
 

 

  
Abstract—A method of image analysis of flow patterns, which 

are developed in electrorheological fluids, is presented.  Due to the 
process of preparation, electrorheological samples show a radial 
symmetry. Numerical transformations are necessary to remove 
sample deformation and obtain correct radial dependence of image 
intensity as the function characterizing the sample image 
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I. INTRODUCTION 

Electrorheological (ER) fluids are systems whose 
rheological properties (viscosity, yield stress, shear modulus) 
can be controlled by external electric field. For the fluids 
researched so far, ER effect usually causes a continuous 
increase in viscosity, or immediate (in milliseconds) 
solidification of the material. This is called a positive 
electrorheological effect. However, also the opposite effect 
has been described for several systems – a decrease of 
viscosity in electric field (a negative ER effect). These facts 
indicate a wide range of possible practical applications, 
therefore understanding of the phenomena is highly desirable. 

The positive ER effect, which was described by Winslow 
(1) more than 50 years ago, has been in focus of many papers 
concentrating on the elucidation of the mechanism, 
preparation of ER fluids with optimum efficiency and their 
possible use. The research findings can be found in a number 
of comprehensive reviews (2–4). 

Majority of electrorheological fluids are suspensions of 
solid particles in electrically non-conducting fluid (usually 
mineral or vegetable oils). First dispersed phase was 
represented by inorganic or organic materials, water-free or 
with some portion of water or other activators. Recent 
generations of ER fluids are based on suspensions of 
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electrically conducting polymers and nanoparticles of various 
nature, because of their suitable polarizability. 
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Fig. 1 Scheme of chain structure of ER suspension without flow 
field. 

 
ER effect is considered to be caused by interfacial 

polarization of dispersed particles (3,4) produced by external 
DC or AC electric fields of high intensity (E in order of 
kV/mm). Polarized particles are oriented in the direction of 
electric field and create structures (chains), which increase the 
rigidity of the originally liquid system (Fig. 1). On the 
application of flow field, at low shear rates viscosity is high 
(after exceeding possible yield stress). It is supposed that 
shear forces cause degradation of the structures created; 
therefore viscosity falls with a rise of shear rate and finally, at 
high shear rates, it gets to the level of zero-field viscosity. 

The arrangement of the particle chains in electric field has 
been proved via optical microscopy. In order to explain the 
mechanism of reorganization of these structures in electric 
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field during flow, majority of studies so far have followed the 
dependence of rheological and viscoelastic behaviour 
(gradient dependence of viscosity, shear stress, viscoelastic 
moduli) or yield stress of ER fluids in relation to the chemical 
nature, and physical properties of dispersed particles which 
affect their polarizability (particle size and shape, DC and AC 
electric conductivity, permittivity and dielectric loss). 
However, these results do not provide any evidence of the 
changes in particle arrangement during flow. On the other 
hand, direct optical display of ER suspensions in rotational 
viscometer presented in papers (5,6) indicated that particles 
organize into lamellar or ring structures, which are optimal for 
minimum energy dissipation, and this structure depends on the 
flow field (Fig. 2). These experiments, which have only been 
carried out for several systems, showed the way to the 
elucidation of general factors controlling flow mechanism of 
ER structures.  
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Fig. 2 Example of a structure of electrorheological suspension 
formed between two rotating parallel plates 

 
 

II. EXPERIMENT 

A. Centring 
Samples were scanned on commercial scanner and 

greyscale images as Fig. 3 with typical size 1000x1000 pixels 
were obtained. The goal is to gain radial dependence of 
darkness of the image. Suppose that p(x,y) is brightness of 
pixel in x-column and y-row of the image. 

There are several problems. Samples are relatively soft and 
easyly deformable. The images are a little prolonged in some 
directions. 

 
 

Fig. 3 The scanned image of electrorheological flow 
pattern. 

 
The first task is to recognize position of centre of 

symmetry. The first estimation of the centre position (xc0,yc0) 
can be made manually or automatically (as the centre of the 
image). For some neighbourhood a symmetry function S(xc,yc) 
is computed as 
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where numerator is square of brightness difference of 

symmetrical pixels and denominator is weight (number of 
pixels in some distance is proportional to this distance). 
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Fig. 4 The graphical representation of S(xc,yc) function. 
 
Fig. 4 shows graphical representation of S(xc,yc) function. 
Brighter pixels indicate higher value of S(xc,yc) function, cross 
near image centre indicates position of real symmetry centre – 
the total maximum of S(xc,yc) function with position (xcm,ycm). 

B. Transformation 
If the centre is found, image is divided into 8 radial sectors 

and mean brightness as a function fi(r) (index i denotes the 
sector) of the real centre distance r is computed.  On the Fig. 5 
is the comparison of such functions for two different sectors 
of image. It is obvious that a little shift and scale change is 
necessary to eliminate deformation. 

 
Fig. 5 The comparison of fi(r) functions for two sectors. Intensity f 

and radial distance r are both in arbitrary units. 
 

A tool for the examination of the similarity of two functions 
is cross-correlation function (7,8). This function is defined for 
real functions as 

∫ +=∗ drxrfrfxff jiji )()())(( . 

For example, consider two real valued functions fi and fj 
that differ only by a shift along the x-axis. One can calculate 
the cross-correlation to figure out how much fj must be shifted 
along the x-axis to make it identical to fi. The formula 
essentially slides the fj function along the x-axis, calculating 
the integral for each possible amount of sliding. When the 
functions match, the value of (fi * fj) is maximized. The reason 
for this is that when lumps (positives areas) are aligned, they 
contribute to making the integral larger. Also, when the 
troughs (negative areas) align, they also make a positive 
contribution to the integral because the product of two 
negative numbers is positive. For our occasion we define 
cross-correlation function more generally as 

∫ +=∗ drxhrfrfxhff jiji )()(),)((  

where h is a scale change and x is a shift. If the value of (fi * 
fj) is maximized, the best combination of h and x is found (9). 

C. Results  
After rescaling of fj functions for each sector (Fig. 6), the 

mean value of one original and all transformed fj functions is 
computed. This way was obtained the average f(r) function as 

the dependence of average intensity on radial distance from 
sample centre and is presented on the Fig. 7. 

 
Fig. 6: The original f1(r) function and transformed  f2(hr+x) 

function. Values h = 0.972, x = -5.07 maximize the cross-correlation 
function. 

 
Fig. 7: The averaged f(r) function. 

 
Fig. 8 shows comparison of the central part of the original 

sample image and corresponding image based on radial 
dependence of intensity f(r) from Fig. 7. 
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Fig. 8: The central part of the original image (a) and 
corresponding result of the image optimization (b). 

 
Now the sample is characterized by the f(r) function as 

showed on Fig. 7. A dependence of distribution of peaks of 
the f(r) function on parameters of samples preparation can be 
studied. 

III. CONCLUSION 

A method of the optimization of radial symmetrical images 
was suggested. Sample deformation was reduced and intensity 
as function of radial distance was obtained. The next task is to 
find a methods of such function description and to identify the 
dependency between experimental conditions and resulting 
image. 
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