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Some Topological Properties of
Semi-Dynamical Systems

M. H. Anvari and M. Atapour

Abstract—Recently there has been an extensive study onthere is a one to one correspondence betweer~, the set
Relative Semi-Dynamical Systems (RSD-Systems). In this paper,of all functions f : X — [0,1], and the observers where
we explore some topological properties of RSD-systems. Here, iN v denotes the base space of the system. We indicate any

particular, minimal RSD-systems are characterized and transitive truct d . N in t f i lati
homeomorphisms are investigated. Moreover,a-level relative structure or dynamics oX’ in terms of-qualify or y-relative

topological entropy is extended to RSD-systems. Finally, as a Which means from the viewpoint gf. For exampley-relative
computational example, we develop an RSD-system over thetopology is the description of the topological notion &h
polynomial function spaceR[z] based on the derivative operator; py eyes of the observar. Applying this idea for describing
we also calculate a-level relative topological entropy for this any other geometrical structures éhsuch as manifolds [9],
system. vector fields [7] and metrics [9], [8] has led to theRelativism
Ind_ex Terms—'ReIative semi-dynamical system, Transitivity, Perspective orX.
Relative topological entropy An extension of the fuzzy dynamical system [2], [4], [12],
which is called relative semi-dynamical system, has been
|. INTRODUCTION introduced in [6] to explain the dynamics on the system related
0 the observer's perspective. In this paper first, in section

NY scientific approach towards studying dynamics o me n rv definitions and terminol e reviewed
natural systems relies on modeling (analytical, numey- some necessary de ons and te ology are reviewe

ical, or observational). A successful mathematical modeli rom [3], 6], [10]’ [11]. Then minimal relz_;ltive §emi-dynamical
requires an awareness of the following alternative approach §tems are mtro_c_ju_ced and chara}cterlz_ed in section Ill. The
Synthesis: finding similarities between models that appe gheept 9f transitivity from the viewpoint of the observer
different Analysis: iS also discussed in section IV. In section V, some results

identifying differences between models which appear similr?gard:].g tcipololglgaln egtropry, ars anntlnc\i/a}rr:anrt dorbjtect Iundier
A model is accepted or validated by evaluating its accurac 'e conjugate retatio [6], are p esente order to classify
tive semi-dynamical systems. Finally we discuss some

i.e., how well the formal system describes the natural syste { outational examoles in section VI
This can be done by matching experimental observatioR@"'P P :
and/or measurements with the theory. The process of math-
! i . ) [I. DEFINITIONS AND TERMINOLOGY
ematical modeling has the following steps: ) . o )
1 Beginning with observations, we start with a question In this section some necessary definitions and terminology

. AR . - h as fuzzy set, fuzzy topology and relative semi-dynamical
or hypothesis, which is investigated within a conce 0T [ y Y y topology y
framyer\)/vork (the model). 9 P system are reviewed from [3], [6], [10], [11].

: . : Given any nonempty sek, any functiony € [0,1]% is
2 We test and validate the model with experimental data. . . ’ .
vl WIth exper said to be duzzy subsatf X. Given the fuzzy subset, 7, is

However all data are not crisp, also getting the facls,q (5 pe g,-relative topologyon X if 7, is a collection of

through observational process depends on the idea 0f \\hers of0, 11X satisfying the following conditions [11]:

observer. So we should add the evaluation of the "thought of . o .
observer” to the above two main points and extend the fuzz ) 1 X € T, Wherex IS the characteristic function,
}f) If Aer,then) Cy,ie A(z) <p(z) onX,

version of.such a mathemaqcal model. !n order to dgvelopjﬁ) If Au, As € 7, then Ay N s € 7,,, where(Ay M Ao)(x) =
mathematical model underlying uncertainty and fuzziness in nf{\ (), Ao (2))
a dynamical system, any variation and/or approximation on a I '

. L '\Q If {\i:ieT}C7,thenUcr); € 7, whereU;er\; =
system should be identified by an observer. Moreover, we nee

