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Abstract - Despite the high cost of memory and CPU time required to 
resolve the boundary layer, a viscous unstructured grid solver has 
many advantages over a structured grid solver such as the 
convenience in automated grid generation and vortex capturing by 
solution adaption. In present study, an unstructured Cartesian grid 
solver is developed on the basis of the existing viscous solver, 
NASCART-GT. Instead of a cut-cell approach, an immersed 
boundary approach is applied with ghost cell boundary condition, 
which can be easily applied to a moving grid solver. The standard k-ε 
model by Launder and Spalding is employed for the turbulence 
modeling, and a new wall function approach is devised for the 
unstructured Cartesian grid solver. In this study, the methodology is 
validated and the efficiency of the developed boundary condition is 
tested in 2-D flow field around a flat plate, NACA0012 airfoil, and 
axisymmetric hemispheroid. 

Keywords – Cartesian Grid, Computational Fluid Dynamics, 
Turbulence Model 

NOMENCLATURE 

cp = specific heat 
Cp = pressure coefficient 
η = local coordinate normal to wall 
It = turbulent intensity 
µl = molecular viscosity 
µt = eddy viscosity 
n = normal vector of surface panel 
r = recovery factor 
Pr = Prandtl number 

I. INTRODUCTION 

NSTRUCTURED grid computational fluid dynamics 
(CFD) methods can employ automated grid generation 

for complex geometries (see [1] and [2]) and solution adaption 
for vortex capturing far more readily than structured grid 
methods. In spite of these advantages of the unstructured grid 
topology over the structured grid, until recently it could not be 
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used for a viscous flow calculation due to the high cost of 
memory and CPU time to resolve the boundary layer. As high 
performance parallel computer systems have become more 
recently available, the unstructured grid solvers have been 
very popular even in the calculation of viscous and turbulent 
flow.  

Many unstructured grid solvers use pyramid or prism type 
grid topology, in which the cells are body-fitted and it is easy 
to apply conservative integration for finite volume method. 
However, the numerical solution of the equations of fluid 
dynamics is simplified and the truncation error is reduced, if 
the discretization is performed in a Cartesian coordinate 
system. Many flow simulations involve complex geometries 
with curved and planar boundaries oblique to the grid. For an 
accurate simulation, the computational domain of Cartesian 
grid solver should include arbitrary cut cell near the solid [3]. 
A common problem with cut cell is the creation of very small 
cells. This leads to problems with stiffness of the equations 
and non-physical fluctuations of flow variables near the body. 
In case of time-dependent simulations, it limits the time step 
and influences the stability. Researchers have dealt with this in 
a number of ways, including hybrid grid [4] merged cell 
approach [5],[6] and embedded cell method [7].  

The hybrid grid topology employs the body-fitted 
structured grid near wall combined with Cartesian grid away 
from body. Using a structured grid near wall, however, means 
an often laborious grid generation process for complex 
configurations. 

The merged cell approach uses a Cartesian grid for all cells 
except those which are intersected by the boundary in Fig. 1. 
The boundary cells are truncated and merged into a nearest 
flow cell so that they conform to the shape of the boundary 
surface. Since the flow properties at the merged cell center are 
integrated from the wall boundary and flow cells, the state 
vector is always conservative. However, it generally entails a 
considerable increase in complexity, since fluxes between 
diagonally adjacent cells must also be calculated, and the 
computational molecule for merged boundary cells become 
different to that used for the standard cells. Since the merged 
cell center is not aligned with other flow cells, the order of 
accuracy in spatial discretization is limited during integration 
of flow cells contacting the merged cell. 

U
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The earlier version of NASCART-GT used an embedded 
boundary method.  In this approach (described in [7]), wall 
boundary conditions were enforced by extrapolating to cut cell 
centers.  The embedded boundary method removes the surface 
cells from the finite volume formulation and extrapolates flow 
properties on the boundary cell center from a reference point. 
However, it requires some relocation of the cell center to the 
centroid of the cut cells as shown in Fig. 2. 

The immersed boundary method using ghost cells was first 
introduced by Forrer and Jeltsch [8] for Cartesian grid. The 
boundary cell is not truncated and maintains cubic shape. As 
shown in Fig. 2, the boundary cell center is not shifted to the 
cut-cell center and maintains at the centroid of non-cut cell 
independent of boundary shape. Dadone [9] successfully 
solved the 2D and 3D Euler equation for an unstructured 
Cartesian grid using the ghost-cell immersed boundary 
method. He considered solid walls as boundaries immersed in 
the flow field and enforced boundary conditions at ghost cell 
centers located inside the body in a position close to the wall. 
It solved the problem of the misalignment of cell centers. It 
also eliminated the requirement of finding cell centroids 
thereby saving computer memory. 

