
 

 

  

Abstract—An algorithm by combining sensor scheduling with 

energy efficient for tracking the maneuvering targets with mobile 

sensor deployed in WSNs (wireless sensor networks) is proposed to 

investigate the tracking performance in the article. In order to 

minimize the estimated error, the sensor sequence and the optimal 

sensor movement are scheduled previously and determined first. Thus, 

the sensor scheduling is depending on the results from the evaluation 

of energy efficient of a sensor node. Moreover, due to the targets is 

varying with time in the estimation process the EKF (extended Kalman 

filtering) technique is applied to predict MSE (mean square error) of a 

predicted target. Finally, simulations by using of the scenario with two 

and four maneuvering targets tracking are held to validate the accuracy 

of the proposed algorithm, and the results definitely show the fact that 

the MSE will decrease when the right way of the sensor scheduling is 

arranged previously. 

 

Keywords—EKF (extended Kalman filtering), maneuvering 

targets, MSE (mean square error), WSNs (wireless sensor networks). 

 

I. INTRODUCTION 

ecently, on the basis of several advantages, such as the low 

cost, the easily establishment, the capacity of 

self-organizing, and widely deployment, sensor networks 

become an important role for development or application in the 

real world. Especially, WSNs (wireless sensor networks) are 

able to the widely adopted in many directions, such as 

healthcare, control, military command, communications, and 

surveillance. Accordingly, l ot of applications developed based 

on the WSNs techniques will make much change of the human 

being life in the future.  Thus, to study issues of each layer about 

WSNs protocol in becoming gradually a kind of necessity, 

especially in the physical layer of the WSNs [1]. Certainly, the 

widely research field of the WSNs technologies are including 

power consumption networking topology, signal processing, 

environment deployment, transmission media, etc. It is known 

that in sensor networks the larger number of sensor nodes paved 

in the application environment can provide with the more 
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precise results to the BS (base station), where can be called as a 

service center or just a server. However, in order to reduce the 

number of parameters for systems performance, to decrease 

sensor nodes in a good method. For the purpose of increasing 

the performance of a special purpose of a WSNs, there are some 

of the trade-off should be make decision. Such as the accurate 

date of the event reported from sensors, when to complete the 

data fusion between the sensor nodes, how to locate the position 

of a sensor, and how to prolong the sensor’s lifetime and so on 

[2]. Recently, there are a lot of research papers are published. 

The impact factor of the sensing accuracy, it is with the number 

of cooperating local sensor nodes for a randomly deployed 

WSN is investigated in [3]. In [4], the authors demonstrate an 

algorithm, called adaptive multi-sensor scheduling, to improve 

the tracking reliability and power efficient for collaborative 

target tracking in WSNs. With linear Gaussian dynamics in [5] 

the EKF (extended Kalman filtering) approach is applied to 

predict the estimated MSE (mean square error) of the target 

state by a default defined step ahead. In [6], there is localization 

and motion analysis parameter estimation algorithm in mobile 

WSN by using pseudo-linear-Kalman filtering MLE (maximum 

likelihood estimator) and EKF technique is proposed. The 

mobility of the sensor is also an important point can be applied 

to solve the problem of coverage hole exists in WSNs [7]. The 

particle swarm optimization in [8] is adopted to determine a 

sub-optimal sensor schedule with three noisy sensors, in order 

to minimize the measurement error and sensor usage coot. In 

paper [9] on the basis of a specified detection probability, 

authors propose a multi-sensor scheduling scheme for 

collaborative target tracking in WSNs. An IMM (interactive 

multiple model) filter based on collaborative maneuvering 

target tracking framework is presented in [10], in which the 

scenario is incorporating a novel energy-efficient sensor 

scheduling scheme in a distributed WSN using low cost range 

wireless sensor nodes. 

On the basis of the results from aforementioned publications, 

in which most of them reported the evaluation for a 

non-mobility target (event), in this paper we propose an 

algorithm by combining sensor scheduling with energy efficient 

for tracking the maneuvering targets with mobile sensor 

deployed in WSNs, that is, (1) targets are considered as varied 

with time, (2) the mobile sensors are following up a sensor 

scheduling procedure previously according to the energy stored 

in a sensor node consumed away in the duration of an event, and 

(3) the EKF filtering is adopted as an algorithm for the 
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surveillance process. The remainder of this report is organized 

as follows. The system models of a 2-dimension Cartesian 

coordinate system are described in section 2. Management of 

mobile sensors selection is shown in section 3. The results from 

numerical simulation are discusser in section 4 and a brief 

conclusion stated in section 5. 