. : sup{\;(x) }ier.

a method to compare different perspectives of the observers, e
also to measure the complexity and/or the uncertainty te thah“h's’ In some senﬁe, abfuzzy model of the tqpology
the system through viewpoint of the observers. So first, V& X from the viewpoint of the observes. In fact, for a given

should mathematically identify the observer. In our approachi,© (0,1], if we let
_ _ _ Aa={z€X : Na)>a}
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With the above notations, letX,r,) denote ap-relative subsetD of p, is called po-minimal if f : D — D is
topological space; a mappinf) : X — X is called (g, #)- D-minimal. Given an RSD-systerfif, X, 7,,), the necessary
continuousif conditions for the the existence of @,-minimal set are
ffmnuer, presented in the following theorem.
Theorem 3:Let (f, X, 7,) be an RSD-system. Also let €
[0,1] be given such thaf (i) C pa @andp, # 0. Thenf has
a j1o-minimal set.
Proof: Let M denote the set of all nonempty closed invariant
subsets off; then Cantor’s intersection property and Zorn’s
lemma imply thatM as an ordered set under inclusion has a
Given ana € [0,1], let (f, X, 7,) be an RSD-system. for minimal set which is the required,—minimal set. O
any x € X, the set Theorem 4:let f : X — X be apu,—minimal andg :
N m S o — R be a continuous function such thaif = g, where
Olf@) = {/"(@) : n=0,1,2,--} the topology ofi, iS (7,)a- Theng must be constant.
is called anorbit of x. In this section the so calleg,- Proof: The conditiongof = g implies thatgof™ = ¢ for all
minimal RSD-system(f, X, 7,) is defined so that any realn € N. Thus for a givenz € ., we have
value functiong on p, is determined by its values on the
minimal, g 9(0f (=) = {g(=)},

Definition 1: An RSD-systenif, X, 7,) is called aminimal - where O/ () is the orbit ofz. Moreover, the continuity of
relative semi-dynamical systeam y, or briefly p.-minimal jmplies that

for all n € 7,, where f~!(n)(xz) = n(f(x)). Moreover the
triple (f, X, 7,) is called arelative semi-dynamical systeon
briefly an RSD-system

Il. MINIMALITY ON RSD-SrSTEMS

if:
) F(ta) C e 9(1a) = 9(OL(x)) = g(Of(x)) = {g(x)}.
ii) Forall z € pq, the set{f"(z) : n=0,1,2,...}, O/ (), -
is a dense subset qf,, where the topology ofu,, is
(Ti)a-
. . . IV. TRANSITIVITY ON RSD-SrSTEMS
The following theorem shows how to identify agy, X, 7,,) . o .
as ayi,-minimal. The goal of this section is to investigate those RSD-systems
Theorem 2:Given ana € [0, 1], let (f, X,7,) be an RSD- (/, X, 7,) which are invariant only on the dense subsetg qf
system. The following statements are equivalent. More precisely,

Definition 5: Any RSD-systemf is called y,,-transitive if

" . . i it i f f i

i) Let f(ua) C po- If Cis aclosed subset of the topoIogmafjhere ems;s an orbgld(h, Ou(x)b’_ S_UCh tlrat”“ N Oﬂ.(.x) IS a
Space(jia, (7)) such thatf(C) ¢ C, thenC' = i, or ense subset gf,. Such an orbit is ca eqha—transmve.
C = 0. Theorem 6:Let f be a(u, 1)-homeomorphism. Then the

iil) Let f(jia) C fia. If O € (7.)a iS @ NONEMpty open Set’fo'llowir.]g stateme.n'ts are equivalent:

thenp, = U2____f"(0), where f°(0) = O. i) fis pe-transitive.
Proof: ii) If U is a nonempty open subset gf, wheref(U) = U,
i):>i.i) thenU is dense inu,.