To date, most unstructured Cartesian grid techniques have 
been developed to solve the Euler equations. Excluding the 
hybrid grid solver, there has been relatively little research for 
the full Navier-Stokes or RANS equations. Furthermore, no 
viscous modeling using an immersed cell approach has been 
reported yet. It is quite challenging and has never done before 
to apply wall function approach to immersed Cartesian grid. 
The difficulty lies in the inability to acquire smooth variation 
of y+ in the desired range due to the non-body-fitted cells near 
the solid wall. Applying the conventional wall function wall 
boundary condition on the immersed Cartesian cells near the 
wall would result in a large magnitude of non-physical 
fluctuations of the flow properties, thereby, cause instability 
of the computation. The wall function boundary condition 
developed in this work yields stable and reasonable solution 
within the accuracy of the turbulence model. The grid 
efficiency is also improved with respect to the conventional 
method by extending the first cell center from the wall 
boundary up to y+≈300. 

II. NUMERICAL FLOW SOLVER 

NASCART-GT (Numerical Aerodynamic Simulation via 
CARTesian Grid Technique) is a finite volume, 
compressible, unsteady, three-dimensional Cartesian grid 
solver of the RANS (Reynolds Averaged Navier-Stokes) 
equation set, which assumes calorically perfect gas. The 
molecular viscosity is calculated from Sutherland’s law. The 
RANS equations are solved using Roe’s approximate Riemann 
solvers coupled with a MUSCL scheme for inviscid fluxes and 
traditional finite differencing of the viscous terms. The 
primitive variables at the hanging node are interpolated using 
2nd order pseudo-Laplacian averaging scheme. For turbulent 
flow simulation, the standard k-ε model by Launder and 
Spalding [10] is employed. The time integration is performed 
using a Hancock two-stage scheme which is second order 
accurate in time. To ensure the positivity of turbulent 
quantities, a turbulent limiter is applied derived from the 

asymptotic analysis of k and ε equations. Solution adaption is 
performed at user-specified iteration numbers based on 
divergence, vorticity, turbulent kinetic energy and dissipation 
rate. For more detail, see [11]. The following sections explain 
boundary conditions in detail. 

For outflow and inflow boundaries, characteristic boundary 
condition or simple extrapolation is applied to specify 
Riemann invariants. For turbulent flow calculation, the 
turbulent kinetic energy and dissipation rate are assumed to be 
known at the inlet boundary from the prescribed turbulence 
intensity and the turbulent viscosity. A value for the ratio of 
freestream turbulent viscosity to laminar viscosity is also 
specified, such that 

( )2
∞∞ = VIk t  (1) 

∞∞ = µµ 1, Ct  (2) 

The resultant freestream turbulent dissipation is obtained 
from turbulent viscosity closure. 

tI  is generally set to 0.01 for 

external flows. Improper value of 
1C  may result in slow 

convergence. In NASCART-GT, it is set to 0.1. Limiting the 

values of k  and ε  of the flow cell to the freestream values 
after each time step, helps prevent unphysical transient 
solution [12]. At the outflow boundary, k  and ε  are 
extrapolated according to the characteristic boundary 
condition. 

Instead of directly specifying wall boundary conditions on a 
wall, NASCART-GT enforces primitive variables on the ghost 
cells such as 15 and 16 in Fig. 3, which act as wall boundaries. 
The state vector of cells intersected by the solid wall (called 
boundary cells, for example, 11, 12 and 14 in Fig. 3) are found 

Overlayed Cartesian Cell Merged Cell

Fig. 1. Illustration of merged cell approach. 

Embedded cells Immersed cells

cell centroid

 
Fig. 2. Comparison of embedded and immersed cells. 
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using time integration as the same manner with flow cells. The 
point B and D represent the reference points of cell 16 and 15  

δ
g

δ
r

1 2 3 4

8765

9 10 11 12

16151413

D

B

A

C

δ
r

δ
g

 
Fig. 3. Example configuration of wall boundary treatment.  
Boundary cells: 11, 12, 14. Ghost Cells: 15, 16.  Remainder of cells 
are flow cells. 
 

respectively. The location of reference point is determined 
as following. First, find the closest point on a body panel from 
the ghost cell center, i.e. point A or C. Then, extend the line 
connecting the ghost cell center and the closest point on the 
wall panel to the extent of predetermined length, rδ . In 

current study, rδ  is set to the length of boundary cell 

diagonal. The primitive variables at a reference point are 
interpolated from the primitive variables of the 3 closest 
neighbor cell centers using the linear least square 
interpolation. After finding primitive variables at the reference 
point, the variables at the ghost cell center are calculated using 
linear extrapolation. 

