
 

 

  

Abstract—Meteorological time series are characterized by 

important spatial and temporal variation. Model determination and 

the prediction of evolution of such series is of high importance for 

different practical purposes, even if discovering evolution patterns in 

such series is a very difficult problem. In this article we describe an 

adaptive evolutionary technique and we apply it for modeling   the 

precipitation and temperatures collected in a region of Romania. The 

results are promising for the analysis of such time series.  

 

Keywords— adaptive algorithm, gene expression programming, 

time series modeling. 

 

I. INTRODUCTION 

HE complexity of the problem of modeling meteorological 

time series derives from the diversity of phenomena that 

generally affect the climate (e.g. the greenhouse effect, human 

influences, solar influences, etc.). Such time series often show 

non-linear behavior; their analysis constituting a topic of 

substantial interest in the literature [1], [2], [3], [4]. 

Meteorological time series are influenced by a multitude of 

factors, such that their behavior is highly non-linear [5]. 

Changes in the environment may trigger shifts in the process 

describing the time series [1], [6]. Classical approaches, such 

as the linear model, rely on the assumption of a constant data 

generating process (whose characteristics do not vary with 

time). Often, they may fail to obtain adequate models due to 

the nonlinear dynamic behavior of time series, but also due to 

the lack of adaptation of the methods. This makes the problem 

very well suited for the use of heuristic methods. They provide 

means to discover alternative complex, well fit models, 

without making any assumption on the process under study. 

Evolutionary techniques have been used successfully to 

solve various time series problems. Recurrent neural networks 

are employed by Badjate and Dudul [2] to obtain short-term, 

as well as long term predictions of the chaotic sun spots time 

series. De Falco et al. constructed a genetic programming 
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based system for forecasting time series and utilized it to 

perform predictions concerning El Nino forecast [7]. A 

different approach to time series modeling was used in [8], 

with an emphasis on the accuracy of the predictive solutions 

discovered by the algorithm. The use of support vector 

machines for the analysis and short-term prediction of wind 

speed based on meteorological series was treated in [4].  

We focus on a novel adaptive technique to model 

meteorological time series. The interest in our paper is two-

fold. First, we focus on the statistical characteristics of the time 

series under study. We perform a thorough analysis of the 

meteorological time series used, which includes the use of 

statistical techniques to detect whether there exist points in the 

time series where the process changes. The main interest relies 

on discovering models for the time series using an 

evolutionary algorithm that adaptively adjusts some of its 

parameters during its course.  

The evolutionary technique employed in this paper is an 

improved version of the Gene Expression Programming 

Algorithm (GEA).  

A very important parameter in GEA is the number of genes 

used by a chromosome, since it affects directly the complexity 

of the solutions that can be expressed by the individuals in the 

population. We employ the autoadaptive version of the GEA – 

AdaGEP, which was initially proposed by us for general 

symbolic regression problems and we adapt it to be used in the 

context of modeling time series. Besides performing the 

standard GEP algorithm, AdaGEP allows the GEA algorithm 

to find the optimal number of genes used by the chromosomes, 

through evolution and adaptation, during the run of the 

algorithm. 

The studied time series consist of the mean annual 

precipitation registered between January 1965 and December 

2005, at Medgidia meteorological station, situated in the South 

– East of Romania, and the time series of the mean annual 

temperature at Jurilovca station, situated in the Danube Delta. 

We chose series that concern distinct aspects of the 

meteorological domain, in order to obtain a better assessment 

of the applicability of the presented method and to show it 

performs fine regardless the nature of the data generating 

processes. 

Our article has the following structure: 

- considerations regarding the time series modeling 

problem; 

- presentation of basic ideas on the evolutionary 

technique used to derive the models; 
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-  statistical analysis of studied time series; 

- experiments and results; 

- conclusions and discussions of results and possible 

directions of future research.  

II. PROBLEM FORMULATION 

A time series model for the observed data )( tx  is a 

specification of the joint distributions of a sequence of random 

variables )( tX  of which )( tx  is postulated to be a realization. 

In what follows we shall denote by n the selection volume.  

The problem that arises is to find a model that fits the time 

series as well as possible. In order to do it, the first step is to 

decide how many previous data points are used – the “window 

size”. One must also decide how the past data used by the 

model is sampled from the original time series.  