II. PROBLEM FORMULATION  

A. System Models  

The scenario of tracking maneuvering targets with mobile 

sensors in a 2-dimension Cartesian coordinate system is 

deployed in this subsection. The position and velocity states of 

the tracked target are included when the trajectory of targets is 

assumed going along with a maneuvering path. Additional, in 

order to manage all of the sensors, all states about the scheduled 

mobile sensor should be involved to calculate in the state space. 

For the purpose of estimating and predicting the state of both the 

sensor location and the target, the EKF technical is adopted to 

estimate the predict MSE (mean square error) of the estimated 

target states. 

The maneuvering target is considered or nearly both constant 

velocity and constant angular rate within a sensor sampling 

duration. Then the system model can be established as follows, 

considering the system states arrangement of combing target 

state for the i-th sensor, [ ]i kΧ , with sensor states i-th, [ ]iS k . 

Thus, the whole system state space model can be expressed as   

[ 1] [ ] [ ] [ ]i i i i ik k G k F kωΧ + = + + Χ  (1) 

where [ ]i kω  is a zero mean Gaussian white noise with variance 

[ ]iQ k , where 
0

[ ]
0

i

I

Q
Q k

M

 
=  

 
, with the error covariance 

matrix iM , movement matrix [ ][ ] 0 0 0 0i iG k D k =   , 

transition matrix 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

i

T
F

 
 
 
 ∆

=  
 
 
 
  

, and 

{ }[ ] [ ] [ ]
T

i ik S k kΧ = ⋅ Χ , where  

[ ] [ ] [ 1]k W k F kΧ = + ⋅ Χ −  (2) 

, and 

[ ] [ ] [ ] [ 1]i i i iS k M k A k S k= + + −  (3) 

A target evolves with linear Gaussian dynamic equation is 

denoted in (1), and alternates after each time step T∆ , [ ]W k  is 

considered to be the white Gaussian process noise with 

covariance matrix Q, that is, [ ] ~ (0,  )W k N Q . The well known 

system state kinematics are characterized by the system matrix 

and written as 

1 0 0

0 1 0 0

0 0 1

0 0 0 1

T

F
T

∆ 
 
 =
 ∆
 
 

. 

 

In (3), where [ ]iM k  indicates the uncertainty of the mobility 

for a scheduled sensor, it is assumed that [ ]iM k  is modeled as 

Gaussian distribution with zero mean and 
iM  variance, that is, 

[ ] ~ (0, )i iM k N M ; [ ]iA k  expresses the movement (upward 

downward, right, and left directions) controlled by commands 

from central the base station, and 

[ 1] [ 1] [ 1]x y

i i iS k S k S k − = − −   denotes the position of the i-th 

sensor at the instant step 1k − . In order to build up the 

estimation scheme with sensor scheduling, the sensor 

observation model for the scheduled i-th sensor at the k-th time 

step can be obtained as  

[ ] [ ] ( [ ])i i iZ k v k h X k= +   (4) 

where [ ]iv k  is the measurement noise for the i-th sensor and 

it is adopted as independent of the other sensors, [ ]iv k  is 

assumed modeled as Gaussian process with zero mean and 

iR variance, and ( )[ ] [   ]Ti s l gh k P V AΧ = , where 

( ) ( )2 2

[ ] [ ][ ] [ ]s X k Y kP X k S Y k S = − + −  
, 

( ){ }[ ] [ ][ ] [ ] [ ] ( [ ] ) /l X k Y k sV X k X k S Y k Y k S P= ⋅ − + ⋅ − , and 

( ) ( )1

[ ] [ ]tan [ ] / [ ]g X K Y kA X k S Y k S−  = − −  , respectively. 

