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Abstract: We study two algorithms to decom-
pose a numerical semigroupas intersection of ir-
reducible numerical semigroups. We also present a
compared study of two algorithms to compute the in-
tersection of two numerical semigroups with embed-
ding dimension two and the same multiplicity.

1

Let N be the set of non negative integers.nAmer-
ical semigroup Sis a subset oN which contains the
zero, is closed under addition and generafeas a
group (hereZ denotes the set of the integers). From
this definition, we can deduce th&admits a unique
minimal system of generatofs; < --- < Sp}, mean-
ing thatS= {zip:lais | a,...,ap € N} and no proper
subset off sy, ..., Sy} generateS The integers; and
p are known as thenultiplicity andembedding di-
mensionof S. Moreover N\ Sis finite, and the largest
integer not belonging t&is known as thé-robenius
number of S, usually denoted by &).

Givens; € S\ {0}, theApéry set(called so after
[1]) of Swith respect tos; is defined by Ap§,s;) =
{s€S|s—s ¢S} and it can be proved that if we
choosew(i) to be the least element 8congruent with
i modulos;, then ApS s1) = {0,w(1),...,w(n—1)}.
The set Ap§ 1) determines completely the semi-
group S, sinceS= (Ap(Ss1) U{s1}). Moreover,
Ap(S,s1) contains in general more information that an
arbitrary set of generators & for instance, gf) =
max(Ap(S.s1)) - St.

We say that a numerical semigrouprigducible
if it can not be expressed as an intersection of two
numerical semigroups containing it properly. From
[2] and [3] we can deduce that the class of irre-
ducible numerical semigroups with odd (respectively

Introduction and basic concepts

even) Frobenius number is the same that the class of

symmetric (respectivelypseudo-symmetric) numer-
ical semigroups. This kind of numerical semigroups
have been widely studied in literature not only from
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the semigroupist point of view but also by their ap-
plications in Ring Theory. In [2] it is show that the
semigroup ring associated to an irreducible numerical
semigroup is Gorestein or Kunz if the Frobenius num-
ber is odd or even, respectively.

The contents of this work are organized as fol-
lows. In Section 2, we compare two different algo-
rithms to obtain a numerical semigroup as an intersec-
tion of irreducibles numerical semigroups. In Section
3, we present an algorithm to compute the intersec-
tion of two numerical semigroups with embedding di-
mension two and the same multiplicity, and we com-
pare the classical intersection algorithm with this one.
In both cases we study the complexity of these algo-
rithms.

2 Two algorithms for decomposition
of numerical semigroups as an in-
tersection of irreducibles

Let Sbe a numerical semigroup. We say that an el-
ementx € Z is apseudo-Frobenius numberof Sif
X ¢ Sbutx+se Sfor all s€ S\ 0. We denote by P&)
the set of pseudo-Frobenius numbersof

We define inS the following partial ordera <s
bif b—acS

In [3, Proposition 7] is proved the following
result showing the connection between the pseudo-
Frobenius number and the Agy set ofs; in S.

Lemmal If S is a numerical semigroup,; & S\
{0} and {w;,,...,w;, } = maximals.,Ap(S,s1), then
Pg@S) ={wi, —s1,...,W;, —S1}.

Given a numerical semigroupy denote by

H(S) =N\S

EH(S) = {xe H(S) : 2xe S x+se Sforall se S\{0}}.
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The set EHS) is a subset of R) and thus
#EH(S) < #PG(S) < m(S) — 1. From definition of
EH(S), it easy to prove the next result, which de-

scribes those elements that added to a numerical semi-

group yield a numerical semigroup.

Proposition 2 Let S be a numerical semigroup and
x¢ S. Then x EH(S) if only if SU{x} is a numerical
semigroup.

Every numerical semigroup containing properly
the numerical semigroup must contain an element
of EH(S). Let EH(S) = {x1,...,X}, from an numeri-
cal semigrougs adding only an element of EI$) we
get new numerical semigrouf®sJ {x¢},...,SU {X}.
Thus we can compute a finite family of numerical
semigroups that conta® denote it byl/(S).

In [5] it is presented tha$ is irreducible if and
only if Sis maximal in the set of numerical semi-
groups not containing(&). Then we get the following
result:

Corollary 3 A numerical semigroup S is irreducible
if and only if#EH(S) = 1.

