
 

 

  
Abstract—The average Probability of Failure on Demand (PFD) 

considering the Proof Test interval is one possibility to compare 
different safety-related systems. In this paper we intend to derive the 
average PFD for a 1oo1 system taking into account the Proof Test as 
well as the Partial Stroke Test (PST). Thereby we will specify a 
unique mathematic function without any help of a probability band. 
Doing so, we get, on the one hand, additional correlations between 
the reduction of PFD and the diagnostic coverage factor, and on the 
other hand, between the PFD value of a system without PST and a 
system with PST. Finally we will present an approximation in order 
to calculate the PFD value, if the ratio between the PST interval and 
the Proof Test interval is very small. 
 

Keywords—1oo1-system, Diagnostic Coverage Factor, Partial 
Stroke Test, Probability of Failure on Demand, Proof Test, Relative 
Probability of Failure Reduction 

I. INTRODUCTION 
For any developers of safety-related systems, it is a 

challenge to extend the Proof Test interval for safety-related 
applications and to get, at the same time, an identical or, even 
better, a smaller Probability of Failure on Demand (PFD). In 
the standard IEC/EN 61508 a Proof Test is defined as a 
“periodic test performed to detect failures in a safety-related 
system so that, if necessary, the system can be restored to an 
“as new” condition or as close as practical to this condition” 
[1]. One possibility to extend the Proof Test interval is the use 
of Partial Stroke Tests (PST). These tests may be performed 
between two Proof Tests, manually or automatically, 
sometimes or frequently. In the scientific literature there are 
only a few approaches to describe mathematically the PFD of 
safety-related Systems using the PST [2], [3], [4]. The 
parameters in Table I are necessary to understand the 
equations shown in this paper. 

 

 
 

 

In [2] the average PFD, PFDavg1(t), of a system with PST 
according to (1) is calculated. 
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In [3] and [4] it is additionally kept in mind that the PFD 
value after a successful PST only depends on failures that 
have not been detected by the PST. Therefore, two equations 
are necessary to describe by mathematics this issue, see (2) 
and (3). 
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So the average PFD can only be described by an average 
band of probability, Fig. 1. 

The calculation of a PFD for a 1oo1 system without a PST 
is described in e. g. [4] - [8]. 

For a 1oo1 system with PST in this paper we specify a 
unique mathematic function without a helping probability 
band. Doing so, we get, on the one hand, additional 
correlations between the reduction of PFD and the diagnostic 
coverage factor, and on the other hand, between the PFD 
value of a system without PST and a system with PST. 
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TABLE I 
PARAMETERS 

avgPFD  Probability of Failure on Demand, average 

DUλ  Rate for dangerous, undetectable failures 
PSTDC  Diagnostic coverage factor for a PST 

PSTt  Time of the PST 

PTt  Time of the proof-test 
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6,00E-04

8,00E-04
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 PFD without PST 
 PFDavg without PST 
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Fig. 1 PFDavg1 with DUλ  = 7*10-8 1/h, PTt  = 3 years, PSTt  = 

12 months, PSTDC  = 60 % 
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II. 1OO1-SYSTEM WITH PST, PFDAVG3,W. PST 
With the method of calculation presented here, which as far 

we know, hasn’t been considered yet, one can give a constant 
value as the average value for the PFD value. The principle is, 
that at first an average value will be appraised for each PST 
interval following the well known method 

∫⋅
−

=
1

0

)(1)(
01

t

t
dttf

tt
tE  (1) 

Finally the average value will be generated via all appraised 
single average value. 

The PFD value between two PSTs will be appraised using 
the following equation and will occur in sections. 
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The average value for the functions defined in sections will 

be calculated with (4). The result is: 
For the interval PSTtt .10 <≤ : 

PSTDUavg tPFD .13 2
1

⋅⋅= λ  (5) 

For the interval PSTPST ttt .2.1 <≤ : 

⎟
⎠
⎞

⎜
⎝
⎛ +⋅⋅−⋅⋅=

−⋅⋅−

−⋅⋅⋅=

PSTPSTDU
PST

PST
DU

PSTPSTDUPST

PSTPST
PST

DUavg

DCt
t

t

ttDC

tt
t

PFD

2
1

2
1

)(

)(1
2
1

.1
.1

2
.2

.1.2

2
.1

2
.2

.1
3

λλ

λ

λ

  

(6) 
For the interval PSTPST ttt .3.2 <≤ : 
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For the following PST interval, the corresponding (7) will be 
used. 