B. Tracking with EKF 

On the basis of system state space model shown in (1), the signal 

target tracking problem select one sensor for detection and 

bringing up measurements at each time step is completed by the 

EKF algorithm. Firstly, assume that the location of manageable 

sensors is known a prior and all of them are stationary. The 

predicted state [ 1| ]k k
∧

Χ +  of the target at time 1, ....,k T= ∆  

can be determined as  

[ 1 | ] [ ] [ | ]ik k F k k k
∧ ∧

Χ + = ⋅ Χ   (5) 

where [ ]iF k  is shown in (2), and it is given that the estimate 

[ 1| 1] [ 1 | ] [ 1]P k k P k k K k+ + = + − +  [ 1] [ 1]
T

S k K k× + +  of 

[ ]kΧ at the k-th time step with covariance [ | ]P k k . Certainly, 

the initial state of the system and initial error covariance are 

given with [0]iX  and [0]P , respectively. Next, the covariance 

of predicted state becomes as  
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[ 1| ] [ ] [ | ] [ ] [ ]

[ 1] [ | ]

[ 1] [ | ] | [ 1 | ]

T

i i

i i

T

i i

P k k F k P k k F k Q k

k k k k

E

k k k k Z k k

∧

∧

+ = ⋅ ⋅ +

  Χ + − Χ +    =  
  Χ + − Χ + +    

  (6) 

where [ ]E ⋅  denotes the mean operator, and the predicted 

measurement of selected sensor is calculated as 

[ 1 | ] ( [ 1 | ])Z k k H k k
∧

+ = Χ +  (7) 

Hence, the innovation now is given as 

[ 1] [ 1] [ 1 | ]r k Z k Z k k
∧

+ = + − +  (8) 

, and with the predicted error covariance of the measurement is 

denoted as        

[ 1] [ 1] [ 1 | ] [ 1]
T

iS k H k P k k H k R+ = + + + +  (9) 

where the Jacobian matrix of the measurement function 

[ 1]H k +  at time step 1k +  corresponds to the predicted state is 

represented as  

( )[ 1] [ 1| ]
[ ]

H k h k k
k

∂
+ = Χ +

∂Χ
 (10) 

The EKF Kalman gain is updated with the equation given as 

 1[ 1] [ 1| ] [ 1] [ 1]TK k P k k H k S k−+ = + ⋅ + ⋅ +  (11) 

Now, by means of the EKF gain obtained in previous equation 

and the innovation in (8), the state estimation of the target 

shown in (5) is updated as  

[ 1 | 1] [ 1 | ] [ 1] [ 1]k k k k K k r k
∧ ∧

Χ + + = Χ + + + ⋅ +  (12) 

Therefore the covariance matrix or MSE in (6) can be modified 

as   

[ 1 | 1]

[ 1| ] [ 1] [ 1] [ 1]
T

P k k

P k k K k S k K k

+ + =

+ − + ⋅ + +
 (13) 

For the purpose of discussing the coverage hole problems, 

which means that the measurement of the target can not be 

reported from the selected sensor due to the target locates at the 

ambiguous area. In such case, the MSE of the estimated state is 

going to increase accumulatively. 

III. MANAGEMENT OF MOBILE SENSORS SELECTION 

It should be an important event to address the problem of the 

expression in Eq. (1) of mobile sensor selection while. Large 

number of sensor with the mobility to generate high quality 

outcome is required. An algorithm for the management of 

mobile sensor selection is proposed in this section. It is assumed 

that each sensor deployed in this algorithm can make the 

decided results range and detect the target. The location of the 

selected sensor is also given determined previously, and the 

algorithm is able to simply select the sensor modes closest to the 

predicted target location [11]. Generally, the management of 

mobile sensor selection includes determination of sensing 

accuracy, sensor scheduling and sensor movement 

sequence one of the drawback of the closest sensor node of the 

sensor scheduling algorithm is that it is only simply to select the 

scheduled sensor node, however, the contribution of the 

tracking accuracy is also will be one of the most important 

quantity candidate for the selected sensor node. An adaptive 

algorithm of mobile sensor management is proposed under the 

EFK by externally selecting the next scheduling sensor and 

determining best accuracy at the same time for mobile sensor 

tracking system. 

Now, according to the state estimation, there are several 

measurements can be applied to represent the tracking accuracy 

by mobile sensors, such as the fisher information, the trace and 

the determinant of the covariance matrix, eigenvalues 

calculated from the covariance matrix of the state between the 

desired and the predicted value. On the basis of the Cartesian 

coordinate system, at time step k the tracking accuracy, [ ]A k , 

can be defined as the difference between the actual states, [ ]X k , 

and the estimate states, ˆ [ ]X k , that is, ˆ[ ] [ ] [ ]A k X k X k= −  

where [ ]X k  and ˆ [ ]X k  are defined in (1) and (5), respectively. 

