
 

 

  
  Abstract— Plasmodium vivax malaria differs from P. falciparum 
malaria in that a person suffering from P. vivax malaria can 
experience relapses of the disease.  Between the relapses, the malaria 
parasite will remain dormant in the liver of the patient, leading to the 
patient being classified as being in the dormant class.  A 
mathematical model for the transmission of P. vivax is developed in 
which the human population is divided into four classes, the 
susceptible, the infected, the dormant and the recovered.  Two stable 
equilibrium states, a disease free state E0 and an endemic state E1, are 
found to be possible.  It is found that the E0 state is stable when a 
newly defined basic reproduction number R0 is less than one.  If R0 is 
more than one then endemic state E1 is stable. The conditions for the 
second equilibrium state E1 to be a stable spiral node are established. 
It is found that solutions in phase space are trajectories spiraling into 
the endemic state. The different behaviors of our numerical results 
are shown for the different values of parameters.     
 
   Keywords— basic reproduction number, equilibrium states, local 
stability , Plasmodium Vivax Malaria. 

I. INTRODUCTION 
HE developmental biology [1] of the parasite Plasmodium 
vivax determines to a great extent the mathematical model 
needed to describe the transmission cycle of the human 

disease caused by this parasite.  The sporizoites (one of the 
stages of the malaria parasite) are introduced into the blood 
stream of the human by the bite of infected mosquitoes.  
These then move to the liver of the human.  Here some of 
them transform themselves into merozoites, which then invade 
the blood cells and cause the illness.  The remaining 
sporizoites are transformed into hypnozoites which then lay 
dormant in the liver.  The relapses occur when some of the 
hypnozoites transform themselves into schizents and then into 
merozoites.  These new merozoites then reinvade the blood 
and cause the illness again.  These relapses can occur up to 
three years after the initial infection.  Only a small number of 
P. vivax merozoites remain in the blood between the relapse 
episodes. The hypnozoite stage does not occur in the three 
other types of malaria, Plasmodium falciparum, Plasmodium 
malariae and Plasmodium ovale. 
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   The absence of the hypnozoite stage in the malaria caused 
by the P. falciparum parasite makes the transmission models 
used to describe P. falciparum malaria invalid for describing 
the transmission of the malaria caused the P. vivax parasite.  
The reasons for P.  falciparum malaria to be studied more than 
P. vivax malaria are (1) 90% of the malaria cases in Africa is 
due to P. falciparum malaria, (2) most of the deaths due to 
malaria (2-3 million a year) occur in Africa [2] and (3) P. 
falciparum malaria is a life threatening disease, while P .vivax 
malaria is not. It was commonly assumed that information 
about vivax could be extrapolated from the falciparum 
research.  This assumption was challenged at a recent 
conference convened by the Multilateral Initiative on Malaria 
[3].  The transmission of malaria is usually described by the 
Ross-MacDonald (RM) model [4].  However, this model is 
only suitable for the transmission of the P. falciparum malaria 
since it does not contain a role of possible relapses of the 
illness.  One of the present authors (IMT) has introduced a 
simple mathematical model [5] to describe the transmission of 
P. vivax malaria.  In the model, we included a dormant class 
in which there are no merozoites in the blood, only dormant 
hypnozoites in the liver.  A person can be  reinfected when the 
hypnozoites are activated. 
    We wish to look at the model again. In the present state of 
concern for medical safety, there is no place for human 
experimentation to see what would happen if new therapies 
were adopted.   Mathematical modeling allows one to simulate 
what would occur. We introduce in Section 2, the 
modification of the RM model which would make it 
applicable to the transmission of P. vivax malaria   In Section 
3, we analyze our model and simulate the consequences of 
changing the rate of relapse and other parameters in the 
model. We discuss in Section 4, the implication of the insights 
obtained from the simulations.  Part of the urgency for doing 
research on P. vivax malaria is due to the fact that P. vivax 
malaria is becoming an emerging public health problem.  It is 
estimated that about 50% of the malaria cases outside of 
Africa and 10% in Africa are due to P. vivax and that the 
percentages are rising.  

