
 

 

  
Abstract—Fluid-solid flow phenomena is an interdisciplinary 

research area with great technological, commercial and medical 
importance. One particular application is related to the drug delivery 
system in which magnetic targeting offers the ability to target a 
specific site, such as a tumor. This paper presents a mathematical 
model and a finite element method, based on the Arbitrary 
Lagrangian Eulerian approach, for studying blood-magnetic particle 
flow in small vessels. Four models with one, three, five, and nine 
particles are used to analyze the flow pattern and pressure 
distribution along the flow direction. Effects of magnetic force on the 
blood-particle flow are investigated. 
 

Keywords—Arbitrary Lagrangian Eulerian, finite element 
method, fluid-particle flow, magnetic fluids. 
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I. INTRODUCTION 
ANCER is one of the most insidious and potentially fatal 
diseases in human being. Many evidences indicate that 

progressive tumor growth is dependent on angiogenesis which 
is the process in which new blood vessels develop from an 
existing vasculature through endothelial cell sprouting, 
proliferation and fusion [1]. New blood vessels provide 
nutrients to proliferating cancer cells, which is in favor of 
tumor growth. Tumor cells need an adequate blood supply in 
order to perform vital cellular functions. The degree of 
disturbance of blood flow is thus a good predictor of the 
course of the disease, and hence regional blood flow measure 
can permit earlier cancer detection. The modern-day approach 
to cancer treatment is a multidisciplinary one involving 
varying combination of surgery, radiation therapy, 
chemotherapy, and targeted therapies (a new weapon). In 
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targeted therapies, a medication or drug is controlled to target 
a specific pathway in the growth and development of a tumor.   
Although most of the drugs used to date have proven to be 
successful on small animals such as mice [19, 20], their 
efficiency in humans remains highly variable from one patient 
to another. Understanding the flow of blood and drug in the 
capillary bed is very important for investigating the efficiency 
of drug treatment as they pass from parent blood vessel to 
tumor surface via an associated capillary bed. Over the last 15 
years, a number of mathematical models for blood vessel 
formation [3, 4], blood flow and/or particle flow in capillary 
networks [5, 6, 7, 8, 9, 15, 16, 17] in the area of tumor-
induced angiogenesis have been developed. One of these, 
magnetically targeted drug delivery, involves binding a drug 
to small biocompatible magnetic particles with diameters less 
than 5 µm. 

Driscoll et al. [22] had studied magnetically targeted drug 
delivery by tracking each individual particle under the 
influence of Stokes drag force and magnetic force. Grief and 
Richardson [17] conducted a theoretical analysis of targeted 
drug delivery using magnetic particles and proposed a two-
dimensional network model. In their model, the motion of 
fluid is described by Poiseuille flow, whereas the motion of a 
magnetic particle, due to balancing hydrodynamic and 
magnetic force, is governed by an advection-diffusion 
equation for the particle concentration. They found that drug 
targeting can be achieved by pulling magnetic particles to the 
edge of the vessel, and that the use of magnetically targeted 
drug delivery with an externally applied magnetic field is 
appropriate only for targets close to the surface of the body. 

However, most existing models do not take into account of 
the real 3D effect and the interaction between blood flow and 
magnetic particles, Non-Newtonian behavior of blood and the 
effect of magnetic forces. Therefore in order to fully 
understand and control the local flow behavior of blood and 
particles through the area of tumor-induced angiogenesis, it is 
essential to develop a sophisticated model and computational 
technique for the flow analysis. Hence, based on the current 
development in the field, the objective of this paper is to 
propose a sophisticated model and computational technique 
for analyzing the complex flow (blood-particle flow) behavior 
in tumor-induced capillary networks using the current state-
of-the-art computational fluid dynamic (CFD) technology. 
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Our model couple the interaction of blood flow with the 
particle flow using the Arbitrary Lagrangian Eulerian (ALE) 
formulation. The governing equations for blood flow are the 
continuity equation and the Navier-Stokes equations. For 
particle movement, Newton's law is applied. The complete 
model includes the governing equations for the blood flow, 
the governing equations for the motion of fine particles, the 
interaction conditions between blood and particle at the 
interfaces, and boundary conditions. More specifically, the 
paper aims to (a) present a mathematical model and an 
efficient finite element method based on the Arbitrary 
Lagrangian Eulerian approach for studying blood-magnetic 
particle  flow in a small vessel; (b) analyze the effect of 
number of particles on the flow pattern and pressure 
distribution along the flow direction; (c) investigate the effect 
of magnetic force on the flow pattern of blood and particles 
and pressure distribution. 

