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Abstract—This paper presents uniformly ultimate bound- Definition 1.2 The uncertain switched system (1) under
edness (UUB) control design for switched linear systems garhitrary switching lawe (¢) is Uniform Ultimate Bounded

with parametric uncertainties. Only the possible bound of  \yyp) with ultimate bound if there exist positive constants
the uncertainty is needed. Under arbitrary switching laws, a

continuous state feedback control scheme is proposed in order © ande, for everya < (0, ), there isT" = T'(a, b), such that
to guarantee uniformly ultimate boundedness of every system

response within an arbitrary small neighborhood of the zero Iz < @ = |zl < b,vt > T
state. The design techniques are based on common Lyapunov

functions and Lyapunov minimax approach. Uniform stability properties of the switched systems are

intimately related to the existence of a common Lyapunov
I. INTRODUCTION function for all individual subsystems. Various constructive
A switched system is a particular kind of hybrid systen@pproaches have been presented [4], [5], [6], [12] to find a
that consists of several subsystems and a switching law detemmon quadratic Lyapunov function ensuring the asymp-
mining at any time instant which subsystem is active. Ther®tic stability of switched systems for any switching law. In
are indeed many switched systems that occur naturally &] and [7], Lie algebra conditions are given, which imply
by design, in the fields of control, communication, computethe existence of a common quadratic Lyapunov function. In
and signal processes. System analysis of switching dynamit$2], by means of an elegant iterative procedure, a common
such as stability, reachability, and controllability has beefuadratic Lyapunov function is constructed for switched
studied extensively in the recent years. The reader is referrigear systems with commuting Hurwitz system matrices.
to [1], [2], [3], [4], and [5] for more information. Most of the  In this paper, we propose to relax the conclusion [12] by
existing work on control design for switched linear systems igtilizing the technique developed in [13]. In [13], necessary
developed without uncertainty. In this paper, we shall exten@nd sufficient conditions of quadratic stability of uncertain
the scope to address the parametric uncertainty issue.  linear systems are proposed. For the uncertain switched
Consider a switched linear systems represented by thgear systems, if the uncertainty is matched, a robust control

differential equations of the form scheme is proposed, which renders the switched system
() = A (@)2(t) + By (@)uld), UU3, and if the uncertai_nty is mismatched, we ;how that
o(t): R — S ={1,--- N}, (1) a mismatched threshold is needed to ensure stability.

where stater(t) € R", inputu(t) € R™ and R+ denotes II. STABILITY ANALYSIS OF SWITCHED LINEAR

non-negative real numbers. Piecewise constant funet{on SYSTEMS

is the switching law indicating the active subsystem at each Consider the nominal switched linear systems with control

instant. Assumed; (w), B;(w),i=1,---, N, are continuous input u(t) = 0,

functions ofw € Q, wherew is an unknown and possibly .

fast time-varying vector, and C R? is a prescribed compact B(t) = ‘L}f(t)m(t)’ (2)

set. The uncertainty is nonlinear and time-varying, and only oft): BT — §={L-, N}

the possible bound of the set of uncertainty is known. For alli € S, if A; is Hurwitz, and

For this uncertain switched linear system (1), we are _
interested in seeking a continuous state feedback control Aidj = AjAi,j €5,

such that the closed-loop switched system respon$¢ then a stability condition for (2) is given below [12].
under arbitrary switching laws, enters a neighborhood of theorem 2.11f {4, :i € S} is a finite set of commuting

the equilibriumz. = 0 in finite time and remains within it itz matrices, then the corresponding switched linear
thereafter; that is, we desire system performance Un'formbﬁ/stems (2) is globally uniform asymptotic stability.

ultimate boundedness (UUB) or practical stability. An elegant iterative procedure also given to construct a
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with the condition of Theorem 1, the functioW(z) = where
z? Pyz is a common Lyapunov function for the switched w(z,t) = BT Pyap(z,t), (13)
linear system (2). 1