The tracking accuracy is considered to cope with the prediction 

values at the k-th step while [ ] [ ]THA k A k≤ , where [ ]THA k  is a 

pre-defined threshold value of the tracking. Sensor scheduling is 

the other interesting issue for mobile sensor management. Now, 

assume that 

1 1

2 2

[ 1] [ ]

[ 1] [ ]
[ ]

[ 1] [ ]N N

I k I k T

I k I k T
I k T

I k I k T

 + +    
    + +    + =          + +    

L
M M

 (14) 

, and  

1 1

2 2

[ 1] [ ]

[ 1] [ ]
[ ]

[ 1] [ ]N N

L k L k T

L k L k T
L k T

L k L k T

 + +    
    + +    + =          + +    

L
M M

 (15) 

indicate the sensor scheduling sequence and sensor movement 

sequence at any given time step k by T steps ahead, respectively. 

The [ ]I k t+  and [ ]L k t+  in (14) and (15) denote the selected 

sensor and the optimal movement at the ( )k t+ -th time instant, 

respectively, [ ]iL k  in (15) is the sensor movement belongs to 

[ ]iF k , and [ ]iI k  in (14) is assigned as the probability value 

with the expression shown as [12, 13]  

 

Pr  0,            
[ ]

Pr  1,           
i

obability if sensor I is not scheduled at time step k
I k

obability if sensor I is scheduled at time step k


=


 

Once, the arrangement of sensor scheduling and sensor 

movement is accomplished. The calculation of the cost function 

is followed up and it is determined by the energy consumption. 

The total energy consumed by current selected sensor u  with 
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selecting sensor v  as the scheduled for the next tracking tack is 

able to be evaluated as 

, ,
1

[ , ] ( / )
T

T t t r t uv t
t

E u v e e r bα

=
= + ⋅∑  (16) 

where tb  is the number of bits for transmission, α  denotes the 

time-invariant channel model of the transmission, uvr  indicates 

the distance between the u-th and the v-th sensor, and 
, t te  and 

, r te  denote the required energy specified by the transmitter and 

the receiver of the scheduled sensor, respectively. Hence, the 

energy consumed in sensing and/or processing data with tb  bits 

by sensor u  is 
,  , ( )sen t sen tE u b e= ⋅ , and the energy consumed in 

the receiving data is , , ( )r t r tE u b e= ⋅ . Thus, the total energy 

consumed during T time steps is constrained as  

, ,  , 
1

[ , ] [ ( ) ( )]
T

T T r t sen t M T
t

E E u v E u E E u
=

= + + +∑  (17)  

where 
, ( )M TE u  expresses the consumed energy for the sensor 

movement in each K T+  time step. The total amount of energy 

available for T time step is assumed by a threshold value ThE . 

IV. SIMULATION RESULTS AND DISCUSSION 

Developing simulation programs (using Matlab
@

) by virtue of 

the proposed algorithm is implemented in this subsection 

[14].The developed algorithm associating with sensor 

scheduling combining with energy efficient is first validated in 

an environment wherein two maneuvering targets are tracked in 

WSN deployments, which is shown in Fig. 1.  

The transition matrix F(k) has been considered in subsection 

2.1, and the noise gain matrix, which is defined as 
2

2

2 0

0
( )

0 2

0

T

T
G k

T

T

 
 
 =
 
 
  

, corresponds to the target is assumed in 

the simulation to be two seconds. The initial value of the state 

error covariance is assumed and expressed consider default as 

10000 100 0 0

0 100 100 0
(0 | 0)

0 0 10000 100

0 0 100 100

P

 
 
 =
 
 
 

. After the assignment of 

initial conditions is completed, the procedure of the simulation 

is following steps illustrated below: 

 

(1).Initial conditions assignment ( )F k

,
( )G k

,
(0 | 0)P and step 

numbers. 

 

(2).Make true target system and measurement model. 

 

(3).Mobile sensor selection for each target according to the 

process shown in section III. 

 

(4).Estimation procedures (with the EKF and sensor scheduling 

algorithm). 

 

(5).The average error determination, i.e. the difference between 

the estimation and the measurement. 

 

(6).End of the procedure. 