II. TRANSMISSIOM MODEL  
   The mathematical modeling of the epidemiology of malaria 
(P. falciparum) was started by Ross [6] in 1911and improved 
on by MacDonald [7].  In the Ross model, an individual in the 
human population is classified as being in a non-infected or 
infected state.  This gives rise to what is known as a SIS 
(susceptible-infected-susceptible) model.  It has been 
suggested [7] that the human population should instead be 
divided into three states; non-infected, infected but without 
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any acute clinical signs, infected with acute clinical sign, to 
better reflect the clinical status of the individual.  Others 
believe that the population should be divided into susceptible, 
infected but not infectious and infected and infectious.  

 
Fig.1. Flow chart of the model. 

In our model for the transmission of P. vivax, we divide the 
host (human) population into susceptible 

 ),S( h infected )I( h , dormant  )D( h and recovered 

 )R( h classes.  The last category, the recovered are 
susceptible to further infections and so they reenter into the 

hS class. In Figure 1, we show the flow chart describing what 
is occurring in the human population.  As we see, λNT humans 
are entering into the susceptible class through birth and 

h1Ια)r-(1  , h3Dr  and (t)hRr6  through the recovery of 
members of the infected and dormant categories (with λ being 
the birth rate; NT, the total human population; r1, the recovery 
rate of a person in the infected category; r3, the recovery rate 
of a member of the dormant population and α being the 
percentage of infected people in whom some hypnozoites 
remain dormant in the liver).   (1-α) is the percentage of 
infected humans who recover and become susceptible again.  
The time rate of change of the number of susceptible members 
is equal to the number entering minus the number leaving.  
This gives us the following differential equation for the time 
rate of change of the susceptible population; 

 
h hh T 3 1

'
v hh hh h 4

d S (t) λN r D (t) (1 α)r I (t)
dt
               γ I (t)S (t) μ S (t) r R (t)

= + + −

− − +

           

                                     (1a) 
   Applying similar considerations to the other population 
classes, we obtain               

'
h v hhh 1 h

h h2 5

d I (t) γ I (t)S (t) (r μ )I (t)
dt
                r D (t) r I (t),

= − +

+ −
                                                    

(1b)          

(t)D)μr(r(t)Iαr(t)D
dt
d

hh32h1h ++−=                                                              

(1c)                                                         

and                               

h h h5 4 h
d R (t) r I (t) (r μ )R (t)
dt

= − +                      (1d) 

where the parameters in the above equations are defined as 
λ    is the birth rate of human population,  
μh  is the death rate of  human population,  
NT  is the total number of human population,  
α   is the percentage of infected human in whom  
 some hypnozoites remain dormant in the liver,  
r1    is the rate at which a person leaves the infected 

class by recovering or by entering into the dormant 
class, 

r2   is the rate at which the dormant human relapses 
back to the infected human, 

r3   is the recovery rate of the dormant human, 
r4  is the rate at which the recovered human relapses 

back to the susceptible human, and 
r5   is the rate at which the infected human recovers, 

since P. vivax infection is non lethal, the death 
rates will be the same for all human classes and we 
will have hRhDhIhSTN +++=   

  Equation (1a) also contains the term (t)S(t)Iγ hv
'
h .This 

term represents the lost of the susceptible person due to a bite 
of a infected mosquitoes.  γ’h is the rate at which the P. vivax 
parasite is transmitted from the mosquito to the human and is 
given by [8]                                                     

           
mTN

hβbhγ' +
=                            (2) 

where b is the specie-dependent biting rate of the mosquitoes; 
m is the population of other animals that the mosquitoes can 
feed on and βh is the probability the parasite passed on by the 
mosquito will continue to thrive in the human.  βh depends 
partly on the immune response of the host to the infection.  