Theorem 2.2 shows a systematic way to find a common plz,t) = § max max | D; (w)]|]|]|- (14)

positive definite matrixPy in (3). Next, we propose to relax ) ) ) )
the condition by utilizing the technique developed in [13]. In Theorem 3.1Uncertain switched linear system (1) satis-
[13], necessary and sufficient conditions of quadratic stabilit}ying the matched conditions (9),(10) is UUB with the state

First, we decomposé; of (2) as follows: bounded region and the uniform stability region can be made
B ‘ arbitrarily small by a suitable choice ef
A=A+ AAi=1,--- )N, 4) Proof: Choose the Lyapunov function candidate to be
where A; satisfies commuting Hurwitz and 4; is the extra V(z) = 27 Pya. (15)
portion.
Substituting (4) into (2), we obtain The derivative ofl/(x) along the trajectory of system (1) is
. _ given by _
&(t) = (Ai + DAi) 5 ()2 (t), (5) V(z) = i” Pyz + 27 Pyi

ot): Rt —S={1,---,N}.

1. TrxT T T/pT T
From the definition of quadratic stability given in [13], we =7 (A7 +A47) +u' (Bi” +AB;)|Pye
conclude that system (5) is quadratically stable if there exists +2T Py[(A; + AA)x + (B; + AB)u].  (16)
a scalara; such that o _ _
- _ Substituting (9) and (10) into (16) yields
T [(A; + AA)T Py + Py (A; + AA) |z < —ay|z]|* (6) ) o - ~
V(CL‘) = .’ET[AZ Py + PyA; + (BDZ')TPN
for all z € R™. - B
Above conclusions indicate that stability can also be +Pn(BD)]x +u” (I + Ef )BT Pyx
determined even if uncertainties exist in the switched linear TH 5

l1l. UUB CONTROL DESIGN FOR SWITCHED
LINEAR SYSTEMS cases.
(W) i e, )] > e :

Based on Theorem 2, we propose a robust control, which
renders the uncertain switched linear systems globally UUB ~ V(z) = 27 [/L—TPN + Py A;
by utilizing the Lyapunov minimax approach [11].

Decomposed;(w) and B;(w) into

Applying the control scheme given by (12), we consider two

— 14 — p _
A,(w) = A + Adi(w), @) —muT(HEiT)BTPNx— mxTPNB(I+Ei>N]
Bl(w) =B T ABl(w)’ (8) = J}T[AiTPN + PNAi + (BDl)TPN + PN(BDl)}J}
i = 1,---,N, where 4; satisfies commuting Hurwitz. 2 - -
Therefore, there exists a common positive definite matrix —”—HxTPNB(QIJrEZ—T + E;)BT Pyx
Py satisfying (3). For the uncertainties terthA;(w) and H

AB;(w), we discuss the matched and mismatched cases < ;7(4," Py + Py A;)z + 26|27 Py Bllp — 26| 1|
respectively.

A. ROBUST CONTROL DESIGN FOR MATCHED CASES

Parametric uncertainty of matched case means there exi&l’ the sake of brevity,
continuous functionD; : @ — R™*™ and E; : Q) — R™*™ AiTPN + PyA; = —R, (19)
and a scalad > 0 such that for allw € Q,7i=1,---, N, ’

= 2T(4," Py + Py A))z. (18)

let

_ where,
AAi(w):BDi(w)> (9) R, >0,i€l,---,N.
ABi(w) = BE;i(w), (10)  supstitute (19) into (18),
1 .
I+ 5(Bi(w) + B (w)) = o1. (11) V(z) < 2T Riz < —Amin(Rs)|2. (20)
For anye > 0, let the control scheme be Let
T . A = In,in )\min(Ri)a
aty = { Tz ) if N0l > e z
—@p(m,t) if (b <e we obtain .
12 V() < =All]?. (21)

Issue 4, Volume 1, 2007 244



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

@) if ||p(a,t)]| < e: B. ROBUST CONTROL DESIGN FOR MISMATCHED
CASES

In case the matching conditions (9) and (10) are not
met, we need to investigate the mismatched case. Let us