For the last interval PTPSTlast ttt <≤ , which ends with 

the Proof-Test time tPT: 
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Once all PFDavg3 have been appraised in sections, the 

PFDavg3, w.PST will be defined via the average value of all 
PFDavg3: 

∑⋅= 3.,3 PSTNumber
1

avgPSTwavg PFD
of

PFD  (9) 

With the same parameters as used for Fig. 1 we get the 
PFDavg3,w.PST value and the trajectory as shown in Fig. 2. 

 

III. COHERENCE BETWEEN PFDW.PST AND PFDAVG3, W.PST 
The approach presented up to now to appraise the PFDavg3, 

w.PST consists at first to appraise the single PFDavg value 
between two PSTs and then to calculate the average value via 
all PFDavg. 

Underneath, it should be attested, as far as we know for the 
first time, that the coherence between PFD und PFDavg3, w.PST 

exists. Thereby it will be provided that the intervals between 
two PSTs are identical, though this is not necessary, as one 
can easily demonstrate, e. g. with the help of the Riemann’s 
integrable criteria [9]. This attests that each defined and 
limited function f(x) in [a, b] is than exactly integrated via 
[a, b], if this one has an endless number of discontinuity on 
[a, b]. Than the integral will be calculated via the function f(x) 
through the separation of the interval [a, b] into endless small 
intervals [9]. 

Generally the following equation counts for the PFDavg, 
successively written with PFDpart av, in n-ten PST-interval 
(generalization of (7)) 
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with 
PSTPSTnPSTn ttt .1.).1( −=−  (11) 

follows 
( ) AtDCPFD PSTnDUPSTavpart +⋅⋅−= .1 λ  (12) 
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is. A detailed derivation of these equations can be found in 
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Fig. 2 PFDavg3 with DUλ  = 7*10-8 1/h, PTt  = 3 years, PSTt  = 

12 months, PSTDC  = 60 % 
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[10]. 
In order to calculate the average value (PFDavg3, w.PST) via all 

PFDpart av, it will be provided that n intervals exist. Thereby 
the following equation should count, what would otherwise be 
a limit of the demonstration: 

nk …1=  
PTPSTn tt =. , 

It means, that the time of the n. PSTs coincides with the 
time of the Proof Test, and 

0.0 =PSTt , the time of the process to be defined. 
Firstly the single PFDpart av of all n intervals will be 

calculated. 
With PSTk tkt .1⋅=  (14) 
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which corresponds to (5)! And for 
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This equation is the same as (8) for the PST-interval of 
PTPSTlast ttt <≤ , as shown in the following calculation: 
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with (12) and with PTPSTn tt =.  and 

PSTlastPSTPSTn ttt =− .1.  results for (see [10]) 
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which is the same as in (8). 
When the sum is made via all PFDpart av, i. e from k = 1 up 

to k = n, so results in: 
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To calculate the average value of the PFDavg3, w.PST from 
(15), this equation must still be divided over the amount of 
PST intervals: 
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Compare this equation with 
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to time t = tPT: 
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IV. COHERENCE BETWEEN THE RELATIVE PROBABILITY OF 
FAILURE REDUCTION B1REL AND THE DCPST FACTOR 

Assuming that all PST intervals have the same length, i. e. 
PSTPSTn tt .1. = , and so further the inequation PTPST tt <<.1  

counts, a coherence between the relative probability of failure 
reduction B1rel and the DCPST factor should be appraised in the 
following. For the probability of failure reduction B1 counts at 
time tPT of the Proof Test the equation, see [3] (PFDwo.PST: 
PFD value for a system without a PST; PFDw.PST: PFD value 
for a system with a PST): 
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A relative probability of failure reduction B1rel can therefore at 
time tPT be defined as follow: 
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Provided that PTPST tt <<.1  one obtains the approximation 

PSTPTrel DCttB ≈= )(1 . (22) 
If one dissolves (21) according to )(. PTPSTw ttPFD =  this 

would mean for practical application, provided that 
PTPST tt <<.1  counts, the following: 

( )
( )PSTPTPSTwo

PTrel

PTPSTwo

PTPSTwoPTrel

PTPSTwoPTPSTw

DCttPFD
ttB

ttPFD

ttPFDttB

ttPFDttPFD

−⋅==
=−

⋅==

=⋅=

−===

1)(
)(1

)(

)()(

)()(

.

