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Probability of Failure on Demand for Systems
with Partial Stroke Test
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Abstract—The average Probability of Failure on Demand (PFD)
considering the Proof Test interval is one possibility to compare
different safety-related systems. In this paper we intend to derive the
average PFD for a 1001 system taking into account the Proof Test as
well as the Partial Stroke Test (PST). Thereby we will specify a
unique mathematic function without any help of a probability band.
Doing so, we get, on the one hand, additional correlations between
the reduction of PFD and the diagnostic coverage factor, and on the
other hand, between the PFD value of a system without PST and a
system with PST. Finally we will present an approximation in order
to calculate the PFD value, if the ratio between the PST interval and
the Proof Test interval is very small.
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I. INTRODUCTION

For any developers of safety-related systems, it is a
challenge to extend the Proof Test interval for safety-related
applications and to get, at the same time, an identical or, even
better, a smaller Probability of Failure on Demand (PFD). In
the standard IEC/EN 61508 a Proof Test is defined as a
“periodic test performed to detect failures in a safety-related
system so that, if necessary, the system can be restored to an
“as new” condition or as close as practical to this condition”
[1]. One possibility to extend the Proof Test interval is the use
of Partial Stroke Tests (PST). These tests may be performed
between two Proof Tests, manually or automatically,
sometimes or frequently. In the scientific literature there are
only a few approaches to describe mathematically the PFD of
safety-related Systems using the PST [2], [3], [4]. The
parameters in Table | are necessary to understand the
equations shown in this paper.

TABLE |
PARAMETERS
PFD.yq Probability of Failure on Demand, average
Apu Rate for dangerous, undetectable failures
DCpsr Diagnostic coverage factor for a PST
tpsT Time of the PST
tpr Time of the proof-test
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In [2] the average PFD, PFDgaq(t), of a system with PST
according to (1) is calculated.

1
PFDayg1(t) = 5 DCpst - ApU t1.psT
1)
1
+5'(1— DCpst) - Apu “tpT

In [3] and [4] it is additionally kept in mind that the PFD
value after a successful PST only depends on failures that
have not been detected by the PST. Therefore, two equations
are necessary to describe by mathematics this issue, see (2)
and (3).

I:’FDavgl,w.PST = PFDavgl(t) (2)

1
PFDaygtapst (1) = 5 - (1=DCps) - Apy -tpr @)

So the average PFD can only be described by an average
band of probability, Fig. 1.

The calculation of a PFD for a 1001 system without a PST
is described in e. g. [4] - [8].

For a 1ool system with PST in this paper we specify a
unique mathematic function without a helping probability
band. Doing so, we get, on the one hand, additional
correlations between the reduction of PFD and the diagnostic
coverage factor, and on the other hand, between the PFD
value of a system without PST and a system with PST.
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Il. 1001-SYSTEM WITH PST, PFDyc3.w. pst

With the method of calculation presented here, which as far
we know, hasn’t been considered yet, one can give a constant
value as the average value for the PFD value. The principle is,
that at first an average value will be appraised for each PST
interval following the well known method

14
[ f(t)dt Q)
1710ty
Finally the average value will be generated via all appraised
single average value.
The PFD value between two PSTs will be appraised using
the following equation and will occur in sections.

E@t) =

ﬂ’DU't OSt<tl.PST
i psT <U<1p pst

ty psT <t<t3 psT

Apy -t=DCpst - Apy -l psT
PFD =< Apy 't=DCpst - Apy 12 psT

Apy ‘t=DCpst -Apy YastpsT  lastpsT <t <tpT
The average value for the functions defined in sections will
be calculated with (4). The result is:
For the interval 0<t <ty pgr:

1
PFDayg 3 :E'/quU ‘b psT ©)
For the interval t; pst <t <ty pst:
1 1

2 2
PFDyyg 3 = E'lDU : (tapst” —trpst”)

ty pst
—DCpst - Apy - (t2.psT —t.psT)