The ideais the following one: frolwe compute
the set EHS) = {xq,x2, - ,X}, and thus we obtain
the numerical semigrouBU {x; }; for eachSU {x; }
we make the same. We stop when #Ehl= 1, and
thus we get all irreducible numerical semigroups that
containS,

Using the above results frolwe can compute
V(S) and thusS=; S, with § € V(S) and§ irre-
ducibles. If we remove the irreducibles that not mini-
mal, we have the following:

Proposition 4 Let S be a numerical semigroup. Then
S=5N...NS.

such that g,...,S, are the minimal irreducible
elements in/(S).

Our objective is to compare two different ways
to obtain a semigrouf as intersection of irreducible
semigroups. This algorithm is presented in [8] and it
needs to construct the set EbJ. We start by describ-
ing two different algorithms to compute the set €34
Suppose the8={0,s1,%,...,S,—} is a semigroup

represented as a set starting at 0 and has all elements

of Suntil 5 = g(S) + 1. From the definition we can
easily see that the set £ is finite.

Algorithm EH 1

INPUT: A semigroul5={0,s1,%,...,S,—}
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1. Compute the séd(S) =N\ S,
2. Compute the sd2(S) = {xc H(S) : 2x € S}

3. Compute the set EI9) by checking ifx+se€ S
forallxe D(S) andse S

OUTPUT: The set EKB).

Proposition 5 The Algorithm EH 1, computes the set
EH(S).

Proof.
It is obvious from de definition of EE$).

Algorithm EH 2

INPUT: A semigrou5={0,s1,%,...,S,—}

1. Compute APS,s1) = {Ap1,...,Aps, }, Apéry set
of S

2. Compute the seE(S) = maxAp(S)) with re-
spect to the partial ordet in Ap(S)).

3. ComputePGSS), the pseudo Frobenius num-
bers ofS

4. Compute EKS) = {x € PGSS): 2x € S}

OUTPUT: The seEH(S).

Proposition 6 The Algorithm EH 2, computes the set
EH(S).

Proof.
From de definition oPGS'S) and EHS).

The main algorithm is the following:
Algorithm Intersection 1/2
INPUT: A semigroup5={0,s1,%,...,S,—}

1. SetR= {} andE = {}.

2. Compute EKIS) = {ey,...,€p}, using algorithm
EH 1/2.

3. If p=1thenRF(S) = {S} and goto step 10.
4. SetR =Su{g}fori=1,...,pandR=RU{R}
5. Setj=1andt=p
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6. Compute EKRj) = {€j1,...,€jp;} and se€ =
EU{EH(R))}

7. SetRyry1 =RjU{ej i} fork=1,...,p; andR=
RU{Rsr1}

8. Ift##Rthenset =t+1, j=j+1 and goto
step 6.

9. SetRF(S) = {R,...R,} whereq is minimal
SUCh thaS: ﬂXERF(S)X'

10. ReturrRF(S).

OUTPUT: A list RF(S) of semigroups such that
S=xerr(g X-

Proposition 7 Let S be a semigroup. Algorithm In-
tersection 1/2 computes a minimal set of semigroups
which intersection is S.

Proof.
From the proposition 4.

2.1 The Complexity

The complexity of these algorithms will be expressed
as function of gS), si,...,sp the set of generators of
Sand the size of the tree of semigroups.

The semigrousis given by its generators so we
have complexityO(g(S)) to write Sin the forme de-
scribed above. To compute the @&y set ofSwe have

again complexityo(g(S)).
The complexity of Algorithm EH 1

First, we compute D(S) with complexity
O(g(S) — %). Now to compute EKS) we must
test if x—se Sfor all se Sandx € D(S) so we
achieve this with complexitp(g(S)? — 39(S)). We

Remark 8 Note that if S=< s, > theng(S) =
s1— (s1+) orin the case where S< sy,...,5, >

is a MED— semigroup themy(S) = s, —s1 and thus

we can use this result above. We can see that in these
cases the complexity of Algorithm EH 1 is greater than
the complexity of Algorithm EH 2.

The complexity of Algorithm Intersection 1/2

We start by computingH(S) (usingAlgorithm
EH 1/2) with complexity O(EH) described above.
Then after constructing the semigrouRs= SU {e }
we computd&EH(R,) and repeat this process until there
are no new semigroups that appear. This is done with
complexity O(T)O(EH), whereT is the total num-
ber of semigroups to intersect. Finally we eliminate
those which are redundant. So the final complex-
ity of these algorithms ar®(T (g(S)? — $9(9))) and
O(T(g(S) +2)) respectively.

The value ofT is not predictable. Meaning that
we do not know any upper bound for it because it
arises from a tree structure (see [8]). We will indi-
cate in the experimental results the maximum value of
T for each set of tested semigroups.

