitude, one observes Ain & A/ 1a7(Q7 = )] (43)
another region at the critical noise amplitudexa...), where at
the enhancement of the variance wsis extremely rapid. a = amin ~ |Q% —w?/y/1 - 2. (44)
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1.0F the oscillator [Eq. (16)]. For example, in the case of the system
i parameters used in Fig. 9 the result is as follows:aais
0.8¢ gradually increased from zero and swept through the resonant
N 0 6: amplitudea =~ 0.02, ¢ first decreases very slowly and later
Nb_ o quickly from zero, passes throughr/2 whena = 0.02, and
< 04° quickly approaches zero when> 0.02.

0.2F VI. CONCLUSIONS

s e In the present work, we have analysed the phenomenon
0.0192 0.0196 0.02 0.0204 of stochastic parametric resonance within the context of a
noisy, harmonic oscillator with a fluctuating frequency driven

by sinusoidal forcing and by an additive thermal noise. The
Fig. 9. A plot of the dependence of SPA {Mand variance (3) on the frequen.cy fluc_tuations are modeleq as a colored three-level
noise amplitude: in a region of hypersensitive response [Egs. (15) and (25)Markovian noise. The Shapiro-Loginov formula [37] allows

System parameter values:= 510~ %, v = 5x1075, ¢ = 0.008, 2 = 0.99, us to find a closed system of equations for the first-order and

D =0.1,andAp = w = 1. The values ofA? ands? at the local maximum ) ; }
areA2, = 10421, 02, = 7.78+10%. The solid line and dotted line correspond‘cfeCond order cumulants and the exact expressions for the long

m _

to A2 = A2 /A2, ando? = o2 /02,, respectively. time behavior of several SR characteristics, such as SPA, and
variance.
As the main result we have established the phenomenon
For sufficiently strong inequalities (40){2,,, tends to zero of noise-kurtosis-controlled stochastic resonance. The phe-
and A2, grows up to very large values. Thus in the caseomenon is more pronounced for moderate values of the noise
considered SPA is extremely sensitive to small variation:of correlation time. Notably, in the fast-noise limit the effect is

Aa = min — amaz ~ q|Q° —w?|. Note that this small interval absent. Depending on the values of the noise parameters the

a

of the noise amplitude, SR versus noise kurtosis appears as an enhancement or as
) ) ) ) a suppression of the output SR characteristics. For example,
a € (|9 = w7, (14 ¢)[Q° = 7)), (45)  the enhancement of SPA occurs, as a rule, at smaller values

e the noise correlation time as a suppression of SPA. To
our knowledge, neither the resonant-like enhancement nor the
suppresion of output SR characteristics versus noise kurtosis
02 0~ Alq/(29247). (46) have been noticed or discussed before.
It is interesting that the results of the present paper can
The above formulas ford? , and o2 g P hap

mazx mag_INdicate that the be iterpreted in terms of cross-correlation intensity between

main mechanism for the formation of SR in the SPA a%o dichotomous noises. Namely, the trichotomous noise

o? is the co.nvgntiona}l amplitude—resonance generated by Ept) in Eq. (1) can be presented as the sum of two cross-
external periodic forcing with the frequendy = vw? & a. orrelated zero-mean symmetric dichotomous noife§)

More pr_ecisel;_/, consider an ensemble of reglizations of t Rd Zo(t), e, Z(t) = Zi(t) + Zs(t). The dichotomous
stochgstl_c os_cnlator for each of which a particular sequeng isesZ1 (1) and Z»(t) are characterized as follows;, z, €
of _swnchmg times, between thg states of the non_eqw_hbnumlp)a,_(1/2)a} With 1 = v, — v and the correlation
noiseZ(t), is chosen from the distribution of switching times
For a given time momentthe relative amount of realizations )
: : . o , a /
with the noise state; = —a is g. As the svx_ntchmg rate an_d (Z:(O)Z;(t)) = pij — eIt i 5 =1,2, (47)
the damping coefficient are small (the noise correlation time 4
is long) there is, between two switchings of the noisg), wherep;; =1, andp; ; = p € (—1,1) with ¢ # j is the cross-
enough time for a very strong amplification of the amplitudeorrelation intensity of the noises; and Z,. In this case the
of X (t), which happens in the noise state= —a due to the probabilityq = (14 p)/4, where it follows that the correlation
conventional resonance & = v/w? — a. Particularly, in the coefficientp and the kurtosis of the trichotomous nois&(t)
statezs = —a all these realizations are strongly synchronizeohust be related as = —(1+3p)/(1+p). It is obvious that the
because of the phase lag = —n/2 between the periodic noise kurtosisc = —1 corresponds t@ = 0, i.e., to the case
driving force and the periodic response of the system lof two statistically independent dichotomous noises. Let us
resonance. Therefore, although the fraction of such realizationste that such a cross-correlation between dichotomous noises
is low (¢ < 1), the contribution of these realizations stillmay result from the following two reasons: the two noises are
dominates by the formation of SR in the SPA because either partly of the same origin or are influenced by the same
high amplitudes and synchronization. As the noise amplituéectors. Notably, some cross-correlation-induced effects have
increases, the drastic decrease of SPA and also the appearaad@r been considered in the context of ratchet models [38],
of the resonant amplification of the variance (see Fig. §89], where it has also been suggested that cross-correlation
indicate a rapid desynchronization of the realizations of thetween colored noises may provide some understanding as
stochastic oscillator. Note that the above scenario accords withwhy structurally very similar motor proteins with two
calculations of the phase lag for the mean displacement ofheads, such as kinesin and dynein motor families, move in

also contains a very narrow and high SR peak of the varia
with the maximal value

function

Issue 1, Volume 3, 2009 34



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

opposite directions on the micro-tubules despite sharirg tho]
same environment and experiencing the same periodicity, like
in the case of the conventional kinesin and ncd [40].

Another result is that for a harmonic oscillator colored flud41]
tuations of the frequency can cause correlation-time-induced
transitions from energetic stability to instability as well as i
the opposite direction. Furthermore, the transition is found to
be reentrant, e.g., if the damping coefficient is lower than a
certain threshold value, then the energetic instability appears
above a critical value of the noise correlation time, but disap-
pears again through a reentrant transition to the energeticéﬂ@
stable state at a higher value of the noise correlation time.

As the third main result we have established the effeldfl]
of a very sensitive response of SR characteristics to small
variations of noise amplitude (see Fig. 9), where, e.g., SK#)
displays a quick jump from a very high value to a low one
as the noise amplitude increases but a little. It is remarkal?lg]
that in the case of dichotomous noige 1/2) such
an effect is absent. This feature of the stochastic oscillator
suggests that investigation of output SR characteristics ver
noise amplitude can reveal important information about inpp;
signal in oscillator-devices, even in the case of a small input
signal-to-noise ratio,A3/D < 1 [see Egs. (1) and (2)]. 20]
This conjecture presents an objective that is worthwhile {0
be addressed in greater detail in some future.

We believe that the results obtained are of interest also fi{!
population biology, where the proposed model can be applied
for investing the influence of a fluctuating environment on tHg2]
oscillatory dynamics of predator—prey communities [17], [41],
[42]. (23]
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