For pressure, the condition 0/ =∂∂ ηp
 

is satisfied by setting 

the pressures on the wall and the ghost cell center are identical 
to that at the reference point, i.e.

gwref ppp == , where the 

subscripts ref , w  and g  denote reference point, wall and 

ghost cell center, respectively. Adiabatic wall boundary 
condition is fulfilled when 0/ =∂∂ ηT  is enforced as the same 

manner with the pressure boundary condition. To find the 
velocity components at the ghost cell center, the velocity at the 
reference point is transformed to get the tangential and normal 
velocities. 

( )nnVV refrefN, ⋅=  (3) 

N,ref,ref VVV −= refT  
(4) 

where the subscripts N  and T  represent normal and 
tangential components, respectively. Normal velocity on the 

wall should be zero in a non-permeable wall. Thus, linear 
extrapolation results in 

ref
r

g
g N,N, VV

δ
δ

−=
 

(5) 

The next step is to define the tangential velocity and 
temperature at the ghost cell center using the law of the wall. 
NASCART-GT employs the Spalding’s formulation, which 
yields a unified form valid for the log law layer and the 
viscous sublayer as well as the buffer layer. It is known that 
the Spalding’s formulation shows excellent agreement with 
various experimental data even after, for 300>+y , the outer 

law commences [13]. 

( ) ( )











−−−−+=

++
+−++ +

62
1

32
uu

ueeuy uB κκκκκ  (6) 

For the given temperature and tangential velocity at the 
reference point, the adiabatic wall temperature is calculated 
from the Crocco-Busemann equation. 

p

refT
refw c

Vr
TT

2
,

2
+=  (7) 

where r  is the recovery factor known to be 3/1Pr  in turbulent 
flows for air. 

pc  represents the specific heat. The wall density 

is obtained from the state law for calculated wall temperature 
and wall pressure that is equal to the reference point pressure. 
Then, the wall shear stress at the reference point can be 
calculated by solving Eq. (6) numerically, i.e. Newton’s 
method. 

The next step is to implement the computed wall shear 
stress into the governing equations. With coarse grid spacing 
near wall, incorrect velocity gradient and wall shear stress will 
be obtained when no-slip condition is applied. One approach 
to introducing the wall function corrected wall shear stress 
into the calculation of the viscous flux is to calculate the 
effective turbulent viscosity so that the discrete shear stress at 
the boundary cell face yields the correct value for the wall 
shear stress [14].  Unfortunately, this method may results in 
errors into the energy equation if a separate effective turbulent 
viscosity for the temperature is not used. 

Instead of modifying turbulent viscosity, calculated shear 
stress by wall function can be directly imposed on the face 
near wall. Sondak and Pletcher [15] introduced a procedure to 
perform a transformation of the stresses for generalized 
coordinate system with body-fitted structured grid. He used 
the standard tensor transformation to get 

ij
ji xx

τ
ξξτ βα

αβ ∂
∂

∂
∂

=  (8) 
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where α  and β  represent the geodesic coordinate, and i  and 

j  the Cartesian coordinate. However, the above method 

needs a very complicated coordinate transformation, which 
would increase truncation error and emasculate the advantage 
of the Cartesian grid. To make the matters worse, non-physical 
fluctuations of primitive variables are induced when Sondak’s 
method is combined with the staggered Cartesian grid. The 
fluctuations may result in fictitious separation and distort the 
whole solution. This is mainly caused by the opposite 
directional velocity of the cells whose center is located inside 
of the wall. The nonlinear velocity profile combined with 
sharp change in the distances from the cell center to the wall 
induces the non-physical fluctuations. 

To solve previously stated problems, a new wall function 
boundary condition is devised in the present study. It is based 
on the idea that the modified tangential velocity satisfying 
discrete wall shear stress approximation would eliminate the 
use of the complicated coordinate transformation. This allows 
the computational cells near wall to remain in numerically 
linear region, thereby, the computation would be stable. The 
approach is described in the following. 

