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Comparison of Interior Point Filter Line Search
Strategies for Constrained Optimization

by Performance Profiles
M. Fernanda P. Costa and Edite M. G. P. Fernandes

Abstract—This paper presents a performance evaluation of
three sets of modifications that can be incorporated into the
primal-dual interior point filter line search method for nonlinear
programming herein illustrated. In this framework, each entry in
the filter relies on three components, the feasibility, the centrality
and the optimality, that are present in the first-order optimality
conditions. The modifications are concerned with an acceptance
condition, a barrier parameter update formula and a set of
initial approximations to the dual variables. Performance profiles
are plotted to compare the obtained numerical results using the
number of iterations and the number of the optimality measure
evaluations.

Index Terms—Nonlinear optimization, Interior point method,
Filter line search method, Performance profiles.

I. INTRODUCTION

THE filter technique of Fletcher and Leyffer [5] has been
used to globalize primal-dual interior point methods for

solving a nonlinear constrained optimization problem. This
technique incorporates the concept of nondominance to build
a filter that is able to reject poor trial iterates and enforce
global convergence from arbitrary starting points [6]. The
filter replaces the use of merit functions, avoiding therefore
the update of penalty parameters that are associated with the
penalization of the constraints in merit functions.

Ulbrich, Ulbrich and Vicente in [11] define two components
for each entry in the filter and use a trust-region strategy.
The two components combine the three criteria of the
first-order optimality conditions: the first component is a
measure of quasi-centrality and the second is an optimality
measure combining complementarity and criticality. Global
convergence to first-order critical points is also proved. The
filter methods in [1], [13]-[15] rely on a line search strategy
and define two components for each entry in the filter: the
barrier objective function and the constraints violation. The
global convergence is analyzed in [13].

The algorithm herein illustrated is a primal-dual interior
point method with a line search approach but considers three
components for each entry in the filter. Primal-dual interior
point methods seem adequate to the filter implementation
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as the feasibility, centrality and optimality measures in the
first-order optimality conditions are natural candidates to the
components of the filter. The algorithm also incorporates a
restoration phase that aims to improve either feasibility or
centrality.

In this paper, a performance evaluation is carried out using
a benchmarking tool, known as Dolan and Moré performance
profiles [4], to assess the performance of three sets of
modifications that we propose to incorporate into the original
algorithm. The modifications rely:

i) on a condition that is used to decide if a trial point is
acceptable;

ii) on the strategy to update the barrier parameter µ, at each
iteration;

iii) on the initial approximations for the dual variables.
The paper is organized as follows. Section II briefly

describes the interior point method and Section III is
devoted to explain the filter line search method. Section IV
includes three sets of modifications that are proposed to
accelerate convergence and improve robustness. Section V
describes the numerical experiments that were carried out in
order to compare the original algorithm with the proposed
modifications using performance profiles, and the conclusions
make Section VI.

II. THE INTERIOR POINT PARADIGM

For easy of presentation, we consider the formulation of a
constrained nonlinear optimization problem as follows:

minx∈Rn F (x)
s.t. h(x) ≥ 0 (1)

where hi : Rn → R for i = 1, . . . , m and F : Rn → R are
nonlinear and twice continuously differentiable functions.

The primal-dual interior point method for solving (1) uses
nonnegative slack variables w, to transform (1) into

minx∈Rn,w∈Rm ϕµ(x,w) ≡ F (x)− µ
m∑

i=1

log(wi)

s.t. h(x)− w = 0,
(2)

where ϕµ(x,w) is the barrier function and µ is a positive
barrier parameter. The first-order KKT conditions for a
minimum of (2) define a nonlinear system of n+2m equations
in n + 2m unknowns



∇F (x)−AT y = 0
−µW−1e + y = 0
h(x)− w = 0

(3)
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where ∇F is the gradient vector of F , A is the Jacobian
matrix of the constraints h, y is the vector of dual variables,
W = diag(wi) is a diagonal matrix, and e is a m vector
of all ones. Applying the Newton’s method to solve (3), the
following reduced KKT system