Let f(1ta) C jia. SUppOSE that’ is a nonempty closed subset”i) Let V and W be two nonempty open sets jn,. Then

of u, and f(C) c C. There exists: € C' such that ~ there exists am € Z such thatf" (V) N W # 0.
V) If Ou(z) = O/ (z) N pa, then the set
Mo :{fn(x) : 77/2172,} cC.

ThereforeC' = 4. ) ) . )
i) = ii) can be written as an intersection of countable collection
If f(ita) C pa @and O € (7,,)a, then there exists\ € 7, of the open dense subsets of.
such thatO = \,. A straightforward calculation shows thatProof:
f7HO) = (7' (N))a- ThereforeC = p, —Uy__ f"(0) 1)=ii)
is a closed subset qf,. Moreover f(C) C C andC is a [ is uq-transitive so there exists € X such that
iy Oula) = {12, £2(&), - F(a), -} (o
Suppose that € 1., is given andD is a nonempty open subsetis dense inu,,. Thus /" (z) € U for somen € Z. Let f*(z) €
of piq; thenz € f~"(O) for somen € {0} U N. Therefore O, (z), then f*(z) € f*(f~"(U)) C U. So O4(z) C U.
f"(x) € O. Thus we can see that Therefore,U is dense in,.
- —— _ i) ==iii)
{fr@) s n=12"}=pa The set/ = |J,,., f"(V) is an open subset of, andf(U) =
O U.SoU is dense inu,. ThusU NW # (). Hence there exists
We recall from [6] that a subsé? of X is called an invariant ann € Z such thatf™(V) N W = (.
for the RSD-systen(f, X, 7,) if f(D) C D. An invariant iii) =-iv)

i) fis pe-minimal.

{r e X : O,(x)is dense inuq} N g
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Let {D,, }nen be a family of dense subsets in,. We can see be respectively the subcovers @fand such thatH,,(©) =

that: logn and H,(X) = logm. Now ©" v ¥’ is a subcover of
o = "B Dy, 1/k )
x)ﬂ# DODl(l_Uoof (B(Dn, 1/ ))) H,(©V3X) <log(nm) =logn+logm = H,(0)+ H,(X).
where B(D,,,1/k) = {y € X Npq : d(y, Dy) < £} n
iV)=1) Theorem 10:Let f : X — X be an RSD-system an@

{z € X : O(z) is dense inu. } Ny is a dense subset pf, be a finite open cover fou,. The following inequality holds:
so this set is nonempty. Therefore, there exitg«) such H.(0) > Ha(f'0).

that O, (z) is dense inu,. O
Proof: Let © = {A,,---,\}} C © be an open over such
V. RELATIVE TOPOLOGICAL ENTROPY that H,(©) = logn. Then
In this section we want to compare the levels of complexity e = {(M ol e S IR (7 e f—l)\n)a}

of any given RSD-systenif, X, 7,) from the viewpoint of

different observers. For this purpose, here dhkevel relative is an open cover fotu N f~' ). Thus
topological entropy is introduced and a method is presented 1 _ B

for calculating the entropy index. N(f7'€) < N(f7'0') <n=N(®).

Suppose thaty, is a p-relative topology onX. Let o € = Therefore,H,(0) > Ho(f1©). 0
(0,1) be given such thatX, ») is a compacta, p)-Hausdorff  Theorem 11:Given a compacta, 11)-Hausdorff spacex,,
space [6]. Moreover, let let f : X — X be an RSD-system. Moreover, € be

O=1{N :XNer, i=1-n) an open cover fopi,, wherea € (0,1). The following limit
exists.
be an open cover for,. Regarding thg above notations, the lim = \/ Fi
open coverX is called asubcoverof © if ¥ C ©. n—00 n

Definition 7: The relative topological entropy of the operp,gof: | et 2, = H, (v@ 1 f ( ))_ Then for alln.m € N
cover® with the levela is defined to be, (©) := log N(©), e have: =0 ’

where N(©) is the smallest number of open sets which can

be used in any subcover 6f. et

Let {0 = {(AD)a, -, (Ao} :r =1,--- k} be a family Tntm = Ha yo / (@))

of open covers fonpa An a- refmementof this family is the n-1' m—1

open covel/*_, ©", which is defined by: < Ha( \/ f”(@)) +H, (f*”( \/ f*j(@)))