The normal velocity is specified by the Eq. (5) to ensure 
zero normal velocity on the wall. Since the total wall shear 
stress near the wall is approximately constant, the wall shear 
stress at the ghost cell is set to be the same as that at the 
reference point. Assuming the total viscosity (the sum of 
molecular viscosity and eddy viscosity) of the ghost cell is 
identical to that of the reference point, the shear stress in the 
solver is approximated as 

( ) ( )
gr

gTrefT
reftrefl

T
reftreflw

VVV

δδ
µµ

η
µµτ

−
−

+=
∆
∆

+≈ ,,
,,,,

 (9) 

Then, the tangential velocity of the ghost cell is 

w
reftrefl

gr
refTgT VV τ

µµ
δδ

,,
,, +

−
−≈  (10) 

Applying linear tangential velocity at the ghost cells may 
result in non-physical mean velocity at boundary cells. 
However, this condition satisfies the required wall boundary 
conditions of zero normal flux and wall shear stress, and the 
flow cells outside of the boundary cells would have proper 
values. The pressure boundary condition is in the same 
manner with the laminar wall conditions. The temperature of 
the ghost cell follows the Crocco-Busemann relation from the 
reference point temperature and computed tangential velocity. 
This is based on the fact that the adiabatic wall temperature is 
constant along the normal ray near wall. 

p

gTrefT
refg c
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2
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2

−
+=  (11) 

The density is obtained from the state law. The remaining step 
is to find the boundary conditions for turbulent properties, k  
and ε . The boundary conditions of k  and ε  have to satisfy 

the assumption of the Eq. (9). At the same time, the eddy 
viscosity should follow the designated profile, which is 
described in the [16]. 
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(12) 

To fulfill these requirements, the boundary conditions for 
turbulent properties are imposed on the flow cells contacting 
the boundary cells, as well as the ghost cells and boundary 
cells. Fig. 3 shows the example of the flow cells (e.g. the cells 
6~9, and 13), on which the turbulent boundary conditions are 
enforced. Assuming that the shear stress is constant near the 
wall, the turbulent kinetic energy at the cell center is equal to 

µ

τ

C

u
k

2

=  (13) 

Given the eddy viscosity from the Eq. (12), the dissipation rate 
of the turbulence energy is set to satisfy the turbulent viscosity 
according to the Launder and Spalding’s turbulence model. 

t

k
C

µ
ρε µ

2

=  (14) 

For boundary cells and ghost cells, the turbulent properties are 
specified using the reference point properties. The constant 
total viscosity condition along the ray yields to 

lreftreflt µµµµ −+= ,,  (15) 

The turbulent kinetic energy and dissipation rate are specified 
using the equations (13) and (14), respectively. 
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Figure 4.  Computed Cf over turbulent flat plate.  
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Although applying a wall function is efficient, it may not 
be expected to identify the separation point as accurately as 
high grid resolution turbulence models (e.g. low Reynolds k-ε 
model and LES) can. Many researchers have shown that wall 
function approaches can be highly successful in the 
calculation of separated flow in high adverse-pressure-
gradient regions such as shock-wave near a boundary layer 

[17], high speed cascade [18], and a step flow [19]. However, 
it is not easy to capture an exact separation point and may 
yield delayed separation with wall function approach in mild 
adverse-pressure-gradient regions, which is true for the 
developed wall function boundary condition as most of the 
wall function approaches. Further research may be required to 
find out how the developed approach works in a separated 
flow region. 

 

0.0 0. 5 1. 0

0

0.004

0.008

0.012

0.016

0.02

y
/L

0.5 1

U/U e

0 .5 1

Experiment
NASCART

x/L=0.0974              x/L =0.5174              x/L= 0.9974

 
Fig. 5. Mean velocity profiles on turbulent flat plate. 
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Fig. 6. Pressure coefficients with various cell sizes over turbulent 
NACA 0012 airfoil. 

III.  VALIDATIONS 

The validation of the developed numerical approach is 
performed on the various 2-D viscous flows including 
turbulent flows over flat plate and NACA 0012 airfoil, and the 
axisymmetric turbulent flow over a hemispheroid. The results 
are compared with analytical solution or experimental data. 
All the results shown in this chapter are obtained using the 3rd 
order interpolation of the inviscid fluxes. 

A. Flat Plate 
A body-aligned Cartesian grid is generated to calculate 

turbulent flow over a two-dimensional flat plate. Inflow 
boundary is located ahead of the leading edge, and outflow 
boundary is on the trailing edge. On the inflow boundary, the 
characteristic boundary condition is enforced as usual. On the 
upper and outflow boundaries, however, the primitive 
variables are extrapolated instead of characteristic boundary 
condition to ensure the flow smoothly sweep out. The 
freestream Mach number is set to 0.2 to avoid incompressible 
limit of the solver. 