II. GOVERNING EQUATIONS 
 To study the motion of  solid particles immersed in a fluid, 
we assume that the fluid-solid particle system occupies a 
bounded domain Ω  in 3 . At a typical instant of time t , Q  

particles occupy Q  closed connected subsets 
1

Q
qq=

Ω∑ ⊂   

3 which is surrounded by a viscous homogeneous fluid 

filling the domain 
1

Q
qq=

Ω − Ω∑  called the flow-channel 

area. 
 In this study we use two coordinate systems: a reference 
system, Ω , where the model is drawn and the particle 
movement is solved, and a moving mesh system, defΩ , 

corresponding to the deformed mesh of the flow channel, 
where we simulate the fluid flow. The time evolution of the 
domain defΩ  is determined by means of an Arbitrary 

Lagrangian-Eulerian (ALE) mapping : def
+Ω× Ωx  

which maps any point ( , )tX  to its image ( , )tx X . 

A. Transformation 
In the flow-channel area, the two coordinate systems, 

( , , )X Y Z ∈Ω  and ( , , ) defx y z ∈Ω  are connected through 

a transformation T . At the initial state at 0t = , the two mesh 
systems are assumed to coincide. The transformation T   maps 
the point initially located at ( , , )X Y Z  to the point ( , , )x y z  
at time t :  

( , , , )
: ( , , , )

( , , , ).

x x X Y Z t
T y y X Y Z t

z z X Y Z t

=
=
=

 

Suppose that the functions , ,x y  and z  are continuous 

differentiable with respect to X ,Y , Z . Then the 
infinitesimals dX , dY , dZ  transform into dx , dy , dz  

according to  

 
, , ,

, , ,

, , ,

,
,
,

X Y Z

X Y Z

X Y Z

dx x dX x dY x dZ
dy y dX y dY y dZ
dz z dX z dY z dZ

= + +
= + +
= + +

 (1) 

where ,( ) X⋅  denotes differentiation with respect to X . 

System  (1)  can be written in matrix form as 

 
, , ,

, , ,

, , ,

.
X Y Z

X Y Z

X Y Z

dx x x x dX
dy y y y dY
dz z z z dZ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (2) 

The 3 3×  matrix of partial derivatives in (2) is called the 
Jacobian matrix of the transformation. Denote the matrix by 
J , then 

 , , , , , , , , , ,

, , , , ,

( ) ( )
( ).

X Y Z Z Y Y X Z Z X

Z X Y Y X

x y z y z x y z y z
x y z y z

= − − −
+ −

J
  

For 0≠J , the transformation is invertible and there 

exists an inverse transformation at time t , i.e., 

 1

( , , )
: ( , , )

( , , ).

X X x y z
T Y Y x y z

Z Z x y z

−

=
=
=

 

As in (2), we have 

 
, , ,

, , ,

, , ,

.
x y z

x y z

x y z

dX X X X dx
dY Y Y Y dy
dZ Z Z Z dz

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (3) 

From (2), we also have 

 1 ,
dX dx
dY dy
dZ dz

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

J  (4) 

where 

 1 1 ,
Xx Xy Xz

Yx Yy Yz

Zx Zy Zz

I I I
I I I
I I I

−

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

J K
J

 (5) 

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

,
Y Z Y Y Z Y Y Z Y Z Z Y

Z X X Z X Z Z X X Z Z X

X Y Y X Y X X Y X Y Y X

y z y z x z x z x y x y
y z y z x z x z y x y

z y z z x z x
x

y x x y y

− − −

− − −

− − −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

K

 
in which the I  syntax is used to emphasize the computation 
of the Jacobian of the inverse transformation from the inverse 
of the original Jacobian. 