[ −H(x, y) AT

A µ−1W 2

] [
∆x
∆y

]
=

[
σ
π

]
(4)

and
∆w = µ−1W 2 (γw −∆y) , (5)

are obtained to compute the search directions ∆x, ∆w, ∆y,
where

H(x, y) = ∇2F (x)−
m∑

i=1

yi∇2hi(x)

is the Hessian matrix of the Lagrangian function and

σ = ∇F (x)−AT y,
π = ρ + µ−1W 2γw,
γw = µW−1e− y,
ρ = w − h(x).

Given initial approximations to the variables x0, w0 > 0,
y0 > 0, this iterative process chooses, at each iteration k,
a step length αk, and defines a new estimate to the optimal
solution using

xk+1 = xk + αk∆xk

wk+1 = wk + αk∆wk

yk+1 = yk + αk∆yk.

The step length αk is chosen to ensure the nonnegativity of
the slack and dual variables. The procedure that decides which
step length is accepted is a filter line search method.

After a new point has been computed, the barrier parameter
µ is updated as a fraction of the average complementarity, i.e.,

µk+1 = δµ

wT
k+1yk+1

m
(6)

where δµ ∈ [0, 1).
Our algorithm is a quasi-Newton based method in the

sense that a symmetric positive definite quasi-Newton BFGS
approximation, Bk, is used to approximate the Hessian of the
Lagrangian H , at each iteration k [9].

III. FILTER LINE SEARCH METHOD

In this section, we present the line search filter framework.
To simplify the notation, we introduce the vectors:

u = (x,w, y), ∆ = (∆x, ∆w, ∆y),
u1 = (x,w), ∆1 = (∆x, ∆w),
u2 = (w, y), ∆2 = (∆w, ∆y),
u3 = (x, y), ∆3 = (∆x, ∆y).

The methodology of a filter as outline in [5] and [6]
is adapted to this interior point method. In our case, three
components for each entry in the filter are defined. The
first component measures feasibility, the second measures
centrality and the third optimality. Based on the optimality
conditions (3) the following measures are used:

θf (u1) = ‖ρ‖2 , θc(u2) = ‖γw‖2 , θop(u3) =
1
2
‖σ‖22 .

After a search direction ∆k has been computed, a
backtracking line search procedure is implemented, where a
decreasing sequence of step sizes

αk,l ∈ (0, αmax
k ] , l = 0, 1, ...,

with liml αk,l = 0, is tried until a set of acceptance conditions
are satisfied. Here, we use l to denote the iteration counter
for the inner loop. The parameter αmax

k represents the longest
step size that can be taken along the direction before violating
the nonnegativity conditions u2

k ≥ 0. If we assume that
the starting point u0 satisfies u2

0 > 0, the maximal step size
αmax

k ∈ (0, 1] is defined by

αmax
k = max{α ∈ (0, 1] : u2

k + α∆2
k ≥ (1− ε)u2

k} (7)

for a fixed parameter ε ∈ (0, 1).

A. Acceptance conditions

In this algorithm, the trial point uk(αk,l) = uk + αk,l∆k is
acceptable by the filter, if it leads to sufficient progress in one
of the three measures compared to the current iterate,

θf (u1
k(αk,l)) ≤

(
1− γθf

)
θf (u1

k)
or θc(u2

k(αk,l)) ≤ (1− γθc) θc(u2
k)

or θop(u3
k(αk,l)) ≤ θop(u3

k)− γθoθf (u1
k)

(8)

where γθf
, γθc , γθo ∈ (0, 1) are fixed constants.