In this study, we denote the window size by w, and we 

sample the past data at a sampling lag k =1. This means that, 

for example, if w = 3, the model will predict the value at a 

moment t, tx , using the previous 3 values in the sample, 

namely 321 ,, −−− ttt xxx .  

In a more formal manner, we are interested in finding a 

function f that predicts the values of a time series as 

accurately as possible: 

( ) ntxxxfx wtttt ≤= −−− ,...,,,ˆ
21 . 

The accuracy of a model is measured in terms of prediction 

error: 

( )∑
=

−
−

=
n

t
tt xx

n
error

1

2ˆ
1

1
. 

Better models are those with smaller prediction error.  

We also can report the ratio of prediction error over 

standard deviation as a measure of the prediction quality in a 

model.  

Finding a function that fits the data is actually an inverse 

problem, since there may exist more than one solution to it – 

making it a well-suitable candidate for a heuristic approach. 

We chose to tackle the problem with an enhanced GEP 

algorithm, described in the next section. 

III. GENE EXPRESSION PROGRAMMING 

One of the most important goals of artificial intelligence in 

general is to endow computers with the ability to program 

themselves. John Koza proposed the most successful attempt 

of the problem of automatic programming in [9], where he 

described the Genetic Programming (GP) paradigm – a 

generalization of Holland’s Genetic Algorithms (GA) [10].  

GP belongs to the large family of evolutionary techniques, 

along side GA, Evolution Strategies, or Evolutionary 

Programming [9, 10]. These techniques share mechanisms that 

come from Darwin’s theory of evolution – natural selection 

based on the survival of the fittest. According to the survival 

of the fittest principle, the individual best adapted to its 

environment has the highest chance of survival and 

reproduction, therefore its traits get to live and perpetuate in 

next generations.  

Since Koza’s seminal work [9], many variants of GP have 

been proposed in the literature. The differences among them 

are, in most cases, triggered by the different representations 

used to encode the solutions. In this paper, we use the Gene 

Expression Programming algorithm (GEA), proposed by 

Ferreira [11], which we briefly describe in the following. 

GEP is a flavor of GP that uses a novel representation that 

takes advantage of both GP and some features of the classical 

GA [9, 10], and overcomes in this way limitations of the 

standard GP and GA. In GP, candidate solutions to the 

problem at hand encoded by the individuals are computer 

programs expressed as complex hierarchical structures.  

In the context of our problem – time series modeling, a 

candidate solution is a mathematical formula expressed as a 

composition of mathematical functions, variables, and 

constants and therefore is well represented as the parse tree of 

the mathematical expression. GP individuals are obliged to no 

constraints with respect to their shape or size, other than the 

physical limitations of the system. In most cases, individuals 

are subject to a constraint regarding the maximum allowed 

depth, or the maximum allowed number of symbols (functions, 

variables, constants).  

On the other hand, GEP individuals are fixed size strings of 

symbols; nonetheless, they encode non-linear expressions. In 

GEP, individuals are composed of one or more genes of equal 

length; the number of genes in the chromosomes is constant in 

all individuals in the population over all generations. In the 

standard GEA, it is given as a parameter of the algorithms, as 

is the gene size.  

A gene is a linear string of symbols. By symbols we 

understand mathematical functions (e.g. arithmetic operators 

like /*,,, −+ , trigonometric functions, exponential, 

logarithmic, etc), constants or variables. The set of symbols at 

the algorithm’s disposal is a parameter of the algorithm.    

Every gene encodes a mathematical expression expressed as an 

expression tree.  

Ferreira proposed a special syntax for GEP genes that 

ensures the validity of the de-codification process. A GEP 

gene is structured in two parts, named “head” and “tail”. The 

tail is constrained to contain only constants or variables, 

whereas the head may contain any symbol. If we denote the 

head’s size by h  and the tail’s size by t , the relation:  

( ) 11 +−= nht , 

must hold, where n  represents the maximum arity of the 

functional symbols used by algorithm.  

This rule is a guarantee that each GEP gene decodes into a 

correct expression tree, i.e. a correct mathematical function. 