vI  is the number of infected mosquitoes.  The dynamics of 
the mosquitoes populations are given by   

v '
hv vv v

v '
h vvv v

dS A γ S (t)I (t) μ S (t)   (3a)
dt

and

dI γ S (t)I (t) μ I (t).         (3b)
dt

= − −

= −

 
At equilibrium, the total number of female mosquitoes will be 
A/μv. A is the rate at which the mosquitoes are recruited and 
μv is the death rate for the mosquitoes.  It should be noted that 
a mosquito can not be infected through a bite of a human 
belonging to the dormant class.  γ’v is the rate at which the 
mosquitoes become infected with the Plasmodium Vivax 
parasite once the mosquito has bitten an infected human. We 
also assume vIvSVN += . The working equations of the 
model are obtained by dividing  (1a), (1b), (1c) and (1d) by 
NT and  (3a) and (3b) by A/μv.  This would give us six 
equations expressed in terms of the renormalized variables; 
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Thh /NSS = , Thh /NII = , Thh /NR R= ,

)/(A/SS vvv μ= and )/(A/II vvv μ= .   
The conditions Sh + Ih+ Dh + Rh = 1 and Sv + Iv = 1, leads to 
only four of these equations being needed.  We pick the four 
equations to be 

h h 3 h 1 h

h v h h h

4 h h h

d S (t) μ r D (t) (1 α)r I (t)
dt
                γ I S (t) μ S (t)
                r (1 S (t) I (t) D (t))

= + + −

− −

+ − − −

                                                               

                                                                                          (4a)                                                       
 (4a) 

h h v h 1 h h 2 h

5 h 5 h h h

d I (t) γ I S (t) (r μ )I (t) r D (t)
dt
               r I (t) r (1 S (t) I (t) D (t))

= − + +

− + − − −
                                                                           

                                                                                         (4b)                   

  (t)))Dμr(r(t)Iαr(t)D
dt
d

hh32h1h ++−=      

                                                                                         (4c) 
and                                         

(t)Iμ(t)(t))II(1γ(t)I
dt
d

vvhvvv −−=     

                                                                                         (4d) 

where the new transmission rates are γh = γ’h(A/μv) and γv = 
γ’vNT.   The domain of solutions is 
Ω {(S ,I ,D ,S ,I )|h h h v v
          0 S I D 1, 0 S I 1}h h h v v

=

≤ + + ≤ ≤ + ≤
. 

III. ANALYSIS OF THE MATHEMATICAL MODEL 

A. Analytical Results 
   To find the equilibrium points, we set the RHX’s of  (4a)  
to (4d) to zero. Doing this, we get   

i) the disease free equilibrium state EO = (1, 0, 0, 0) 
ii) the endemic equilibrium state   

E1 = )I,D,I,(S *
v

*
h

*
h

*
h   

where  

                
Pμμγ

BNS
4623 hhv

*
h = ,    

                 
Pγ

RX
I

v

0*
h

−
= ,                  

               
Pμμγ
R))(Xr(α

D
46h23hv

0146h*
h

−
=

μ
, 

                 * 0
v

h

X RI             
Bγ

−
=                                       (5)               

with  

             h46N μ (μ (μ r ) r (r (1 α) r ))h h 13 1 2 3
       (μ (μ r ) r r r r )r ,h h 26 2 4 3 6 5

= + + − +

+ + + +
 

                
B μ (μ (μ γ ) αμ rh h v v v 146
     (μ r )(r r )) μ (μ r )r ,v v 2 3 v h 4 523

= + +

+ + + + +
   

P μ (γ (μ αr ) μ (μ r )h h h 1 h h 1346 23
       r (r (1 α) r )) (μ (μ r )1 2 3 h h 26
       γ μ r r r r )r ,h h23 2 4 3 4 5

= + + +

+ − + + +

+ + +

   

),2r1rvαμ
23hμvγh(γ

46hμ0X +=  

 
R μ (μ (μ (μ r ) r (r r ))v h h h 13 1 2 346
      (μ (μ r ) r r r r )r )h h 26 2 4 3 4 5

= + + +

+ + + +
, 

where                       32h23h rrμμ ++= ,  

4h46h rμμ += ,  

32113 rrrr ++=                                                    

43226 rrrr ++= .                                       (6) 

We observe that endemic equilibrium point exists when 

RX0 >  or 1
R

X0 > . 