However, to prevent convergence to a feasible but
nonoptimal point, and whenever for the trial step size αk,l,
the following switching conditions

mk(αk,l) < 0 and
[−mk(αk,l)]

so [αk,l]
1−so > δ

[
θf (u1

k)
]sf and

[−mk(αk,l)]
so [αk,l]

1−so > δ
[
θc(u2

k)
]sc

(9)

hold, with fixed constants δ > 0, sf > 1, sc > 1, so ≥ 1,
where

mk(α) = α∇θop(u3
k)T ∆3

k,

then the trial point must satisfy the Armijo condition with
respect to the optimality measure

θop(u3
k(αk,l)) ≤ θop(u3

k) + ηomk(αk,l), (10)

instead of (8) to be acceptable. Here, ηo ∈ (0, 0.5) is a
constant.

According to previous publications on filter methods (for
example [13]), a trial step size αk,l is called a θop-step if (10)
holds. Similarly, if a θop-step is accepted as the final step size
αk in iteration k, then k is referred to as a θop-type iteration.

B. The filter

To prevent cycling between iterates that improve either the
feasibility, or the centrality, or the optimality, at each iteration
k, the algorithm maintains a filter that is a set F k that contains
values of θf , θc and θop, that are prohibited for a successful
trial point in iteration k [11], [13]-[15]. Thus, a trial point
uk(αk,l) is acceptable, if

(
θf (u1

k(αk,l)), θc(u2
k(αk,l)), θop(u3

k(αk,l))
)

/∈ F k.
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At the beginning of the iterative process the filter is
initialized to

F 0 ⊆
{
(θf , θc, θop) ∈ R3 :

θf ≥ θmax
f , θc ≥ θmax

c , θop ≥ θmax
op

}
,

(11)

for some positive constants θmax
f , θmax

c and θmax
op , and is

updated after every iteration in which the accepted trial step
size satisfies (8), using the formula

F k+1 = F k∪
{
(θf , θc, θop) ∈ R3 : θf >

(
1− γθf

)
θf (u1

k)
and θc > (1− γθc) θc(u2

k)
and θop > θop(u3

k)− γθoθfeas(u1
k)

}
.

(12)
However, when (9) and (10) hold for the accepted step size
the filter remains unchanged.

Whenever the backtracking line search finds a trial step size
αk,l that is smaller than a minimum desired step size αmin

k

(see [2] for details), the algorithm enters into a restoration
phase that aims to find a new iterate uk+1 that is acceptable
to the current filter by decreasing either the feasibility or the
centrality.

C. The algorithm

Our interior point filter line search algorithm for solving
constrained optimization problems is as follows:

Algorithm 1: (interior point filter line search algorithm)
1) Given: Starting point x0, u2

0 > 0, constants θmax
f ∈

(θf (u1
0),∞]; θmax

c ∈ (θc(u2
0),∞]; θmax

op ∈ (θop(u3
0),∞];

γθf
, γθc , γθo ∈ (0, 1); δ > 0; sf > 1; sc > 1; so ≥ 1;

ηo ∈ (0, 0.5]; εtol ¿ 1; ε ∈ (0, 1); δµ ∈ [0, 1).
2) Initialize. Initialize the filter (using (11)) and the

iteration counter k ← 0.
3) Check convergence. Stop if the relative measures of

primal and dual infeasibility are less or equal to εtol.
4) Compute search direction. Compute the search direction

∆k from the linear system (4), and (5).
5) Backtracking line search.

5.1) Initialize line search. Compute the longest step
length αmax

k using (7) to ensure positivity of slack
and dual variables. Set αk,l = αmax

k , l ← 0.
5.2) Compute new trial point. If the trial step size

becomes too small, i.e., αk,l < αmin
k , go to

restoration phase in step 9. Otherwise, compute the
trial point uk(αk,l) and µk+1.

5.3) Check acceptability to the filter. If(
θf (u1

k(αk,l)), θc(u2
k(αk,l)), θop(u3

k(αk,l))
)

∈ F k, reject the trial step size and go to step 5.6.
5.4) Check sufficient decrease with respect to current

iterate. If αk,l is an θop-step size ((9) holds) and
the Armijo condition (10) for the θop function holds,
accept the trial step and go to step 6.

5.5) Check sufficient decrease with respect to current
iterate. If (8) holds, accept the trial step and go
to step 6. Otherwise go to step 5.6.