1 typst’ 1
=—-Apu- —Apu “tipst -| -+ DCpst
2 t.psT 2
(6)
For the interval ty pgt <t<t3 pgt:
2
1 t3.pst
PFDayg3 == 4pu L3PST
2 t.psT
()

1 typst”
—Apy *| 7 —=—=—+DCpgr ‘to psT

ty pst

For the following PST interval, the corresponding (7) will be
used.
For the last interval t a5 pst <t <tp, Which ends with

the Proof-Test time tpr:

1 ter
I:’FDavg 3= E'/lDU : t psT
| 2 (8)
1 Uast psT
—dpy | =

7 3 +DCpst 1 jast pST
1.PST

Once all PFD,g; have been appraised in sections, the
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PFDaygs, west Will be defined via the average value of all
PFDaygs:
1
Number of PST
With the same parameters as used for Fig. 1 we get the
PFDavgsw.pst Value and the trajectory as shown in Fig. 2.

F’FDavg 3, Ww.PST = 2 I:)':Davg 3 C))

I11.  COHERENCE BETWEEN PFDy, pst AND PFD 3, wpst

The approach presented up to now to appraise the PFDgygs,
wpst consists at first to appraise the single PFD,, value
between two PSTs and then to calculate the average value via
all PFD,y.

Underneath, it should be attested, as far as we know for the
first time, that the coherence between PFD und PFDgyg3, w.pst
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Fig. 2 PFDgaygs With Apy = 7*10° 1/h, tpr =3 years, tpgr =
12 months, DCpst =60 %
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exists. Thereby it will be provided that the intervals between
two PSTs are identical, though this is not necessary, as one
can easily demonstrate, e. g. with the help of the Riemann’s
integrable criteria [9]. This attests that each defined and
limited function f(x) in [a, b] is than exactly integrated via
[a, b], if this one has an endless number of discontinuity on
[a, b]. Than the integral will be calculated via the function f(x)
through the separation of the interval [a, b] into endless small
intervals [9].

Generally the following equation counts for the PFDay,
successively written with PFDgarta, in n-ten PST-interval
(generalization of (7))

PFDpartav = %tﬂLUT tnpsT _t(n—l).PSTZ 10)
—Apu - DCpst -t (n_1).psT

with

t(n-1).psT =th.psT —t1psT (11)
follows

PFD partay = (1= DCpst ) Apy “tn pst + A (12)
whereas

A:(DCPST —%J'/lDU "l psT (13)

is. A detailed derivation of these equations can be found in
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[10].

In order to calculate the average value (PFDayg3, wpst) Via all
PFDgartav, it Will be provided that n intervals exist. Thereby
the following equation should count, what would otherwise be
a limit of the demonstration:

k=1...n

thpst =tpT |

It means, that the time of the n. PSTs coincides with the
time of the Proof Test, and

to.pst =0, the time of the process to be defined.

Firstly the single PFDpara Of all n intervals will be
calculated.

With t, =K -t pst

it results in

k=1 PFDpartay = (L~ DCpsr )- Apy -L-trpst + A

= (1-DCpsr )- Apy -1 typsT +

1
[DCPST _Ej “Apu t1psT

(14)

1
=5 #pu “Lpst

which corresponds to (5)! And for

k=2: PFDparay = (L= DCpsr)-Apy -2-typst + A
k=3 PFDpartay = (L~ DCpsr )- Apu -3ty pst + A
k=4: PFDparay = (1~ DCpsr)- Apy -4-typst +A
etc. up to

k=n: PFDpata = (L-DCpsr)-2py -N-typst +A

= Apu thpsT —E'ﬂDU “t1.psT

~DCpsr - Apu (tn.pst —t1psT)
This equation is the same as (8) for the PST-interval of
tiast psT <t <tpT , asshown in the following calculation:
k=n: PFDpaya = (L—DCpgr )-Apy -N-ty pst + A