Fig. 1 presents a possible GEP individual for the time series 

modeling problem.  
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Fig. 1. GEP individual 

 

In the process of decoding a GEP individual, the 

expressions encoded by the genes are linked together by means 

of a linking function. The linking function is also a parameter 

of the algorithm. It depends very much on the type of problem, 

but usually it is the addition – as is the case of the work 

presented here. In the case of Boolean problems, the most used 

is logical AND. 

The linear structure of GEP chromosomes allows the 

operators in GEP to perform structural changes similar to 

those performed by classical GA operators. All operators are 

implemented so as to respect the rule that enforces only 

terminal symbols in the tail of each gene. The unary operators 

defined in GEP include mutation and transposition.  

The mutation operator changes a randomly chosen symbol 

in the chromosome.  

There exist three transposition operators defined in standard 

GEP. They work by duplicating sequences of genetic code in a 

chromosome; the differences among them come from the 

selection way of the code that is to be duplicated (called 

transposon). The transposon may be any subsequence of the 

chromosome (IS transposition); it may be selected to begin 

with a function (RIS transposition), or may consists of an 

entire gene (gene transposition).  

As binary operators, GEP has three kinds of crossover 

operators – all inspired from their GA counterparts: one-point 

crossover, two-point crossover and gene crossover. Each of 

them acts by randomly picking two parents from the 

population. Then, one point crossover randomly picks a 

position and swaps the genetic material downstream between 

the two parents. Gene crossover swaps entire genes among the 

parents, while two-point crossover swaps the genetic material 

between two randomly chosen positions. For details on the 

inner workings of standard GEP operators, see [12].  

The criterion used by the algorithm to evaluate the 

candidate solutions uses the prediction error. 

A. Adaptive Gene Expression Programming - AdaGEP 

The number of genes in a chromosome is one of the most 

important parameters in GEP. It has the same value for all the 

individuals in a population and is constant throughout a run of 

the algorithm. This is a rather hard constraint, since it controls 

the shape and the size of the solutions evolved.  

Determining the optimum number of genes is an empirical 

process very much based on the intuition and the experience of 

the person performing the experiments. Incorrect setting of this 

parameter may cause the algorithm to fail in finding the true 

model for the time series: if the resulting length of the 

chromosome is too small, the complexity of the potential 

solutions encoded is severely limited. On the other side, if the 

resulting number of symbols in a chromosome is too big, the 

search space of candidate solutions increases extremely, such 

that the best model may not be encountered by the algorithm in 

proper time. 

We use AdaGEP [13], an algorithm that overcomes this 

issue by identifying the appropriate number of genes 

automatically. AdaGEP uses an adaptive gene deactivation 

mechanism inspired by genetic algorithms. Each AdaGEP 

chromosome is enhanced with a bit string, called “genemap”.  

The genemap size is equal to the number of genes in a GEP 

individual. Each bit in the genemap corresponds to a gene of 

the chromosome and it controls whether that gene is used 

during chromosome decoding. If a genemap bit is set, the 

decoding process interprets the corresponding gene as in the 

classical GEP. If its value is 0, the decoding process ignores 

the corresponding gene. In this case, we call the gene 

“deactivated”, since it has no effect on the mathematical model 

encoded by the chromosome.  

For example, if the genemap is 011, the first gene is 

deactivated and the AdaGEP chromosome 

 
012345678 012345678 012345678 
*+x*xx1xx *-x*x3x2x /x+3x1xx5 

decodes into 
x

x
x

+
+

3
2

2
. The classical GEP decoding 

process would have resulted in the expression 
x

x
x

+
+

3
4

2
.  

In AdaGEP, we obtain a population of genemaps, parallel to 

that of the GEA. We allow the genemaps to evolve similarly to 

the population of a classic genetic algorithm. On every GEP 

iteration, a GA iteration is performed on the genemaps: we 

apply mutation and crossover on the population of genemaps 

as they are defined in classical GA.  

A genemap survives the selection process only if its 

corresponding chromosome survives. Thus, AdaGEP allows 

each chromosome to filter out genes that are not useful during 

evolution. The hybrid algorithm obtained co-evolves two 

separate populations: the population of mathematical models 

encoded by the GEP individuals and the population of 
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genemap encoded by bitstrings, that dictate which genes are to 

be decoded and which ones are to be ignored in the GEP 

individuals. 