Equating terms in (3) and (4), we obtain 
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, , , , ,

, , , , ,

, , , , ,

( ) / ,
( ) / ,
( ) / ,

x Y Z Z Y

y Z Y Y Z

z Y Z Z Y

X y z y z
X x z x z
X x y x y

= −
= −
= −

J
J
J

 

 

 
, , , , ,

, , , , ,

, , , , ,

( ) / ,
( ) / ,
( ) / ,

x Z X X Z

y X Z Z X

z X Z Z X

Y y z y z
Y x z x z
Y y x y x

= −
= −
= −

J
J
J

 (6) 

 

 
, , , , ,

, , , , ,

, , , , ,

( ) / ,
( ) / ,
( ) / .

x X Y Y X

y Y X X Y

z X Y Y X

Z y z y z
Z x z x z
Z x y x y

= −
= −
= −

J
J
J

 

These relations are crucial in transforming the calculation 
results from defΩ to Ω . 

B. Motion of Fluid-Solid Flow in the Deformed Mesh 
System 

To study the motion of magnetic particles in the fluid flow 
channel, we assume that the gravitational force can be 
neglected and the particle movement is governed by Newton's 
second law:  

 

0

, 1, 2,3,...,

.

q
q v q mag

q t

m q Q
t

=

∂
= + + =

∂
=

V
F F F

V 0
 (7) 

The position qX  of the center of the q th particle can be 

determined by the equation: 

 
0

0

, 1, 2,3,...,

.

q
q

q qt

d
q Q

dt

=

= =

=

X
V

X X
 (8) 

In equation (7)1, qV and qm  denote the velocity vector and 

the mass of the q th particle. The three applied loads, drag 

force vF , collision force qF , and magnetic force magF , are 

defined based on the following assumptions: 
• All boundaries of particles experience drag force vF  

from fluid, 
 ( ( ( ) ))T

v f p η= − ⋅ − + ∇ + ∇F n I v v  (9) 

which consists of  the pressure and the viscous drag of 
the fluid. 

• To prevent the collisions among the particles, and the 
particles and the vessel walls,  the particle-particle 
interaction force ,q pF  and the particle-wall interaction 

force ,q wF  are applied when the distance between two 

particles, or between a particle and a wall, is within the 
order of the element size [21] 

 
2

, ,
1, 1

,
Q

q q p q w
p p q w= ≠ =

= +∑ ∑F F F  (10) 

in which 

 

,

2
, ,

,

0,  for 
1 ( )( ) ,

 for 

q p q p

q p q p q p q p
q

q p q p

d R R

R R d

d R R

α

α
ε

α

⎧ > + +
⎪
⎪= − + + −⎨
⎪
⎪ ≤ + +⎩

F X X (11) 

and 

 

,

2
, ,

,

0,  for 2
1 ( )(2 ) ,

2

q w q

q w q w q q w
w

q w q

d R

R d

d R

α

α
ε

α

⎧ > +
⎪
⎪= − + −⎨
⎪
⎪ ≤ +⎩

F X X  (12) 

where ,q pd  denotes the distance between the centers of 

the q th and p th particles, ,q wd  denotes the distance 

between the centers of the q th particle and the 

imaginary particle on the other side of the wall, qX  

and qR  are center and radius of the q th particle, α  is 

the force range, and qε  and wε  are small positive 

stiffness parameters. 
• To trap magnetic particles (drugs) at the target site,   an 

external magnetic field is applied to generate a 
magnetic force acting on the particle [25]. This force, 
which is composed of three components, is governed 
by the equations: 