= (1-DCpst ) Apy “tnpsT +

1
(DCPST —EJ “Apu tpsT

1
= Apu “th.psT _E'ADU S

DCpst - Apu (th.pst —t1.psT)
with (12) and with t, pst =tpt and

tnpst —t1.psT =tiast psT results for (see [10])

1 Zpu
I:’FDpart \

'[tPTZ_tI tPSTZ]
as
2 typst

k=n:

—Apu - DCpst “tjast psT

which is the same as in (8).
When the sum is made via all PFDpqt 4, 1. € from k=1 up
to k =n, so results in:
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SPFD partav = (L~ DCpst ) Apy -
1+2+3+4+...+n)-t +n-A

( )ty pst
= (1-DCpst ) Apy LR

+n-A
To calculate the average value of the PFDgygs wpst from
(15), this equation must still be divided over the amount of
PST intervals:

(15)
‘b1 psT

F)FDavg 3, Ww.PST =

(n+1)
2

Y psT +A
1
= E'(l— DCpst )- Apy - (N+1) -ty psT + A
(16)
With (n +l) 'tl.PST :tpT +t1.ps'|' and (13)
1
A:(DCPST —Ej'ﬂou "t psT

it results in

1
PFDayg3, w.psT = ?(1_ DCpsr ) Apu - (tpr +t1psT )+

1
(DCPST _Ej “Apu “tipst

_ @an
1
= ?[(1_ DCpsr )-Apuy “tpr +
DCpst - Apy “t1.psT ]
Compare this equation with
PFDy, pst (t) = DCpst - Apy -t1, psT +
(1-DCpst)-4py -t (18)
= Apy ‘[DCpst t1 psT +
(1-DCpsr)-t]
totime t = tpy:
PFDy, pst (t =tpr) = (1-DCpst) - Apy tpT +
DCpst -Apu "t psT ,
so one finds, that counts:
1
PFDavg3, w.psT = rl PFDy, psT (t=tp7). (19)

IVV. COHERENCE BETWEEN THE RELATIVE PROBABILITY OF
FAILURE REDUCTION Byre, AND THE DCpst FACTOR

Assuming that all PST intervals have the same length, i. e.
tn.PST = tl.PST , and so further the inequation tl.PST << tpT

counts, a coherence between the relative probability of failure
reduction By, and the DCpgr factor should be appraised in the
following. For the probability of failure reduction B; counts at
time tpr of the Proof Test the equation, see [3] (PFDyqpst:
PFD value for a system without a PST; PFD,, pst: PFD value
for a system with a PST):

-
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By (t=tpr) = PFDyq pst (t =tp7) —PFDy pst (t=tp7) 20)
= Apu -DCpst - (tpT —t1 psT)

A relative probability of failure reduction By, can therefore at
time tpr be defined as follow:

By (t=tpr)
PFDyo. pst (t=tpT)

~ Apuy -DCpst - (tpr —t1 psT)

Birel (t=tpr) =

(21)
Apu “tpr

t
~ DCper .[1_ 1. PSTJ
tpr
Provided that t; pst << tpr ONe obtains the approximation
Birel (t=tpr) =~ DCpst . (22)
If one dissolves (21) according to PFD,, pst (t =tpt) this
that

would mean for practical application,
t; psT <<tpt counts, the following:

PFDy, pst (t=tp7) = PFDyq psT (t=tp1) —
Birel (t =tpr) - PFDyo, pst (t=tpT)
= PFDyo, pst (t=tp7)-
(L Byrer (t =tpr))
= PFDyq_pst (t=tpr)-(L- DCpsr )
(23)
It means that the probability of failure of a system with PST
at time t=tpy depends only, provided that, t; pst <<tpt

counts, on the probability of failure of a system without PST
and the DCpg7 factor!

To underline the validity of this statement, the results
achieved in this paper will be compared with each other. In a
first work following parameters are given:

tpr =3 Jahre =26280h and

t; psT =4380h =05 years

/[=8760h=1 year
//=13140h =15 vyears
The chosen failure rate is

provided

The results for the relative probability of failure reduction
Bire, according to (21) are shown in Table II.