5.6) Choose new trial step size. Set αk,l+1 = αk,l/2,
l ← l + 1, and go back to step 5.2.

6) Accept trial point. Set αk ← αk,l and uk+1 ← uk(αk).
7) Augment the filter if necessary. If k is not an θop-type

iteration, augment the filter using (12). Otherwise, leave
the filter unchanged.

8) Continue with next iteration. Increase the iteration
counter k ← k + 1 and go back to step 3.

9) Restoration phase. Use a restoration algorithm to
produce a point uk+1 that is acceptable to the filter, i.e.,(
θf (u1

k+1), θc(u2
k+1), θop(u3

k+1)
)

/∈ F k. Augment the
filter using (12) and continue with the regular iteration
in step 8.

D. Restoration phase

The task of the restoration phase is to compute a new iterate
acceptable to the filter by decreasing either the feasibility
or the centrality, whenever the regular backtracking line
search procedure cannot make sufficient progress and the step
size becomes too small. The new functions for measuring
feasibility and centrality are

θ2,f (u1) =
1
2
‖ρ‖22 and θ2,c(u2) =

1
2
‖γw‖22

respectively. The restoration algorithm works with the steps
∆1 and ∆2, computed from (4) and (5), that are descent
directions for θ2,f (u1) and θ2,c(u2), respectively.

A sufficient reduction in one of the measures θ2,f and θ2,c

is required for a trial step size to be acceptable. Additionally,
we also ensure that the value of the optimality measure at
the new trial point, θop(u3

k (αk,l)), does not deviate too much
from the current value, θop(u3

k). The reader is referred to [2]
for details.

IV. ALGORITHM MODIFICATIONS

In the sequence of our previous work [3], which carried
out a comparison of three types of acceptance conditions, we
propose now other modifications to the original algorithm, in
an attempt to accelerate convergence and improve robustness.
They are focused:

i) on the acceptance conditions that are used to decide if a
trial point is acceptable;

ii) on the dynamic update of the barrier parameter µ, at each
iteration;

iii) on the initial settings to the dual variables.
To assess the performance of the proposed modifications,

numerical experiments with a set of well-known problems are
carried out and a benchmarking tool, known as performance
profiles [4] is used. Section V summarizes the numerical
results.

A. Condition for a trial iterate to be acceptable

The acceptance condition (8) is a natural extension of the
condition in [5], in the sense that a sufficient reduction in just
one component of the filter is imposed for a trial iterate to be
acceptable.

Here, we try another acceptance condition. It is more
restrictive than the original (8) since sufficient progress may
be required in two components of the filter - the feasibility
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and the centrality components. Thus, the condition considers
the trial point uk(αk,l) to be acceptable if it leads to sufficient
progress either in both the feasibility and centrality measures
or in the optimality measure, i.e., if

(
θf (u1

k(αk,l)) ≤
(
1− γθf

)
θf (u1

k)
and θc(u2

k(αk,l)) ≤ (1− γθc) θc(u2
k)

)
or θop(u3

k(αk,l)) ≤ θop(u3
k)− γθoθf (u1

k)
(13)

holds.

B. Barrier parameter update

In order to guarantee a positive decreasing sequence of
µ values, an alternative formula to (6) may be used to
update the barrier parameter. The proposed formula couples
the theoretical requirement defined on the first-order KKT
conditions (3) with a simple heuristic. Thus, we update µ using

µk+1 = max{ε,min{κµµk, 10−jδµ

wT
k+1yk+1

m
}} (14)

where j is the first element of the set {0, 1, 2, 3} for which

10−jδµ

wT
k+1yk+1

m
< µk

holds. If this condition does not hold, then j is set to 3 in (14).
The constant κµ ∈ (0, 1). The tolerance ε is used to prevent
µ from becoming too small so avoiding numerical difficulties
at the end of the iterative process.

We further remark that each time the barrier parameter is
updated, the θc component of the filter should be recalculated.
In practice, only θmax

c is reevaluated.