 
1 ( ) ,mag

rμ
= ⋅∇F M B  (13) 

where rμ  is the relative permeability of a magnetic 

material, ( , , )x y zM M M=M  is the magnetic 

moment of the particle, and ( , , )x y zB B B=B  is the 

magnetic flux density. 
To determine the drag force vF  in (9), blood is assumed to 

be an isotropic, homogeneous incompressible fluid. The 
motion of the blood is described by the continuity equation 
and the Navier-Stokes equations 

 0,∇ ⋅ =v  (14) 

 ( ) ,f ft
ρ ρ σ∂

+ ⋅∇ − ∇ ⋅ =
∂
v v v F  (15) 

for x  in ( )def tΩ  where fρ  denotes the blood density,   

[ , , ]Tu v w=v  represents the 3D velocity vector, and F  is 
the volume force acting on the fluid. For this model, we 
neglect the effect of gravitational force and thus =F 0 . The 
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quantity σ  in equation (15) is the stress tensor given by 

 ( ( ) )Tpσ η= − + ∇ + ∇I v v  (16) 
where η  is the blood viscosity and p  is the blood pressure. 

On the wall, the no-slip condition is applied. On the inflow 
boundary inΓ , the velocity is assumed to be constant, whereas 

on the outflow boundary outΓ , the stress-free condition is 
used: 

 0  on 
0 on .

in

outσ
= Γ

⋅ = Γ
v v
n

 (17) 

For static condition in stationary bodies, the magnetic flux 
density  B  is governed by Maxwell's equations: 

 
0∇ ⋅ =

∇× =
B
H 0

 (18) 

where the magnetic flux density B  and the magnetic field 
strength H  are related through the constitutive relation 

 0 ,r rμ μ= +B H B  (19) 

in which 0r rμ μ=B M  denotes a residual flux density, 0μ  
is the permeability in vacuum. 

From the first equation of (18), the magnetic flux density 
can be determined from a vector potential by = ∇×B A  
which identically satisfies the first equation of (18). Using the 
identity  

( ) ( ) ,∇× ∇× = ∇ ∇ ⋅ − ΔA A A  

and the Coulomb gauge 0∇ ⋅ =A , the second equation of 
(18) takes the form 

 1 1
0( ) ,r defμ μ− −∇× ∇× − = ∀ ∈ΩA M 0 x  

or  
 0( ),rμ μΔ = −∇×A M  (20) 

which is the vector-valued Poisson equation for the magnetic 
potential A . 

Due to the movement of the coordinate system, the mesh 
velocity ( , , )x y z= Ψ Ψ ΨΨ is introduced in the deformed 

domain defΩ . To guarantee a smoothly varying distribution 

of the nodes, we assume that the nodes on q∂Ω  move with 

the particle (no slip) and that each component of the mesh 
velocity in the fluid channel is governed by a Laplace 
equation: 

 2 0,  .def∇ = ∀ ∈ΩΨ x  (21) 

The above equation is to smooth gradient of the mesh 
velocity over the domain so as to reduce mesh distortion. 
Once the mesh velocity components are determined, we can 
determine the smoothed deformed mesh for the flow channel 
at each time instant by updating the coordinates of the nodes 
according to the following formulae 

 

0

0

0

,

,

.

t

x

t

y

t

z

x X dt

y Y dt

z Z dt

= + Ψ

= + Ψ

= + Ψ

∫
∫
∫

 (22) 

Another condition that needs to be specified is that the 
fluid, particle and mesh move with the same velocity on the 
particle boundaries, i.e., 

  on .q q= = ∂ΩΨ v V  (23) 

We now have the strong coupled problem  for the fluid-
particle flow in the drug delivery system. These equations are 
solved to yield qV  in Ω and , , ,pv A Ψ in defΩ . 