1

.

.1

..

 

 (23) 
It means that the probability of failure of a system with PST 

at time PTtt =  depends only, provided that, PTPST tt <<.1  
counts, on the probability of failure of a system without PST 
and the DCPST factor! 

To underline the validity of this statement, the results 
achieved in this paper will be compared with each other. In a 
first work following parameters are given: 
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The results for the relative probability of failure reduction 
B1rel. according to (21) are shown in Table II. 

To check the validity of (23), the PFD value for the exact 
value for )(. PTPSTw ttPFD =  according to (18) as well as the 

one from (23) calculated value and the relative difference of 
both values are given in Table III. The ratio between PSTt .1  
and PTt  averages there 
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adequate small difference between the exact PFD and the 
approximated PFD. In this case it means that the PFD value 
must be calculated with the exact formula for a system with 
PST. 

To check the validity of (23), the PFD value for the exact 
value of )(. PTPSTw ttPFD =  according to (18) and the ones 

from (23) calculated values as well as the relative difference 
of both values are given in Table V. The ratio between PSTt .1  
and PTt  averages there: 
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The result would be different if one changes the parameters 
as shown here: 
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The chosen failure rate is 
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In Table IV we can see the result for the relative probability 
of failure reduction B1rel with these parameter values. It may 
be assessed that the values of B1rel is nearly equal to the 
chosen DCPST factor. 
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As one can see on the values in Table V, a ratio 

02,0.1 <
PT

PST
t

t
 is satisfying to become an adequate small 

difference between the exact PFD and the approximated PFD. 

TABLE II 
TABLE OF VALUE FOR THE REL. PROBABILITY OF FAILURE REDUCTION 

relB1  WITH yearstPT 3=  

DCPST 

t1.PST 60% 70% 80% 90% 

4380 50,00% 58,33% 66,67% 75,00% 
8760 40,00% 46,67% 53,33% 60,00% 
13140 30,00% 35,00% 40,00% 45,00% 
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TABLE VI 
TABLE OF COMPARISON TO THE EXACTLY PFD VALUE AND THE APPROXIMATED 

PFD VALUES WITH yeartPT 1=  

DCPST 
t1.PST 

50% 65% 

 exac. 
PFDavg3,w 

app. 
PFDavg3,w 

rel. Δ 
in % 

exac. 
PFDavg3,w 

app. 
PFDavg3

,w 

rel. Δ 
in % 

24 8,34E-04 8,32E-04 0,27 5,86E-04 5,83E-04 0,51 
48 8,39E-04 8,32E-04 0,82 5,90E-04 5,83E-04 1,28 
168 8,46E-04 8,32E-04 1,62 6,02E-04 5,83E-04 3,18 
DCPST 

t1.PST 
75% 85% 

 exac. 
PFDavg3,w 

app. 
PFDavg3

,w 

rel. Δ 
in % 

exac. 
PFD 

app. 
PFD 

rel. Δ 
in % 

24 4,20E-04 4,16E-04 0,82 2,54E-04 2,50E-04 1,53 

48 4,24E-04 4,16E-04 1,88 2,58E-04 2,50E-04 3,27 

168 4,39E-04 4,16E-04 5,19 2,76E-04 2,50E-04 9,58 

 

It should be observed that the approximation is optimally 
adapted when the DCPST factor is also small. It means in this 
case that it is easier to calculate the PFD value for a System 
with PST using the approximation formula. 