2.2 Experimental results

In order to test the efficiency of both algorithms we
defined 200 random semigroups with 3 up to 10 gen-
erators bounded by 100, 200 and 300. We computed
the maximum running time (MRT) of each algorithm
and the overall average running time (ART). The re-
sults (given in seconds) are summarized in the follow-
ing tables:

e For generators with values up to 100:

cooncgjdes}hat tge2 cosrlnplgxny gf Alggrlthsrln ESH 1S . ; < . - . . -

— = — = s — = MRT for Alg 1 16.3580 14.5800 13.5790 5.2340 5.9220 3.1560 5.5320 5.1710

(g( ) 2 + g( ) 2 g( )) (g( ) 2 g( )) MRT for Alg 2 16.3140 14.3740 13.2650 5.1410 5.7670 3.0470 5.4200 5.0790
ART for Alg 1 1.2381 0.9071 0.7167 0.3954 0.5231 0.2343 0.2497 0.2343
ART for Alg 2 1.2228 0.8918 0.7126 0.3877 0.5135 0.2275 0.2457 0.2315
Max T 11 23 22 20 24 22 24 25
Average T 4.290 5.750 6.945 6.305 7.725 5.970 6.040 5.895

The complexity of Algorithm EH 2

e For generators with values up to 200:

Generators 3 4 5 6 7 8 9

First, we computeAp(Ss;) with complexity

MRT for Alg 1

183.286 | 116.424

Max T

11 24

_ WRTfor Alg 2 | 184.296 | 116.130 | 107.283 | 72.641 | 57216 | 162.093 | 35.704 | 50.061

O(g(S) + Sl)'_ We have_ that Ap(S, $1) =s and s ARTTorAlg 1 | 15508 | 13261 | ooz | 7004 | 4923 | 6405 | 2772 | 24w

the complexity of ordering this set, to compW€S), [ ARTiorAlg2 | 15804 | 13116 | 9843 | 6921 | 4865 | 6316 | 2736 | 2421
B 25

is O(s1(sy — 1)) = O(s?). The setPGSS) is com

Average T

4.930 9.710

puted with O(#Ap(S,s1)) = O(s1) complexity. Fi-
nally the setEH(S) is computed with complexity
O(s1). Hence the total complexity of this algorithm
is O(g(S) +s1+5f+51) = 0(9(S) +57)
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e For generators with values up to 300:

Example: Suppose tha® = (5,7) andS, = (5,9) we com-
pute the Af§S;,5) and AQS,, 5) and

Generators 3 z 5 5 7 ] 9 10 (i) 1] 2|3 | 4
MRT for Alg 1 | 1139.221 | 561.259 | 456.063 | 346.933 | 798.463 | 321.449 | 100.201 | 275.079

MRT for Alg2 | 1153.356 | 563.537 | 459562 | 346.766 | 653.346 | 351.020 | 99.637 | 274.061 Ap(§,5) | 21| 7 | 28| 14
ART for Alg 1 65575 | 43.807 | 35525 | 27.618 | 31.366 | 17.984 | 10404 | 12.120 Ap($,5) | 36 | 27 | 18 | 9
ARTTorAlg2 | 63.842 | 43675 | 35420 | 27.601 | 30.389 | 17.795 | 10.270 | 12.005

Max T 1 36 0 a2 55 51 ) 55

Average T 5.540 10.790 | 14.750 | 14.970 | 17.370 | 16.620 | 15430 | 14.850 Therefore, we have that

2.3 Conclusion

The experimental data show us two different things.
The first one is that Algorithm 2 is in practice

faster then Algorithm 1,(comparing the correspond-
ing ART). The second is that, surprisingly, it is only

slightly faster, indeed the difference between the cor-
responding ART is quite small (approximately around
0.5%). The worst case scenario complexity, of the two
algorithms, are not comparable in general. This hap-

SN = (Ap(S1NS,s1) U{5}) = (5,14,28,27,36) =
{0,5,10,14, 15,19, 20,24, 25, 27,28, 29, 30,32, 33,34, 35,36, — }.

Now, we compare the classical intersection algorithm of nu-
merical semigroups with embedding dimension two and the same
multiplicity and new algorithm presented above:

The classical intersection algorithm (CIA):

INPUT: A pair of semigroup$, = (np,n1) andS = (ng, ny)
1. Compute the s, = {0,s1,%,...,Sp, —}-
2. Compute the s&, = {0,ry,rp,...,rq,—}.

pens because there are no known relations betweende 5 poing — s,

frobenius number and the multiplicity of a semigroup.
But for the particular semigroups, presented in section
2.1 remark 8, this relation is known and hence we are
able to compare them.