C. Initial values for the slack and dual variables

This interior point method requires that the slack and
the dual variables are nonnegative at the beginning of the
process and are maintained as so throughout the entire iterative
process. Further, for a given initial point x0, we should
guarantee that the initial slack variables are sufficiently away
from the boundary, using

w0 = max{h(x0), εw}

for a fixed positive constant εw.
Our formulation of the constraints in (1), h(x) ≥ 0, includes

the pure inequality constraints, as well as the simple bound
constraints on the variables.

For the initial dual variables, the new proposed strategy
sets the dual variables, associated with the pure inequality
constraints, to one, and the dual variables associated with the
bound constraints to the absolute value of x0 (componentwise),
as long as this is far away from zero, i.e.,

y0 =
{

1, for pure inequality constraints
max{|x0|, εw}, for bound constraints.

(15)

V. NUMERICAL RESULTS

To analyze the performance of the proposed modifications
to the interior point filter line search method we use 111
constrained problems from the Hock and Schittkowski test set
[8]. The tests were done in double precision arithmetic with
a Pentium 4. The algorithm is coded in the C programming
language and includes an interface to AMPL to read the
problems that are coded in the AMPL modeling language [7].

The chosen values for the constants are: θmax
f =

104 max
{
1, θf (u1

0)
}

, θmax
c = 104 max

{
1, θc(u2

0)
}

, θmax
op =

104 max
{
1, θop(u3

0)
}

, γθf
= γθc = γθo = 10−5, δ = 1,

sf = 1.1, sc = 1.1, so = 2.3, ηo = 10−4, εtol = 10−4,
δµ = 0.1, ε = 0.95, εw = 0.1, κµ = 0.1 and ε = 10−9.

In our comparative studies we plot the performance profiles
as outline in [4]. A brief explanation of this performance
assessment follows.

A. Performance profiles

To evaluate and compare the performance of the herein
proposed modifications to the interior point filter line search
method, presented in Sections II and III, we use the
performance profiles as outline in [4]. These profiles represent
the cumulative distribution functions for the performance
ratios based on a chosen metric.

Let P be the set of problems and C the set of codes
(implementation of the algorithms) used in the comparative
study. Let tp,c be the performance metric (for example, the
number of iterations) required to solve problem p by code c.
Then, the comparison is based on the performance ratios

rp,c =
tp,c

min{tp,c, c ∈ C} , p ∈ P, c ∈ C

and the overall assessment of the performance of a particular
code c is given by

ρc(τ) =
1

nP
size{p ∈ P : log2(rp,c) ≤ τ}

where nP is the number of problems in the set P . Here, we use
a log2 scaled of the performance profiles. "size" is the number
of problems in the set such that the log2 of the performance
ratio rp,c is less than or equal to τ for code c. Thus, ρc(τ)
gives the probability (for code c ∈ C) that the log2 of the
performance ratio rp,c is within a factor τ ∈ R of the best
possible ratio. The function ρc is the cumulative distribution
function for the performance ratio.

The value of ρc for τ = 0 gives the probability that the
code c will win over the others in the set. However, for large
values of τ , the value of ρc measures the code robustness.

B. Comparison of acceptance conditions

To assess the performance of the new acceptance condition
(13), when compared with the original (8), within the
illustrated interior point filter line search method, we plot
the performance profiles for the number of iterations and
for the number of θop evaluations required to solve a set of
problems, according to the convergence criteria defined in the
Algorithm 1.
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Fig. 1. Performance profiles in a log2 scale: number of iterations
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Fig. 2. Performance profiles in a log2 scale: number of optimality measure
evaluations

Four experiments were carried out with each proposed
version. First, with the initial approximation x0 given in [8],
the algorithm recomputes a better approximation, say x̃0, as
well as y0, by solving the simplified reduced KKT:

[ −(B0 + I) A(x0)T

A(x0) I

] [
x̃0

y0

]
=

[ ∇F (0)
0

]
.