To check the validity of (23), the PFD value for the exact
value for PFD,, pst (t =tpt) according to (18) as well as the

one from (23) calculated value and the relative difference of
both values are given in Table Ill. The ratio between t; pst
and tpy averages there

tipst _ 4380h

fort =4380h: = =0,1666
LPST tor 26280

for t; pst =8760h: tpst _ 87600 _ 5353
' tpr  26280h
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bpst _ _
tor  26280h

As one can see on the values in Table lll

Ypst _ 43800 41666 s not satisfying to become an

tpr  26280h

adequate small difference between the exact PFD and the
approximated PFD. In this case it means that the PFD value
must be calculated with the exact formula for a system with
PST.

To check the validity of (23), the PFD value for the exact
value of PFD,, pst (t =tpt) according to (18) and the ones

13140h _ .

for tl.PST =13140h:

a ratio

from (23) calculated values as well as the relative difference
of both values are given in Table V. The ratio between t; pst

and tpy averages there:

TABLE I
TABLE OF VALUE FOR THE REL. PROBABILITY OF FAILURE REDUCTION

Byrey WITH tpr =3 years

DCrsr 60% 70% 80% 90%
tipst
4380 50,00% 58,33% 66,67% 75,00%
8760 40,00% 46,67% 53,33% 60,00%
13140 30,00% 35,00% 40,00% 45,00%

t 24 h
forty psy = 24h: LPST = =0,00274
' tor  8760h

fort, psy = 48h: LPST _ 48N _ 400548
: tor  8760h

The result would be different if one changes the parameters
as shown here:
tpT =1Jahr=8760h

1
t =24h=— \vyears
1.PST 365 y

/= 48h -2 years
365
/l= 168h = I years
365

The chosen failure rate is
Ap =Apy. pT :3,8~10‘7%.

In Table IV we can see the result for the relative probability
of failure reduction B, with these parameter values. It may
be assessed that the values of By, is nearly equal to the
chosen DCpst factor.

for t; pst =168h: tl-ﬂ: ﬂ
: tpy  8760h

As one can see on the values in TableV, a ratio

=0,01918

t i L
—1t-PST <0,02 is satisfying to become an adequate small
PT

difference between the exact PFD and the approximated PFD.
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TABLE 1l
TABLE OF VALUE FOR THE REL. PROBABILITY OF FAILURE REDUCTION

Birey WITH tpr =3 year

DCpst

60% 70%
tipsT
exac. app. rel. A exac. app. rel. A
PFD PFD in % PFD PFD in %
4380 9,20E-04 7,36E-04 20,00 7,67E-04 552E-04 28,00
8760 1,10E-03 7,36E-04 33,33 9,81E-04 552E-04 43,75
13140  1,29E-03 7,36E-04 42,86 1,20E-03 552E-04 53,85
DCpst
—_— 80% 90%
tipst
exac. app. rel. A exac. app. rel. A
PFD PFD in % PFD PFD in %
4380 6,13E-04 3,68E-04 40,00 4,60E-04 1,84E-04 60,00
8760 8,58E-04 3,68E-04 57,14  7,63E-04 1,84E-04 75,00
13140  1,10E-03 3,68E-04 66,67 1,01E-03 1,84E-04 81,82

It should be observed that the approximation is optimally
adapted when the DCpsy factor is also small. It means in this
case that it is easier to calculate the PFD value for a System
with PST using the approximation formula.

intervals have the same length, i. e. t, pst =11 psT , and that
the inequation t; pst << tpy counts. It results then from (19)
and (23).

1
PFDavg3, wpst = 7 PFDy, pst (t =tpT)

1
5 PFDuwo.psT (t=tpr)-

(L-DCpsr)

(24)
To check the validity of this equation the same parameters
as mentioned before are used again:
tpr =1Jahr =8760h

tipst =24h= % years
/l= 48h :i years
365

/= 168h = I years
365
The chosen failure rate is

Ap = Apu, pT :3,8-10‘7%.