The Reynolds number based on flat plate length is 
7100927.1 × , at which the skin friction and velocity profiles 

have been measured by Wieghardt [20]. The computational 
domain and root cell dimension are identical to the laminar 
calculation. However, the grid is finer than the laminar case 
such that the maximum grid refinement levels are 8 for coarse 
grid and 9 for fine grid. This results in the largest y+  values of 
384.6 and 210.1, respectively, based on the reference point, 
which are larger than the cell size requirement of most RANS 
solvers. The surface roughness parameter was not measured, 
either. A value of 0.5=B  was used in the law of the wall 
assuming smooth wall. 

The computed skin friction is compared with the power 
law, exact law by White [13], and the experiments in Fig. 4. 
Aft of the mid-chord, the measured skin friction is between the 
power law and the exact law, which is well analyzed by 
NASCART. As shown in the picture, the skin friction changes 
rapidly near the leading edge. The inaccuracy of the computed 
skin friction near the leading edge might be caused by the 
insufficient local grid resolution. It is easily noted that the 
difference between the results of the computations and 
experiments near the leading edge is decreased as the y+ 
decreases. It is expected that the computed skin friction will 
further approach to the experimental data with higher grid 
resolution. In spite of the small error near the leading edge 
caused by insufficient grid resolution, the solution with the 
coarse grid shows good agreement with the results of fine grid 
computation and experiment at the trailing edge. 

Fig. 5 shows the comparison of computed with fine grid 
and measured mean velocity profile at various locations. It is 
observed that the calculated mean velocity profile and 
boundary layer thickness have good correlation with the 
measurements. Slight over-prediction of the boundary layer 
thickness from station 1 thru 4 is also induced by the 
insufficiently large cells, which smears out the high velocity 
gradient. 

 
 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 242



 
 

B. NACA 0021 Airfoil 
Turbulent modeling is tested over a NACA0012 airfoil at a 

Mach number of 0.3, a chord Reynolds number of 1.86 
million, and an incidence of 3.59 degrees. The computational 
boundaries are the same as the laminar calculation. The root 
grid dimension is 22×20 and 8, 9 and 10 levels of refinement 
are applied to get the maximum +y  based on the reference 

point of 81.1 up to 287.2. The characteristic boundary 
conditions are applied on the inflow and outflow boundaries. 
A smooth wall is assumed to specify 0.5=B  for the law of 
the wall. The computed mean surface pressure coefficients are 
compared with AGARD experimental data [21] in Fig. 6, and 
very good correlations are observed even with very coarse grid 
of y+=287.2. 

For the quantitative analysis of the grid efficiency, the 
effects of the cell sizes on the accuracy and computational cost 
from the solutions of NACA 0012 airfoil flows are presented 
in Table 1. Errors are calculated based on the airfoil data [22] 
and the savings on the solutions of the RANS with the fine 
grid. There is little difference between computed lift 
coefficients for fine and medium grids whose errors are less 
than 0.2 %. Meanwhile the savings of computer memory and 
computation time are observed by over 48 % and 62 %, 
respectively. As mentioned before, conventional wall function 
approach requires small cells near wall to yield y+<80 for 
proper turbulence modeling. This demonstrates the fact that 
the developed wall function approach has better grid 
efficiency and computational time than the conventional 
methods. Considering the coarse grid case, the accuracy is 
deteriorated just by 2.813 % while the computational time is 
improved by over 93 % with respect to the fine grid solution 
and over 81 % to the medium grid solution. It is, therefore, 
apparent that the implementation of coarse grid with the 
developed wall function method is practical and efficient 
approach in the overall prediction of the aerodynamic forces, 
yielding reasonable solution within the accuracy of the present 
turbulence model. 
 

 

 
Fig. 7. Final grid configuration over axisymmetric hemispheroid. 
 