) ) ) . ) i=0 j=0
{0 OF)a NN (o : (W) € ©9,5 < kY

n—1 m—1
Ho(\ 170)) + Ha( \ 177(9))
Lemma 8:Let X be a compact(«, u)-Hausdorff space =0 j=0
and f : X — X be an RSD-system. Moreover, let = Tn+ Ty
©={\L,---,\"} be an open cover fo,. Then

IN

Thus lim,, .., Z* exists, since{z,}n,cny iS a sub-additive

f—l@z {(uﬂf—l)\l)a7,..7(umf—1)\n,)a} sequence. O
Regarding the above theorem, thdevel relative topolog-
would be an open cover fdi N f~u)q. ical entropy for the RSD-systerfi: X — X associated to

Proof: Since © is an open cover foru,, we have the open cove® is defined by:
o C Uk AL, Now if 2 € ((f7'u) N wa, then

min{u(f(z)), u(x)} > a. So f(x) € u,. Hence there exists i
1 < m < n such thatf(x) € A7. Thus A\™(f(z)) > «. So ha(f,0) = nh—>H;lo H \/ 170
(f~*A™)(z) > «. Moreover we haveu(z) > a. Therefore

z € (uNf~'A™),. Hencef~1(©) is a cover for(uNf~'u),. WhereX is a compacta, u1)-Hausdorff space.

n—1

Sincef is (i, u)-continuouspN f~1A\i i =1,---,n are open  Definition 12: The a-level relative topological entropy for
sets in7,. So f~1(O) is an open cover fofu N f~1(n),. O f is defined by:
Theorem 9:Let © and ¥ be two finite open covers fqi,,. ha(f) = sup{ha(f,©) : © is a finite cover ofu, }
Then the following inequality holds. Referring to [6], two RSD-systemd, X, 7,,) and(g, X, 7,,)
H,(©VYX) < H,(0)+ Hy(X). are calledu-conjugate if there exists ghomeomorphisny :

Proof: Let X — X such thatpof = gop. The next theorem shows that

020 ={AL,--- )"} the relative topological entropy is invariant ungerconjugate
relation.

and Theorem 13:f f : X — X andg : X — X are p-

YOY ={y,- 77"} conjugate therh, (f) = ha(g) for all a € (0,1).
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Proof: Because of thgi-conjugate relation, there existsya  F(f) = f'. ThenF' is (u, p)-continuous since:

homeomorphisnp : X — X such thatpo f = g o . Now, —1/v\ié Y
let « € (0,1) and© be a finite open cover fog,, then: FZOOW) = )\‘(F(f)) Lif deg(f') =i
X)) =14

. ne1l ] 0 otherwise
— T —i F=1(\ = min S FH N
ha(9.©) = lim ~H( \:/ 97(0)) (LN FL9)(f) iﬂ({;)deg( f() :)(Z_f)+}1

1 (T 0 otherwise
= lim nHa( \/Og (¢ (9))) = XIFL(f).
= ho(f, 07 1O) SouNnF~ Y\ = X+l e r,. Thus (F, X,7,) is a relative
semi-dynamical system.
S0 ha(g) = ha(f) Sincey is a u-homeomorphism. O Now for any k € Z we consider the orbit of the element
f(z) =2* in X as follows:

O(f) = {F"(f) :ne{0,1,2,.. }}

VI. COMPUTATIONAL EXAMPLE _ {xk kzh=1 k(k — 1)ak—2 k! 0}

i=

Recently progress has been made in the developmentThie structure ofi-topology onX implies thatO(f) is dense
algorithms for optimizing polynomials on an arbitrary semiin y,. Moreover,u,, is compact andF, X, 7,,) is p,-minimal
algebraic set, which is the set defined by Boolean combinatitar all « € (0, 1). In fact, the derivation map’ is 1, -transitive
of polynomial equations and inequalities.. The main idea beimghen o # 0.
stressed is that reducing problem to an easier problem Ih-is easy to see thah,(F) = 0 for all « # 0, but
volving semi-definite programming. Lesserre, in [5], describébe presented computational method seems complicated for
an extension of the method for minimizing a polynomiatalculatingh(F'). So an alternative method for calculation of
on an arbitrary semi-algebraic set. However, the study tife relative topological entropy is needed; that would be our
semi-algebraic sets is based mainly on the slicing techniquext research goal.
which makes it possible to decompose them into the finite
number of subsets semi-algebraically homomorphic to an open REFERENCES
hypercqbe. This composition allows us to mvestlggte Senﬂ] K. ,Ciesielski,On negative escape time in semidynamical system#sm,
algebraically connected components for every semi-algebraic Fasciculus XLI, 2003.
set with finite cover. That is just one of the reasons to ca@ D. Dumitrescu, C. Haloiu and A. DumitresciGenerators of fuzzy
the nofion of connectedness and compaciness for polynomigl"EMEa YLz Sl and Syt 14,2000 po, a2,
function spaces. applications Van Nostrand Reinhold Company Inc., 1985.

; [4] P. E. KloedenFuzzy dynamical systemiSuzzy Sets and Systems, Vol. 7
Our approach to the above problem is to develop jhe ho. 3, 1982, pp. 275296,

relatiye semi-dynamical system over one variable polynomig| ;- g, LasserreGlobal optimization with polynomials and the problems
function spaceR[z] based on the derivative operator. we are of momentsSIAM J. Optim. 3, 11, 2000/01, pp. 796-817.

oing to use orbits as the-open sets to decompodR|z]. [6] M. R. Molfaei, Relat!ve semi-dynamical systenmiaternational Journal
going 2-0p p [ ] of Uncertainty, Fuzziness and Knowledge-based Systems, Volume 12-2,

This topic may be interesting for further independent research 5004, pp. 237-243.
subject on semi-definite programming. But here, we have just M. R. Molaei, Relative vector fieldsJournal of Interdisciplinary Mathe-

; matics, Vol. 9, No. 3, 2006, pp. 499-506.
looked over it as an exgmple. [8] M. R. Molaei, M. H. Anvari and T. HagiriOn relative semi-dynamical
Let X = R[z] and defineu : X — [0, 1] by: systemslntelligent Automation and Soft Computing, Vol. 13, No. 4, 2007,
pp 405-413.
ﬁ if deg(f) 7£ 0 [9] M. R. Molaei and M. H. AnvariRelative manifoldsintelligent Automa-
M(f) = 0 s otherwise tion and Soft Computing, Vol. 14, No. 2, 2008 pp. 213-220.
[10] H. T. Nguyen and E. A. Walke® first course in fuzzy logicChapman

& Hall/CRC, 1999.

Also let A"z X [0,1] be defined by: [11] S. Saliliand M. R. MolaeiA new approach to fuzzy topological spaces
1 . . Hadronic Journal, 25, 2000, pp. 81-90.
)\Z(f) = { 7 if deg(f) =1 [12] P. Srivastava, M. Khare and Y. K. Srivastataizzy dynamical systems-
o 0 otherwise inverse and direct spectrduzzy Sets and Systems 113, 2000, pp. 439-
445,

SinceAiN\ = xy for i # j and U ' = u, we can consider
ieN

7, as theu-topology generated tf{/)\i :i € N}. We also have

the following results:

a=1=pm=Xxp

a=0=po={f € Rlz] : deg(f) > 1}

If « € (0,1) then
_ [ {f e Rfz]:deg(f) <[]} if S¢N

Ho =\ {f eR[s):deg(f) < [1] -1} it LeN
Suppose that? : X — X is the derivation map, i.e.
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