V((E) = CL'T[AZ'TPN + PNA1 + (BDl)TPN

Pn(BD; igate '
i o decompose the uncertainty in the following way:
_§#¢QL+E?)BTPNx—ngPNB(L+Enu] AA;(w) = BD;(w) + A4, (w), (25)
= mT[/T.TPN + Py A; + (BD;)" Py AB;(w) = BE;(w) + ABi(w). (26)
_ Let )
+Pn(BD;)]z pa = maxmax [IAA; (W), (27)
k3 we
2 ~
_&xTPNB(QI + EZT + Ei)BTPNx pB = maxmeaé( IAB; (W), (28)
€ (2 w
p = max max || D;(wl]. (29)

2
< ‘rT(AiTPN + PNAl)IIJ + 2(5”“” — 25M
‘ Theorem 3.2Uncertain switched linear system (1) under

B _ ) ) the mismatched conditions (27),(28) is UUB with the state
<z (A Py + Pz — 22(”“H = ellll) feedback control (12), if
- . b € Se v <A
<a"(A" Py + PyAe 2= (lul = 5)* + 5
€ where )
d = 2Amaa (P, < D),
< *A”‘T”2 + 56 (22) Y ( N)(pA + 5po)

. ) and the sizes of the uniform ultimate bounded region can be
Following the standard argument in [11], the controlled, 5qe arbitrarily small by a suitable choice of

system is globally practically stable. The uniform bounded p,oof: | et the Lyapunov function candidaté(z) be the

region is with radius same as (15). The derivative bf(z) along the trajectory of
ER2 <R, the controlled system of (1) is
d(r) = { kr? Z; 77: >R (23) ; T Tp .
) V(z)=d" Pyx+ 2" Py
where M) — [T (A" + AAT) + uT(B,” + ABI) Pya
k= max\4 N - -
Amin(Pn)’ +2T Py[(A; + AA)z + (B; + AB;)u]
R— ﬁ +élTPN$ + a)‘TPNéi (30)
=
where ) }
The uniform ultimate bounded ball is with radids> kR? éi(z,w) = AA;(w)z + AB;(w)u(x). (31)

and the maximum amount of time it takes to enter this ball

(and remains there thereafter) is By the proof of Theorem 3, we have

- 0 if r<R, V@gg—mﬂﬁ+§+@ﬁmx+fﬁma
T(d,7) =< Amax(Pn)r®—Amin(Py)R® 5 2
AR?—Loe if v> R, de
(24) = Az|? + = + [A4(w)x
where 2
R = kd*. +AB;(w)u(z)]" Pyx
The uniform stability ball is with radius?. Both d and R +2" Py [AA;(w)r + AB;(w)u(x)]
can be made arbitrarily small by an appropriate choice. of , Oe 1 )
The proof is thus completed. < A2l +2Ama0 (Pv) (pat5o50) 12
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de
= Nlzll2+ = 2 and
Al + 5+l b, _ (50505 =502\ _
, e >\ -502 08 ’
—(A— —. 32
A==l + 2 (32) Therefore, -
Therefore, ify < A holds, the controlled system of (1) is p= BT Pyxp

UUB by following the similar argument as in the proof of 5050.5 —50.2
Theorem 3.1. The size of the ultimate bounded region can =(0 1) ( _50.2 0.8 )Iﬂ

be determined subsequently.
The proof is thus completed. = (—169.4z1 + 2.722) 2| .

V. CONCLUSIONS

A system way to design a robust control for uncertain
switched systems is suggested. The uncertainty may or may
not meet the matched condition. The resulting controlled sys-
Ar(w) = ( 0 1 ) tem performance, under the matching condition, is (global)

! —0.01 + wo(¢) —14wi(t) )’ uniformly ultimate bounded. In the mismatched case, if the

mismatched portion of the uncertainty is within a threshold,
Bi(w) = ( 0 > 7 which is designated by, as shown in Theorem 3.2, the same
14387 + ws(t) performance is guaranteed.

IV. ANUMERICAL EXAMPLE

Consider a uncertain switched linear system (1) with twg
subsystems,
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