3 The intersection of two numeri-
cal semigroups with embedding di-

mension two and the same multi-
plicity
In this section we study a special case of the intersection of irre-
ducible numerical semigroups. Note thaBihas embedding di-

mension two, the®is irreducible (i.e Sis symmetric or pseudo-
symmetric)) [5]), hence we have the following o result:

Lemma9 Let S= (s,5) be a numerical semigroup. Then
Ap(Ss1) = {0,%2,2%,...,(s1 - 1)s2}.

With the next result, we can obtain a algorithm for comput-
ing the intersection of two numerical semigroups with embedding
dimension two and the same multiplicity.

Proposition 10 Let § = (s1,%) and $ = (s1,s3) then §N
S =(s1,a1,...a5_1), With g = max{wy (i),w(i)} and wi (i) €
Ap(S1,81), Wa(i) € Ap(S,51).

Proof.
It is sufficiency to prove that
Ap(S1NS,s1) = {0, max{w1(1),wo(1)},---max{wy(sy —

1)7W2(SC|._1)}>
becauséAp(S1NS, 1) U{si}) = S1NS.
We assume thaw, (i) = wi,(i) =1 mod g with w;, €

S and wi, € S, then max {wi(i),w(i)} € S NS and
max {wiy(i),wa(i)} —s1 ¢ SSNS. Because ifw, € S is the
maximum, asv; = s;k+i € § with k € N, thenw, € §;. On
other hand ifwp, — s ¢ S thenwp — 51 ¢ S N'S,. Therefore
max{wa(i),wa(i)} € Ap(S1NS, s1).

We illustrate this procedure with an example:
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OUTPUT: A listS of the elements of the intersection semi-
group.

The improved intersection algorithm (l1A):

INPUT: A pair of semigroup$, = (np,n1) andS = (ng, ny)
1. Compute the s&&p(S;,np) = {0,n1,2ny,...,(Nno—1)n1}.
2. Compute the sé&p(S,np) = {0,n2,2ny, ..., (Ng— 1)na}.
3. Reorder the set&\p(S;,ng) and Ap(S,ng) modulo ny

{0,r1,ro, ... ,Fpg—1}-
4. ComputeR={maxs,ri),i=1,...,no—1}U{ng}.
5. SetS = (R)
6. ReturnS ={0,s},s),...,8,—}.

OUTPUT: A listS of the elements of the intersection semi-
group.

Remark: Proposition 10 assure us that in the end of this
algorithm we obtain the desired result.

3.1 The Complexity

Given a semigrous = (s1,S), the complexity of generating the
set of elements irS which are smaller thagy(S) is O(g(9)).
The complexities of these algorithms are linear functions of
max{g($1),9(S)}. In the case of the algorithm CIA we have
complexity O(2maxXg(S1),9(S)}). The case of the algorithm
IIA we need a little more work to compute this. So the complex-
ity of computing the set&\p(S,s1) is O(sy). To reorder each of
these sets we have complexi®(s;). Finally we have to write
the elements in the intersection semigroup. So we have that the
complexity of the algorithm II1A iS0(4s; + max{g(S1),9(S)})-
Remark 8 give us an explicit formula fofS), i = 1,2.
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3.2 Experimental results

To compare, from the practical point of view, the two algorithms
we preformed in the following way: We generated 100 random
pairs (S, S) of semigroups of the forng, = (s1,s) andS =
(s1,s3). We start by choosing a randansmaller than 260 and
100 and than we choose randonspyand s bigger thans; and
smaller than 15@00 and 300. The results obtained are contained
in the following table:

Range of Generators MRT for CIA | MRT for IIA | ART for CIA | ART for lIA
(20,150 2.297 1.187 0.36911 0.19963
(20,200 1.937 1.047 0.48024 0.25993
(20,300 6.594 3.515 1.07048 0.57141
(50,150 11.515 6.344 2.44154 1.36268
(50,200 25.375 12.437 3.78908 2.06749
(50,300 48.422 25.953 7.22870 3.91006
(100,150 49.640 27.783 13.65713 7.60992
(100,200 95.720 54.705 22.65495 12.56754
(100,300 246.391 134.329 33.29890 18.17655

We can check that as the theoretical worst case
complexity it is actually an average behaviour. The al-
gorithm CIA takes an average ofgB more time than
IHA.
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