 

The mobile sensor is assumed can be controlled by some 

commands from a control center, then it can move to four 

directions, those are, upward, downward, right, and left. The 

conditions of the mobile sensor are set as 

follows,
0 

[ ]
150 

m
A k

m

 
=  

 
is for going to upward 

direction,
0 

[ ]
250 

m
A k

m

 
=  − 

is for going to downward 

direction,
150 

[ ]
0 

m
A k

m

 
=  

 
 is for turning to right direction, 

and
150 

[ ]
0 

m
A k

m

− 
=  

 
 is for turning to left direction.The result 

from tracking two targets and four targets with the proposed 

algorithm is illustrated in Fig. 2 and in Fig. 5, respectively. In 

these simulations fifty steps Monte Carlo are implemented; 

moreover, with the different symbol estimated tracking 

(measurements) with energy efficient calculation are sampled 

for reciprocal comparison for accuracy purpose. The initial 

conditions for simulating the tracking of two targets are listed in 

Table I, mentioned here mainly for demonstrating the accuracy 

and efficiency of the proposed algorithms. It is easy to see that 

the much more match situations occur in Fig. 2. I.e., all of the 

tracking paths tightly parallel the true path marked with circle 

symbols. It should be emphasized that a little difference does 

exist the paths of the true targets and the results presented in Fig. 

2, since the tracking is generated with a random function of the 

software program. Usage of random-number generators for the 

measurement of noise and clutter points is illustrated in the 

simulation. Furthermore, a EKF is utilized to recursively 

estimate the state vector )kk(X̂ . On the basis of each 

hypothesis formulated from the measurement data received, the 

corresponding correlations can be promptly calculated. Hence, 

the accumulate position errors caused by the use of this 

proposed algorithm are plotted in Fig. 3. It is reasonable to state 

that the larger position error occurs in the case of tracking for 

target_ B, it is because of the much more variety induced by the 

setting of that target. On the other hand, the accumulate speed 

error for target_A and target_B are presented in Fig. 4. Since the 

speed initial value of the X-axis and Y-axis setting for target_B 

is much faster than that for target_A, it is significantly to see the 

accumulated speed error of target_B is much more than that of 

target_A after about eighteenth step. Without loss of the 

generality, results of tracking path for 4 targets with 4 mobile 

sensors are shown in Fig. 5, where the distance error of the four 

targets is revaled.  The initial conditions for being adopted to do 

this simulation are presented in Table II (by taking the initial 

values of target_A to target_D). The case for all of the tracking 
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paths tightly parallel the true path marked with circle symbols 

can be captured and illustrated same as that shown in Fig. 2. It is 

reasonable to see that the much faster initial speed of target_B is 

set up, the much steep path of it is. By the way, accumulated 

distance errors for tracking to four targets and position errors 

calculated with MSE are plotted in Fig. 6, and Fig. 7, 

respectively. In Fig. 6 the steps number versus accumulate 

distance error is shown for the estimated four targets with four 

mobile sensors. Wherein the accumulate distance error is 

growing for the target_B after the 44th step, this is due to the 

initial value of the speed for target_B is much larger then the 

other three. By following up the same way, the distance error, 

the accumulate distance error and the MSE values for the 

tracking of five targets are illustrated in Fig. 8, Fig. 9 and Fig. 

10, respectively, and the initial conditions of the five targets are 

presented at Table III. Moreover, results from tracking to the 

case with larger number of targets, that is, for tracking seven 

targets are shown in Fig. 11 and the initial conditions is 

described in Table IV. This is just for making sure that the 

algorithm proposed in this paper able to be approved by 

tracking large number of targets too. It is obviously to 

understand that there are few differences exist between the 

results from tracking to four targets and that of to five targets. 

Furthermore, it is easily to state that the larger position error is 

mainly generated by the reason which is due to the quickly 

variation of the target. On the other hand, under the same usage 

of mobile sensors, the much maneuverability of the target is 

caused much more estimate error. However, since the sensor 

scheduling is proposed to joint into this algorithm, the accurate 

estimate of the targets can be hold closely.
 

CONCLUSION 

In this paper an algorithm of combining the sensor scheduling 

with energy efficient for the mobile sensor to track maneuvering 

targets is proposed. By taking the Monte Carlo simulation to 

verify the accuracy of the proposed algorithm, there are two 

maneuvering targets considered tracked by adopting the method 

proposed in this paper. The mobile sensors are randomly 

distributed in the scenario of the simulation. Thus, the EKF can 

be applied to estimate the predicted MSE of the estimated target 

state. On the other hand, the decision of optimal sensor path and 

the determination of the schedule of sensor sequence could 

minimize the predicted estimation error caused by tracking the 

maneuvering targets. This tracking technique has been 

investigated for its advantages in choosing an optimal 

correlation between mobile sensor measurements and existing 

target tracks. Moreover, an adaptive procedure for tracking 

maneuvering targets is also employed in this algorithm. On the 

basis of the simulation results obtained in this study, it can be 

claimed that this algorithm is capable of obtaining the optimal 

correlations between true targets and mobile sensor 

measurements in WSN scenarios. Finally, the approach 

developed in this research has demonstrated not only stable 

performance for tracking procedures but definitely also 

excellent efficiency when tracking both constant velocity and 

maneuvering targets.   