        The local stability of each equilibrium point is 
determined by the sign of all eigenvalues.  If all eigenvalues 
have negative real parts, then that equilibrium point is locally 
stable. Eigenvalues for each equilibrium point are obtained by 
setting         
                       0λI)det(J =−                                         (7)   
where J is the gradient matrix evaluated at the equilibrium 
point. 
         The correspondent eigenvalues for each equilibrium 
point are found by solving the characteristic equation; which 
is in the form                                

001
2

2
3

3
4 =++++ ssss λλλλ                            (8) 

By using Routh-Hurwitz criteria [9], each equilibrium point is 
locally stable if the following conditions are satisfied; 
              i) 03 >s ,                                        (9) 

             ii) 01 >s ,                                         (10) 

             iii) 0s0 > ,                                       (11) 

            iv) 0
2
3

2
1123 ssssss +>                         (12) 

    We check the above conditions by using MATHEMATICA 
(Wolfram Research, Champaign, IL), then we found that 

0E is locally stable for 1R 0 <  and 1E is locally stable for 

1R 0 > ; where 
R

X
R 0

0 = . 
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B. Numerical Results 
    In this section, we compare the susceptible of our model for 
the different parameters. 
Case I, 4r  is changed and the other parameters are fixed. 

 
    2(a) 

 

 
 2(b) 

Fig.2(a). Behavior of our model for  1
4 )5*365/(1 −=r day, 

R0  = 38.6.     
         (b).  Behavior   of    our    model       for  

1
4 )20*365/(1 −=r day, R0 = 38.7. 

          The other similar parameters for fig.2(a) and fig.2(b) are 
14/11 =r -1 day, )5*365/(12 =r -1 day, 

)70*365/(1=hμ -1 day, 30/13 =r -1 day, 75.0=α , 

04.0=vμ  5.2=hγ , 25.0=vγ , 3/15 =r -1 day, 

)70*365/(1=hμ . 
 
Case II, 2r  and 4r  are changed and the other parameters are 
fixed. 
 

 
3(a) 

 
                                                      3(b) 

Fig.3(a)Behavior of our model for  1
2 )5*365/(1 −=r day, 

1
4 )5*365/(1 −=r day and R0 = 38.6. 

        (b)Behavior    of    our    model    for  
1

2 )20*365/(1 −=r day, 1
4 )10*365/(1 −=r day and R0 

= 38.5. 
          The other similar parameters for fig.3(a) and fig.3(b) are 

14/11 =r -1 day, )70*365/(1=hμ  -1day, 30/13 =r  -

1day, 75.0=α , 04.0=vμ  5.2=hγ , 25.0=vγ ,  

3/15 =r  -1day.    
 
Case III, When we input the effect of time delay into our 
model. In this case, the members of the dormant class do not 
relapse until a passage of time (τ ). 

 
4a) 

 

 
4b) 

Fig.4(a)Behavior of our model for  1
4 )15*365/(1 −=r day 

and 30*365=τ day. 
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        (b)Behavior of our model for  1
4 )50*365/(1 −=r day 

and 50*365=τ day. 
    The other similar parameters for fig.4(a) and fig.4(b) are 

14/11 =r -1 day, )70*365/(1=hμ -1day, 

)5*365/(12 =r -1day, 30/13 =r  -1day, 75.0=α , 

04.0=vμ  5.2=hγ , 25.0=vγ , 3/15 =r  -1day.    
.  

IV.  CONCLUSION 
    In this study, we have compared the results of the 
simulation when different values of several parameters are 
used.   Figures 2 to 4 show the trajectories of the behaviors in 
(human) infected-dormant vector space.  They all indicate a 
spiraling of the trajectories into the endemic state.  Each pair 
of figures 2a) & 2b), 3a) & 3b) and 4a) & 4b) shows the 
behavior when the parameter is changed.  When the time at 
which the recovered human relapses back to the susceptible 
human is longer, the spiraling in is more severe as shown in 
figure 2. When the time at which the dormant human relapses 
back to the infected human is longer than the time at which 
the recovered human relapses back to the susceptible human, 
the spiral pattern is more severe.  
   We have also looked at the effects of there being a time 
delay before a person in the dormant class relapses into the 
infected class, i.e., the symptoms returns.  We have simulated 
the course of the disease (malaria) delay time is changed.  In 
Figure 4, we show the results of our numerical simulation.  As 
we see, when the time delay is longer, the spiral pattern is 
more severe. 
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