Resuming, the AdaGEP algorithm has the following steps: 

1.  Create the initial population of individuals (randomly). 

2.   Evolve individuals with GEP specific operators 

(crossover, mutation, transpositions). 

3.  Apply Gene Map Evolution operator on the population of 

genemaps. 

4.  Evaluate each AdaGEP individual over the set of fitness 

cases. 

5.  Select the next generation individuals (by roulette wheel 

selection): 

a. the genemaps are assigned to the fitness value of 

the individual they are attached to;  

b. survival of GEP chromosome implies survival of 

its genemap also! 

6.  Go to 2 if the stop criterion is not met. 

B. Parameter Settings 

The experiments use the AdaGEP extension implemented 

for the gep package of ECJ
1
. We perform runs of the standard 

GEP algorithm and of the adaptive version presented in order 

to establish the usefulness of the adaptive approach in the 

context of time series modeling. In each experiment, 50 

independent runs for each setup have been performed.  

AdaGEP used a number of genes of 10 per chromosome. 

This means that the maximum number of genes to be used by 

the chromosome is 10, but during the run of AdaGEP, the 

actual number of genes used by each chromosome is 

adaptively adjusted,. The head size of a gene was set to 5, the 

population size was set to 200, and the maximum number of 

generations the algorithm is allowed to run was 1000 (per run).  

The operator rates used the default values provided by the 

gep package of ECJ. An important parameter for the 

algorithm is the function set. Usually, it includes the arithmetic 

operators. A too large number of functions would lead to an 

explosion in the search space of possible solutions, which is 

not desirable [12]. Since the time series under study come 

form meteorological domain, it is expected they some cyclical 

behavior. Therefore, the function set used in our experiments 

consisted of { }sin/,*,,, −+ , where division is implemented as a 

Koza style protected operator [9]. 

Finding the optimum window size is an optimization 

problem by itself and there exists no precise algorithm to 

compute it. Since this is not the main purpose of our article, 

we do not employ a special algorithm to decide on a specific 

window size. Instead, we take on a brute-force approach: we 

perform experiments for all window sizes in the interval 

{ }6,5,4,3,2,1∈w  and the lag 1=k  and report the best model 

over all. Moreover, the nature of the search process employed 

by GEP allows it to identify automatically the variables that 

 
1
 ECJ is an open-source evolutionary computation research system 

developed in Java at George Mason University’s Evolutionary Computation 

Laboratory and available at http://cs.gmu.edu/˜eclab/projects/ecj/ 

are most useful to estimate future values among the past n 

input variables.  

IV. DATA ANALYSIS 

In order to determine the characteristics of each of the series 

under observation, the following procedures and statistical 

tests were used: 

1. Kolmogorov – Smirnov, Jarque - Bera tests or Q-Q plot – 

to test the normality hypothesis [14]; 

2. Rank correlation test [14] – to verify the hypothesis 

whether the series is random; 

3. The autocorrelation function (denoted by ACF) [15] – to 

test the hypothesis that the series is uncorrelated; 

4. Bartlett or Levene test [16] - to test the homoscedasticity 

hypothesis; 

5. Buishard [17] and Pettitt [18] tests, and Hubert’s 

segmentation procedure [19] – to determine the existence 

of a break in the time series (break – a point where the 

model changes.  

CUSUM procedure [20] was also used, to determine the 

changes in mean in the series.  

A. The analysis of Series 1 

The series of mean annual precipitation collected at 

Medgidia station is represented in Fig. 2. We shall refer to it as 

Series 1. The average precipitation is 449.92 mm and the 

standard deviation is 109.24. 
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Fig. 2. Series 1 

 The results of the statistical analysis by means of the 

previously mentioned test are discussed in the following.  

1. The data are normally distributed, since: 

- in the Q-Q plot diagram (Fig. 3) the observed values are 

distributed along the straight line that represents the theoretical 

normal distribution; 

- the p-value associated with Kolmogorov – Smirnov test is 

bigger than 0.05. 
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Fig. 3. Q-Q plot of Series 1 

 

2. The series is random. 

3. The series is not correlated, since the values of the  autcor-

relation function are inside the confidence limits at a 

confidence level of 95% (Fig. 4). 