C. Finite Element Formulations 
The weak formulation of the fluid flow problem is to find 

( , , , )p ∈ ℑ ≡v A Ψ 1 3 1[ ( )] ( )def defΗ Ω × Η Ω × 1 3[ ( )]defΗ Ω
1 3[ ( )]def× Η Ω  in the deformed mesh system at each time 

instant such that all the Dirichlet boundary conditions are 

satisfied and ∀ ˆ ˆˆ ˆ( , , , )pv A Ψ ∈ 0ℑ  

≡ { ˆ ˆˆ( , , , )pv A Ψ ∈ ℑ | ˆ =v 0  on ,def∂Ω
v

ˆ 0p =

on ,
pdef∂Ω ˆ =A 0  on def∂Ω

A
, and }ˆ on ,def= ∂Ω

Ψ
Ψ 0  

 ˆ ( ) 0,
def

p d
Ω

∇ ⋅ Ω =∫ v  (24) 

 ˆ ˆ ˆ( : ( )
def

f ft
ρ η ρ

Ω

∂
⋅ + ∇ ∇ + ⋅ ⋅∇

∂∫
vv v v v v v  

 ˆ ˆ) ( ) ,
def

p d dsσ
∂Ω

− ∇ ⋅ Ω = ⋅ ⋅∫v v n  (25)  

 0
ˆ ˆ( : ( )) 0,

def
r dμ μ

Ω
∇ ∇ − ⋅∇× Ω =∫ A A A M  (26) 

and 

 ˆ( : ) 0,
def

d
Ω

∇ ∇ Ω =∫ Ψ Ψ  (27) 

where , ,
pdef def def∂Ω ∂Ω ∂Ω

v A
, and def∂Ω

Ψ
 are the parts of 

boundary where the velocity, the pressure, the magnetic 
potential, and the mesh velocity are specified. It should also 
be addressed that various surface integral terms, arising in the 
formulation, vanish as the test functions involved in the terms 
are zero on the boundary. 

Since the computations are conducted in the reference 
coordinates, Ω , we need to transform equations (24)-(27) in 
the deformed coordinates to those equations in the reference 
coordinates. Through this and using (17)2, we obtain 

 ˆ ( ) 0,p d
Ω

∇ ⋅ Ω =∫ v J  (28) 

 ˆ ˆ ˆ( : ( )f ft
ρ η ρ

Ω

∂
⋅ + ∇ ∇ + ⋅ ⋅∇

∂∫
vv v v v v v  
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 ˆ ) 0,p d− ∇ ⋅ Ω =v J  (29) 

 0
ˆ ˆ( : ( )) 0,r dμ μ

Ω
∇ ∇ − ⋅∇× Ω =∫ A A A M J  (30) 

and 

 ˆ( : ) 0,d
Ω

∇ ∇ Ω =∫ Ψ Ψ J  (31) 

where the derivatives of the unknown functions 
( , , )i i x y zΨ =  are determined by the following 

expressions: 

 
, , , , , , ,

, , , , , , ,

, , , , , , ,

,
,
,

i x i X X x i Y Y x i Z Z x

i y i X X y i Y Y y i Z Z y

i z i X X z i Y Y z i Z Z z

I I I
I I I
I I I

Ψ = Ψ + Ψ + Ψ
Ψ = Ψ + Ψ + Ψ
Ψ = Ψ + Ψ + Ψ

 (32) 

and for the test functions: 

 

, , , , , , ,

, , , , , , ,

, , , , , , ,

ˆ ˆ ˆ ˆ ,
ˆ ˆ ˆ ˆ ,
ˆ ˆ ˆ ˆ .

i x i X X x i Y Y x i Z Z x

i y i X X y i Y Y y i Z Z y

i z i X X z i Y Y z i Z Z z

I I I

I I I

I I I

Ψ = Ψ + Ψ + Ψ

Ψ = Ψ + Ψ + Ψ

Ψ = Ψ + Ψ + Ψ

 (33) 

The derivatives of other unknown functions 
, , , ,x yu v w A A , and zA are defined in the same way as those 

of the iΨ  functions. 