Then, in the first experience, the initial matrix B0 is a
positive definite modification of ∇2F (x0) and, in the second
experience, B0 is set to the identity matrix.

The remaining two experiments consider different initial
primal and dual variables. They use the given x0, and
y0 is obtained by formula (15). The third experience uses
B0 ≈ ∇2F (x0), with guaranteed positive definiteness, and
the fourth uses B0 = I .

We then combine the results of the four experiments and
select the best result for each problem.

We use two performance metrics: the number of iterations
and the number of θop evaluations. The corresponding
performance profile plots are illustrated in Fig. 1 and 2.

Fig. 1 shows the performance profiles for the number of
iterations required to solve the problems, by the two different
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0.5

0.55

0.6
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0.7
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0.8

0.85

0.9

0.95

1

τ

ρ(
τ)

Performance profiles for µ updates (number of iterations)

µ update (14)

µ update (6)

Fig. 3. Performance profiles for different µ updates: number of iterations

conditions (8) and (13). The figure gives a clear indication
that the condition (8) is the most efficient, in terms of number
of iterations, on almost 86% of the problems. From Fig. 2
we may conclude that (8) is the most efficient on almost
90% of the problems when the number of θop evaluations is
under comparison. Observing the right side of the plots in both
figures, we conclude that condition (8) solves most problems
to optimality (approximately 93%).

C. Comparison of barrier parameter updates

We aim to compare the two dynamic update strategies
for the barrier parameter, illustrated in (6) and (14). We
also combine the results of the four previously described
experiments and select the best result for each problem. For
the performance metric, we select the number of iterations
required by each code to solve each problem. The performance
profile plots are illustrated in Fig 3. Update (6) is the most
efficient, on almost 86% of the problems, and it wins also on
robustness.

One of the four experiments, that were carried out in order
to obtain the best possible result for each problem, solves more
problems in the set than the others. The configuration of this
experiment is defined by the following initial approximations:
x0 given by [8], y0 obtained by formula (15) and B0 = I .
Based only on the results of this experiment, we plot in Fig. 4
the performance profiles for the number of iterations taken by
both formulae (6) and (14). Although update (6) is slightly
better than update (14) for small values of τ (τ < 0.2), at the
end, the other formula turns out to be more robust.

D. Different initial values for the dual variables

Finally, in the sequence of the last experience where, for
a particular set of initial values for the primal, slack and
dual variables, the update formula for the barrier parameter
(14) wins over the other, we decided to further analyze
the dependency of the new update formula on the initial
approximations. The alternatives for the initial values for the
dual variables y are:

i) using (15);
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Fig. 4. Performance profiles for different µ updates with a particular set of
initial approximations: number of iterations
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Fig. 5. Performance profiles in a log2 scale: number of iterations

ii) setting y0 = 1, for all the components.
Fig. 5 shows the performance profile plots of both cases. Initial
dual variables defined by (15) give the most efficient run, on
almost 64% of the problems. They also win on robustness.

VI. CONCLUSIONS

A primal-dual interior point method based on a filter line
search approach is presented. This approach defines three
components for each entry in the filter: the feasibility, the
centrality and the optimality. We have presented a detailed
comparative study of three types of modifications that can be
introduced in the original algorithm.

The first modification is concerned with one of the
conditions that are used to consider a point to be acceptable
to the filter. The proposal is more restrictive than the original
acceptance condition. The performance profiles show that
neither efficiency nor robustness has improved with the
modification.

The second modification focuses on the dynamic update
of the barrier parameter. The new update formula, which
guarantees a decreasing sequence of µ values over the iterative

process, does not seem to improve the algorithm efficiency,
except for a particular set of initial values for the primal, slack
and dual variables.

The third set of comparative experiments aims to analyze the
dependency of the µ update formula on the initial settings for
the dual variables. The performance plots are not significantly
different, although it is possible to point out the best set of
initial values.

We remark that the performance profiles reflect only the
performance of the tested codes on the data being used, so
other test sets with larger and/or more difficult problems
should be carried out.
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