 

 

Fig.4. ACF of Series 1 

 

The values of the partial autocorrelation functions (Partial 

ACF) are also inside the confidence limits at a confidence 

level of 95% (Fig. 5). 

4. Dividing the data in two parts (the first 20 and the last 21 

values), and calculating the value of the statistic X
2
, in Bartlett 

test, we obtain: 

<= 7298.02X ,84.3)12(2
95.0 =−χ  

where )12(2
95.0 −χ  is the quintile value of 2χ  function, with 1 

degree of freedom, at a significance level 95%. 

Thus, the hypothesis that the time series is homoscedastic is 

accepted.  

 

Fig.5. Partial ACF of Series 1 

 

5. After the application of Buishard and Pettitt tests, the 

hypothesis that there is no break in the series is accepted at the 

confidence level of 95%. Hubert’s segmentation procedure 

detects a break in 2003. 

Also, the CUSUM procedure gives a change point in 2003 

(Fig. 6), but since we have only two data after this year, we 

can not confirm the last hypothesis. As consequence, we 

eliminate the last two values and we search for the model for 

the period 1965 – 2003. 

 

 

Fig. 6. CUSUM diagram 

B. The analysis of Series 2 

The series of mean annual temperatures (1965 - 2005) at 

Jurilovca station is represented in Fig.7. We shall refer to it as 

Series 2. The average temperature is 11
0
C and the standard 

deviation 0.66. 
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Fig. 7. Series 2 

 

The results of the statistical analysis of Series 2 are 

presented next. 

1. In Table I the results of Kolmogorov - Smirnov and 

Shapiro – Wilk tests are given, where Statistic represents the 

values of the corresponding statistic, df represents the degrees 
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of freedom and Sig. is the signification level of this test. If  Sig 

< 0.05, there is a deviation from normality. As can be noted, 

there is no deviation from normality. 

 

Table I. Results of Kolmogorov - Smirnov and Shapiro – Wilk 

tests for Series 2 

 
 

The histogram associated to Series 2 can be also analysed. 

(Fig. 8) Taking account on the tests’ results we can accept the 

hypothesis that Series 2 is normally distributed.  

 

 
Fig. 8. Histogram of Series 2 

 

Table II. Results of autocorrelation test for Series 2 

 
2. The series is random. 

3. The results of autocorrelation test are presented in Table 

II, where the columns contains, respectively: the lag between 

each two values considered in the calculation of ACF values;  

the values of ACF; the standard errors when the underlying 

process is independent; the values of Box – Ljung statistic, the 

degrees of freedom for which the statistic values were 

calculated and the significance level.  

Since values of Box-Ljung statistic are less than )15(2χ , we 

accept the hypothesis that the series is not correlated. 

4. The Hubert segmentation procedure and CUSUM detect 

a break in 1997. 

 5. Dividing the data sample in two sub - samples, 

corresponding to the periods before and after the break and 

applying Levene test, the values of corresponding statistic is: 

,84.3)12(306713.0 2
95.0 =−χ<  

so the homoscedasticity hypothesis can be accepted. 

V. GEP DERIVED MODELS 

A. Models for Series 1 

In this section we present the best models obtained using 

standard GEP and the adaptive version, AdaGEP.  

The overall quality of the solutions was best in the runs that 

used the window size of 5. Therefore, we resume at the 

presentation of only the best solutions depicted over all runs 

by GEP, respectively AdaGEP.  

For both series, the standard GEP algorithm performed best 

in the runs where the number of genes was 5. Nevertheless, the 

effort to find this out was considerable, since we performed 50 

independent runs for each number of genes between 1 and 10. 

The first model, obtained using GEP for the mean annual 

precipitation evolution is presented in Fig.9. 
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Fig. 9. The first model (GEP) 

 

The number of symbols in this original GEP solution is 43, 

while the average number of symbols the GEP solutions over 

the 50 runs is 34.  

The residual is normally distributed (Fig.10) and 

uncorrelated before the lag 12 (Fig. 11), since the probabilities 

to reject the correlation hypothesis are bigger than 0.8. They 

are also homoscedastic. 

The prediction error was 68.26, and the ratio between the 

prediction error and the standard deviation was 0.74. 