C. Axisymmetric Hemispheroid  
The turbulent boundary layer on the hemispheroid was 
measured by Ramaprian et al. [23] to provide validation data 
for computational development. The model configuration 
combines a hemispherical nose with a hemispheroidal rear. 
The experiments are performed at the Reynolds number 
(based on the length of the body) of 6100.2 × . The nominal 
wind-tunnel velocity is 22.0 sec/m thereby 063.0≈∞M . The 

computational Mach number is increased to avoid the 
incompressible limit of the code, and the computations are 
performed for axisymmetric flow. The velocity profile and 
skin friction are measured at 8 traverse stations, which are 
shown in the reference. The computational boundaries are 5 
times body length ahead of and behind the hemispheroid, 
above and below the centerline. The root grid dimension is 

2428× , and 8, 9, and 11 levels of refinement are applied. The 
freestream Mach number is increased to 0.3 to prevent poor 
conditioning of the compressible flow solver. The constant 
related to the roughness parameter is set to 5.5=B  according  
 

 
Table 1. Effect of cell size on accuracy and computational cost for NACA 0012 airfoil calculations. 

 

Grid density Fine Medium Coarse 

Accuracy lc  0.3584 0.3583 0.3489 
+ Error (%) 0.1671 0.1950 2.813 

Computer 
memory 

No. of cells 72,520 37,672 20,176 
++Saving (%) N/A 48.1 72.2 

Computation 
time 

* CPU time (hr) 44.7 16.9 3.1 
++Saving (%) N/A 62.2 93.1 

+  Based on the airfoil data of 3590.0=lc  
++ Based on the RANS fine grid calculation 
∗  CPU time is obtained using Pentium IV 2.4 GHz PC 
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to the experiments.  Fig. 7 shows the final grid configuration, 
in which the red line represents the wall boundary. The cells 
are refined near the leading edge and wake region where the 
large gradients of divergence and vorticity exist. The 
computed mean pressure distributions are shown in Fig. 8, 
compared with the experimental data. The pressures are 
measured at circumferential angles of 0 and 120 degrees. The 
difference between the measured pressures is very small, and 
the computational results show very good agreement with 
them even with y+≈300. In Fig. 9, calculated mean skin 
friction is compared with the experiment, in which the skin 
friction is measured at the circumferential angles of 0 and 180 
degrees. Since the flow is axisymmetric, the difference 
between these two is considered as an experimental error. 
According to the reference paper, the estimated error of the 
instrument in the wall shear stress measurement is 5 %. It is, 
however, reported that a considerable uncertainty exists due to 
the deviation of the angle between the velocity vector and the 
probe axis. Therefore, the error of the measured skin friction is 
assumed to be 10 % that corresponds to the difference of skin 
friction coefficients at station 6. The results of NASCART are 
well correlated to the experiment within the estimated error 
with the exception of the first measurement station. At station 
1, the computed skin friction is overestimated, which also has 
been observed by Sondak and Pletcher 10. They computed the 
turbulent flow over the same hemispheroid using three 
turbulence models (Baldwin-Lomax  algebraic model, 
Launder and Spalding ε−k  model, and Chien’s low 
Reynolds number ε−k  model), and none of the models 
predicts the proper skin friction at station1. This discrepancy 
would be caused by the transition from laminar to turbulent 
flows in the experiment, which is not modeled in numerical 
analysis. This would explain the fact that the measured skin 
friction coefficient is lower than the computed values and that 
the computation over-predicts the tangential velocity at station 
1 in the subsequent plot. The computed velocity distributions 
with fine grid are presented in Fig. 10, and the results compare 
reasonably well with the test data. 
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Fig. 8. Pressure coefficients with various cell sizes over hemispheroid. 
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Fig. 9. Skin friction coefficients with various cell sizes over 
hemispheroid. 
 

IV.  CONCLUSIONS 

In present study, new viscous wall boundary conditions are 
implemented into the existing unstructured Cartesian grid 
framework. A number of conclusions are shown below. 

 
• The boundary cell centroids aligned with the flow cell 

centers make the numerical stencil orthogonal and 
reduce the error in the volume integration. The 
application of ghost cell approach also increases the 
accuracy by the use of conservative volume 
integration in the calculation of boundary cells just 
like in flow cell calculation instead of simple 
extrapolation of the flow properties. This yields an 
accurate prediction of skin friction and velocity 
profile in a boundary layer as well as the pressure. 

• The new boundary condition is developed and 
successfully tested for an immersed Cartesian grid 
viscous solver. The developed wall function approach 
yields stable and reasonable solution within the 
accuracy of the turbulence model. The new approach 
removes the complicated coordinate transformation 
required in the conventional wall function approach.  

• Unlike the conventional wall function approach, the 
developed method shows stable and reasonable 
solution with a relatively coarse grid system within 
the accuracy of the turbulence model. The use of a 
coarse grid with the developed wall function 
approach can reduce the computational memory and 
computation time. 
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Fig. 10. Comparison of mean velocity profiles in flow field around hemispheroid. 
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