III. NUMERICAL RESULTS AND DISCUSSION 
In a two dimension case, the magnetic potential is assumed 

to have a nonzero component only in the direction 
perpendicular to the plane, i.e., (0,0, )zA=A . On q∂Ω  and 

∂Ω , the magnetic potential is set to zero, that is, 0zA = . 

The magnetization ( , )x yM M=M  for the magnetic 

source is given by 40, 5 10x yM M= = ×  A·m-1, and for the 

magnetic particles 

 

,
0

,
0

arctan ,

arctan ,

x z y
r

y z x
r

bM a A

bM a A

μ μ

μ μ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (34) 

where a  and b  are two material parameters.  
From (13), the magnetic force, ( , )

x ymag mag magF F=F , is 

given by 

 

( )

( )

, ,

, ,

1 ,

1 .

x

y

mag x z yx y z yy
r

mag x z xx y z xy
r

F M A M A

F M A M A

μ

μ

= +

= − −
 (35) 

To understand the blood-particle flow in a small vessel, a 
2D domain with one, three, five, and nine particles are used. 
The computation domain is a horizontal channel with height 

of 6.2 µm and length of 45 µm. The particles are circular with 
diameter of 0.5 µm. Blood is assumed to flow into the channel 
with speed 1.85 cm/s from the left to the right. The fluid 
properties are typical of human blood with the viscosity η  of 

0.0035 Pa·s and the density fρ  of 1060 kg·m-3. All particles 

are assumed to be solid with the density of 1112 kg·m-3.  The 
relative permeability rμ is 5×103 for the magnet particles and 
0.99998 for the tissue in the blood vessel. The material 
parameters a  and b  are 1×10-4 and 3×10-5, respectively. 

 

 
Fig. 1  The 2D geometry of the blood vessel with a magnetic 
source at the middle of the vessel and its finite element mesh 

 
The Arbitrary Lagrangian Eulerian approach is used to 

handle the dynamics of deforming geometry and the moving 
boundaries. New mesh coordinates on the channel area are 
calculated based on the movement of the particles. The 
Navier-Stokes equations are formulated in the moving 
coordinate system. Particle interactions and particle collisions 
are neglected. Via the simulations of the model we can 
describe the flow pattern and pressure distribution in the 
particle-fluid system. 

Fig. 1 shows the finite element mesh and the external 
magnetic field applied to the system. The computation domain 
consists of 3519 elements with 1791 nodes. 

 

 
(a) 0t =  s 

 
(b) 1.62t =  ms 

 
(c) 2.43t =  ms 

Fig. 2 Velocity profiles at various instants of time for the case 
with one particle 
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(a) 0t =  s 

 
(b) 0.81t =  ms 

 
(c) 1.18t = ms 

Fig. 3 Velocity profiles at various instants of time for the case 
with three particles 
 

 
(a) 0t =  s 

 
(b) 0.69t =  ms 

 
(c) 1.02t =  ms 

Fig. 4 Velocity profiles at various instants of time for the case 
with five particles 
 

 
(a) 0t =  s 

 
(b) 0.39t =  ms 

 
(c) 0.53t =  ms 

Fig. 5 Velocity profiles at various instants of time for the case 
with nine particles 
 

 
Fig. 6 Pressure profiles along the flow direction at 0t =  s 

 

 
(a) 0t =  ms 

 
(b) 7.18t =  µs 

 
(c) 9.96t =  µs 

Fig. 7 Velocity profiles at various instants of time for the 
case with four magnetic particles 

 
Fig. 2-5 show the velocity distributions for the models with 

one, three, five, and nine particles, respectively, at the absence 
of the external magnetic field. In these cases, the particles 
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flow in the axial direction. Fig. 6 shows the pressure 
distribution along the axis of the tube at 0t =  for various 
cases with different number of particles in the fluids. It is 
noted that with the increase of particle number, the pressure 
required on the entry of the tube increases significantly. Fig. 7 
shows the velocity profile of fluid and the particle motion for 
the case with four particles at the presence of an external 
magnetic field. It is clearly noted that the model can simulate 
the flow of particles toward the targeted region. 
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