V. COHERENCE BETWEEN PFDy pst AND PFD 63, wpst

From both previous chapters 11l and 1V a light coherence
between the PFD values PFDy,pst, i. €. for a system without
PST, and the average PFD value, PFDgygs wpst, i. €. for a
System with PST, can be established. Provided that, all PST
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TABLE IV In Table VI the PFD values with exact values for
TABLE OF VALUE FOR THE REL. FAILURE PROBABILITY REDUCTION PFD, g3 miter according to (5) up to (9), in (25) are presented
Birel WITH tpr =1 year
TABLE VI
¢ DCPST 50% 65% 75% 85% TABLE OF COMPARISON TO THE EXACTLY PFD VALUE AND THE APPROXIMATED
1.PST
PFD vaLues wiTH tpr =1 year
24 49,86% 64,82% 74,79% 84,77% PT y
48 49,73% 64,64% 74,59% 84,54% DCpsr S0% 6504
168 49,04% 63,75% 73,56% 83,37% oo ° ’
exac. app. rel. A exac. app. rel. A
PFDavg3,w PFDang,w in % PFDavg:%,w PFDavg3 in %
TABLEV -
24 8,34E-04 832E-04 027 586E-04 583E-04 051
TABLE OF VALUE FOR THE REL. FAILURE PROBABILITY REDUCTION 48 8,39E-04 8,32E-04 0182 5,90E-04 5,83E-04 1,28
Birel WITH tpr =1 year 168 8,46E-04 8,32E-04 1,62 6,02E-04 583E-04 318
DC DC
t—"ST 50% 65% ST 75% 85%
LPST | | tipst
exac. app. rel. A exac. app. rel. A
PED PFI;FI)D in % PED PFI;FIJD in % exac. app. rel. A exac. app. rel. A
ino ino
24 1,67E-03 1,66E-03 027 117E-03 1,17E-03 0,51 PFDagaw  PFDags  in% PFD PFDin%
48 1,68E-03 1,66E-03 0,82 1,18E-03 1,17E-03 1,00 : . ) :
168 1,69E-03 1,66E-03 1,89 1,20E-03 1,17E-03 2,92 24 42004 416E04 082  254E-04 250E-04 153
DCoer 48 424E-04 4,16E-04 1,88  258E-04 2,50E-04 3,27
T 5% 85% 168 4,39E-04 416E-04 519  2,76E-04 2,50E-04 9,58
1.PST
exac. app. rel. A exac. app. rel. A
PFD PFD in % PFD PFD in %
24 8,39E-04 832E-04 082  507E-04 499E-04 153 generally,
1
48 8,48E-04 832E-04 1,88  516E-04 499E-04 3,27 PFDavg3, mittel = F’ZPFDpart av
168 8,78E-04 832E-04 519  552E-04 4,99E-04 9,58
1 1 Jpy [ 2 2]
== r “Ith.psT” —t(n-1).psT
n ty psT

—Apy - DCpsr -t (n—l).PST)
(25)
and the ones from (24) calculated values and the relative

difference of both values is given.
As one can see on the values in Table VI, a ratio of
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tlt'ﬂ<0,02 is satisfying to become an adequate small
PT

difference between the exact and the approximate
PFDavng,W.PST value.

It should be observed that the approximation is optimally
adapted when the DCpsy factor is also small. It means in this
case, that it is very easy to calculate the PFD value for a
system with PST using the approximation formula (24).

VI. CONCLUSION

In this paper the mathematical coherence between the PFD
value of a 1001 system without PST and the average PFD
value of a 1001 system with PST has been presented. If the
relative probability of failure reduction is approximately the
DCopst factor or if the ratio between the PST interval and the
Proof Test interval is sufficiently small, then for this
calculation we can use for calculation of the PFD value a
simple approximation, see (24).

Advanced studies may deal with other architecture models
like 1002 or 2003 systems. We assume similar coherence
between the different PFD parameters as examined for the
1ool system in this paper.
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