 The proposed algorithm might have a hardware complexity 

(number of neurons) in direct linear proportion to the number of 

tracked targets and the deployed mobile sensors in WSNs. 

Moreover, tracking for targets with mobile sensors by using the 

proposed algorithm in WSNs is constrained by the requirement 

for training the mobile sensor nodes. However, it can be 

thoroughly implemented in analog VLSI technology with 

currently existing methods. Therefore, the authors believe that, 

overall, since it is based in multi-mobile sensor tracking 

environments, one may expect to see many such applications in 

WSN constructions in the near future. Furthermore, although in 

this type of environment the size of the optimization problem 

requiring much attention is considerably larger, the proposed 

algorithm performs quite well, as in the simulation illustration. 

This is probably due to a sparse assumption of fewer tracked 

targets. However, the scale would be required for the 

implementation of a practical mobile sensor might become a 

problem when the number of sensors and the measurements 

become very large. A current issue for development is reduction 

of the scale of the quadratic optimization problem that must 

solve, so that available analog IC (integrated circuit) 

implementation can be used to build practical mobile sensors. 

Besides, the trends for implementing the WSN in large scale 

network are generally to distribute the fused-data in some small 

area networks separately. Finally, since the amount of energy 

consumed by a mobile sensor during the processing is large, 

such consumption is another important issue. Recently, several 

methods have been proposed for investigating 

energy-awareness problems in the mobile sensors in WSNs 

[15]. The authors are currently working on developing a method 

for decreasing energy consumption by a mobile sensor so that 

the lifetime of sensors in WSNs can be increased. 
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Fig. 1 Deployment with two targets and two mobile sensor nodes with 

sensing areas covered in circles. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table I. Initial conditions of two tracked targets 
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Fig. 2 Results with two mobile sensors for tracking two maneuvering 

targets 
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Fig. 3 Accumulate position error of the distance with two mobile 

sensors for tracking two maneuvering targets 
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Fig. 4 Accumulate speed error of two mobile sensors for 

tracking two maneuvering targets 

 

 

 X_axis 

(m) 

Y_axis 

(m) 
X&_axis 
(m/s) 

Y&_axis 
(m/s) 

Target_A 1005 1019 230 111 

Target_B 4523 4677 214 120 
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Table II. Initial conditions of four tracked targets 

 X_axis 

(m) 

Y_axis 

(m) 
X&_axis(m/s) Y&_axis(m/s) 

Target_A 1500 1500 50 110 

Target_B 2500 2500 500 100 

Target_C 4000 4050 100 140 

Target_D 6000 6005 290 150 
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Fig. 5 Results with four mobile sensors for tracking  four maneuvering 

targets 
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Fig. 6 Accumulate distance error of the distance with four mobile 

sensors for tracking four maneuvering targets 
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Fig. 7 MES of the distance with four mobile sensors for tracking 

four maneuvering targets 

 

Table III. Initial conditions of five tracked targets 

 X_axis 

(m) 

Y_axis 

(m) 
X&_axis 

(m/s) 

Y&_axis 

(m/s) 

Target_A 100 100 20 100 

Target_B 1500 1500 50 110 

Target_C 2500 2500 500 100 

Target_D 4000 4050 100 140 

Target_E 6000 6005 290 150 
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Fig.8 Results with four mobile sensors for tracking five maneuvering 

targets 
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Fig. 9 Accumulate distance error of the distance with four mobile 

sensors for tracking five maneuvering targets 
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Fig. 10 MES of the distance with four mobile sensors for 

tracking four maneuvering targets 

Table IV. Initial conditions of seven tracked targets 

 X_axis (m) Y_axis 

(m) 
X&_axis 
(m/s) 

Y&_axis 
(m/s) 

Target_A 1000 1000 100 110 

Target_B 2500 2500 122 120 

Target_C 3500 3500 230 230 

Target_D 5000 5000 300 340 

Target_E 6000 6005 -65 60 

Target_F  8000 8005 486 480 

Target_G 15000 -200 15000 -220 
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Fig. 11 Results with four mobile sensors for tracking seven 

maneuvering targets 
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