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 3, 2009 90



 

 

 

Fig. 10. Residuals’ Q - Q plot 

 

 

Fig. 11. Residuals’ ACF 

 

The second model we present is depicted as best solution 

encountered by the AdaGEP algorithm (Fig. 12) (over all 

experiments, each experiment consisting of 50 runs). The 

algorithm evolved towards this solution that uses only 4 out of 

the 10 genes in the chromosome.  
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Fig. 12. The second model (AdaGEP) 

 

It may be noted that AdaGEP chromosomes are similar to 

the real DNA code of living organisms, which contains large 

sequences of unused code. The number of symbols in this 

solution was 35, while the average number of symbols over all 

50 AdaGEP solutions was 20. 

The residual has the same properties as in the previous case. 

The prediction error was 64.17, and the ratio between the 

prediction error and the standard deviation was 0.69.   

It is interesting to note that while obtaining a better fit, the 

AdaGEP algorithm identified the optimal number of genes to 

be used by GEP individuals, which is close to the value (of 5)  

“manually” found in the repeated standard GEP experiments in 

the first phase. 

It is interesting to note that on average, AdaGEP solutions 

used fewer symbols, leading to fewer function evaluations, and 

therefore a reduction in the algorithm’s running times.  Over 

all runs for Series 1, the mean number of genes in the best-of-

run solutions was 3.5, the mean number of symbols 20 and the 

standard deviation of the number of symbols 6. The number of 

symbols of GEP best-of-run solutions had a mean of 34, with a 

standard deviation of 7. 

B. Models for Series 2 

Since the Series 2 presents a break in 1987, three different 

models were searched: for the entire Series 2 and for the 

subseries before 1987 (denoted by Series 2_1) and after 1987 

(denoted by Series 2_2). 

As in the previous set of experiments, for each window size 

(up to 6), and for each number of genes, 50 independent runs 

are performed of the standard GEP. Also, for each window 

size, 50 independent runs of AdaGEP with a maximum 

number of genes of 10 are performed.  

We present only the best solutions encountered in the 

AdaGEP run, since it is slightly better than that encountered by 

standad GEP in all the experiments that used it. The interesting 

fact is that the adaptive hybrid algorithm reaches the 

conclusion that the suitable number of genes to be used by a 

chromosome, discovered by AdaGEP, is 5. It is consistent with 

what we found when running standard GEP for all possible 

number of genes up to 10.  

The best solutions over 50 independent runs of AdaGEP 

were obtained respectively for a window size of 4 for Series 2 

and 5 – for Series 2_1 and 2 – for Series 2_2. They are 

presented in Figs. 13 - 15.  

 
Fig.13. Best AdaGEP Model of Series 2 
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Fig.14. Best AdaGEP Model of Series 2_1 

 

Fig.15. Model of Series 2_2 

The mean squared errors were respectively: 0.2391, 0.1501 

and 0.00252. 

In all the cases the residual are normally distributed, 

independent and homoscedastic. As it was expected for a good 

algorithm, the models obtained for the subseries are better than 

the model for the entire series.  

VI. CONCLUSIONS 

This study confirms the suitability of GEP and AdaGEP to 

the time series modeling problem. Although the improvements 

in the quality of the solution are not so impressive, the 

advantage of using the adaptive version of GEP over the 

classical version resides in the potential shown for obtaining 

solutions in a less complex shape and also a significant 

reduction in the number of fitness evaluations, and 

consequently in the running time. The coevolving gene map 

population acts upon the GEP population it implicitly 

imposing parsimony upon the evolved solutions.  

In a previous study [21], GEP was used also to model the 

long series of mean monthly precipitations January 1965 – 

December 2005 and the results were comparable with those 

obtained by GEP. An empirical feature of the GEP approach is 

that it seems to work better on shorter time series. A possible 

reason for this behaviour may be the dynamic characteristics 

around data that concerns weather in general, which coincides 

with our intuition that there exist points in meteo-hydrological 

time series when the underlying process changes. Short time 

series are less likely to contain such change points. Further 

investigations will follow this direction.  

Further research includes evolving teams of individuals to 

be used as an ensemble model of time series, in order to 

improve the robustness of the models. Also, AdaGEP will be 

extended to adaptively find appropriate operator rates for GEP 

and for the embedded GA.   
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