 

V. COHERENCE BETWEEN PFDWO.PST AND PFDAVG3, W.PST 
From both previous chapters III and IV a light coherence 

between the PFD values PFDwo.PST, i. e. for a system without 
PST, and the average PFD value, PFDavg3, w.PST, i. e. for a 
System with PST, can be established. Provided that, all PST 

intervals have the same length, i. e. PSTPSTn tt .1. = , and that 
the inequation PTPST tt <<.1  counts. It results then from (19) 
and (23). 
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To check the validity of this equation the same parameters 

as mentioned before are used again: 
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In Table VI the PFD values with exact values for 

mittel,avgPFD 3  according to (5) up to (9), in (25) are presented 

generally, 
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(25) 
and the ones from (24) calculated values and the relative 
difference of both values is given. 

As one can see on the values in Table VI, a ratio of 

TABLE III 
TABLE OF VALUE FOR THE REL. PROBABILITY OF FAILURE REDUCTION  

relB1  WITH yeartPT 3=  

DCPST 
t1.PST 

60% 70% 

 exac. 
PFD 

app. 
PFD 

rel. Δ 
in % 

exac. 
PFD 

app. 
PFD 

rel. Δ 
in % 

4380 9,20E-04 7,36E-04 20,00 7,67E-04 5,52E-04 28,00 
8760 1,10E-03 7,36E-04 33,33 9,81E-04 5,52E-04 43,75 
13140 1,29E-03 7,36E-04 42,86 1,20E-03 5,52E-04 53,85 
DCPST 

t1.PST 
80% 90% 

 exac. 
PFD 

app. 
PFD 

rel. Δ 
in % 

exac. 
PFD 

app. 
PFD 

rel. Δ 
in % 

4380 6,13E-04 3,68E-04 40,00 4,60E-04 1,84E-04 60,00 

8760 8,58E-04 3,68E-04 57,14 7,63E-04 1,84E-04 75,00 

13140 1,10E-03 3,68E-04 66,67 1,01E-03 1,84E-04 81,82 

 

TABLE IV 
TABLE OF VALUE FOR THE REL. FAILURE PROBABILITY REDUCTION 

relB1  WITH yeartPT 1=  

DCPST 

t1.PST 50% 65% 75% 85% 

24 49,86% 64,82% 74,79% 84,77% 
48 49,73% 64,64% 74,59% 84,54% 
168 49,04% 63,75% 73,56% 83,37% 

 

TABLE V 
TABLE OF VALUE FOR THE REL. FAILURE PROBABILITY REDUCTION  

relB1  WITH yeartPT 1=  

DCPST 
t1.PST 

50% 65% 

 exac. 
PFD 

app. 
PFD 

rel. Δ 
in % 

exac. 
PFD 

app. 
PFD 

rel. Δ 
in % 

24 1,67E-03 1,66E-03 0,27 1,17E-03 1,17E-03 0,51 
48 1,68E-03 1,66E-03 0,82 1,18E-03 1,17E-03 1,00 
168 1,69E-03 1,66E-03 1,89 1,20E-03 1,17E-03 2,92 
DCPST 

t1.PST 
75% 85% 

 exac. 
PFD 

app. 
PFD 

rel. Δ 
in % 

exac. 
PFD 

app. 
PFD 

rel. Δ 
in % 

24 8,39E-04 8,32E-04 0,82 5,07E-04 4,99E-04 1,53 

48 8,48E-04 8,32E-04 1,88 5,16E-04 4,99E-04 3,27 

168 8,78E-04 8,32E-04 5,19 5,52E-04 4,99E-04 9,58 
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02,0.1 <
PT

PST
t

t  is satisfying to become an adequate small 

difference between the exact and the approximate 
PFDavg3,w.PST value.  

It should be observed that the approximation is optimally 
adapted when the DCPST factor is also small. It means in this 
case, that it is very easy to calculate the PFD value for a 
system with PST using the approximation formula (24). 

VI. CONCLUSION 
In this paper the mathematical coherence between the PFD 

value of a 1oo1 system without PST and the average PFD 
value of a 1oo1 system with PST has been presented. If the 
relative probability of failure reduction is approximately the 
DCPST factor or if the ratio between the PST interval and the 
Proof Test interval is sufficiently small, then for this 
calculation we can use for calculation of the PFD value a 
simple approximation, see (24). 

Advanced studies may deal with other architecture models 
like 1oo2 or 2oo3 systems. We assume similar coherence 
between the different PFD parameters as examined for the 
1oo1 system in this paper. 
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