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A Modal Logic Approach
to Decision Process Petri Nets

Julio B. Clempner and Jesus Medel

Abstract�In this paper we introduce a new modeling para-
digm for developing decision process representation associating
to any Decision Process Petri net (DPPN) a Kripke structure
(KS). The principal characteristics of this model is its ability to
represent and analyze the shortest-path properties of a decision
process. In this sense, we use a Lypunov-like function as a state-
value function for path planning, obtaining as a result new
characterizations for �nal decision points. We show that the
dynamics of the DPPN can be captured by a KS and, some
dynamic properties of a DPPN can be stated in temporal logics.
The temporal logic is constructed according to the Lypunov-
like function syntax and semantics. Moreover, we consider some
results and discuss possible directions for further research.

Index Terms�Lyapunov theory, Bellman's equation, Forward
Decision Process, Markov decision process.

I. INTRODUCTION
The analysis, design and development of large systems is a

very dif�cult task. Especially, systems consisting of concurrent
processes involving continuous-time Markov process as well
as it associated stochastic process. In this sense, the need to
avoid design errors becomes more and more important. The
fact is that the size of the systems is rapidly growing. If we
suppose that the number of errors in a system is proportional
to its size, it becomes clear that the larger the system is, more
problematic will be its design, and less will be the probability
that it will correctly work.
For this reason, the application of formal methods in the de-

sign of decision process systems is more and more frequently
discussed. There are some approaches that are independent
of the kind of system that is to be veri�ed. However, in most
cases, the kind of system determines the kinds of properties to
be veri�ed, and this in turn makes one or another veri�cation
formalism more or less suited. We will consider different ways
how formal methods can be applied to guide the design of
complex systems. In particular, we distinguish between two
main approaches: Decision Process Petri Nets and Temporal
logics.
The Decision Process Petri Nets (DPPN) is a powerful

modeling framework, which combines advantages of the place-
transitions Petri Nets (PN) with the expressive power of the
decision process ([5], [6]). It extends the place-transitions
Petri net theoretic approach including the Markov decision
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processes, using a utility function as a tool for trajectory
planning. On the one hand, place-transitions Petri nets are
used for process representation, taking advantage of the well-
known properties of this approach namely, formal semantic
and graphical display, giving a speci�c and unambiguous
description of the behavior of the process. On the other hand,
Markov decision processes have become a standard model for
decision theoretic planning problems, having as key drawbacks
the exponential nature of the dynamic policy construction
algorithms. Although, both perspectives are integrated in a
DPPN they work in different execution levels. That is, the
operation of the place-transitions Petri net is not modi�ed
and the utility function is used exclusively for establishing a
trajectory tracking in the place-transitions Petri net. The DPPN
is able to express the liveness, safety, persistence and fairness
properties of the PN.
Temporal logics are usually de�ned in terms of Kripke

structures (KS). A Kripke structure can be represented by a
bipartite graph having two classes of nodes, and no edges
can relate nodes from the same set. The reachable states of
the system are represented by places nodes and the action of
the system as transitions nodes. It also contains a labeling
of the states of the system with properties that hold in each
state. Therefore, the dynamics of a discrete system can be
captured by a Kripke structure and, some dynamic properties
of a discrete system can be stated in temporal logics. In this
sense, [8], [12] have investigated the temporal logics language
corresponding to �nte-state automaton and place-transitions
Petri Nets.
Kripke structures are closely related to Decision Process

Petri nets, however there are fundamental differences. A
DPPN represents systems that understand tokens as inputs
and respond to these by performing actions in form of state
transitions leaded by a utility function. Nevertheless, a Kripke
structure is obtained just for a system's description, it exempli-
�es all the possible situations that can occur in performing the
actions of a system. This means that a Kripke structure has no
possibility to give reasons for explaining why the system is in
a speci�c state, or it moves to a different state. In addition, for
complicated systems speci�cations expressing the speci�cation
directly as a DPPN can be too complicated. This is one of the
reasons modal logics are more widely used as a speci�cation
formalisms than Petri nets.
The motivation for this work is that the existing logics for

decision process do not have the right expressive power to deal
with decision making. On the other side, decision making play
a fundamental role when modeling applications related with
game theory.
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The aim of this paper is to associate to any Decision Process
Petri net a Kripke structure (KS). We extended the logic
Kripke structure in order to specify steady-state, transient and
path-based measures extended with a Lyapunov-like function
[9], which is a state-value function.
This approach allows for the speci�cation of new measures

that have not yet been addressed in the performability litera-
ture. In this sense, a Lyapunov-like functions can be used as
state-value functions and optimal cost-to-target functions. As a
result of calculating a Lyapunov-like function, a discrete vector
�eld can be built for tracking the actions over the net. Each
applied optimal action produces a monotonic progress (of the
optimal cost-to-target value) toward an equilibrium point. As
a result, if the function decreases with each action taken, then
it approaches an in�mum/minimum (converges asymptotically
or reaches a constant).
The principal characteristics of this model is its ability

to represent and analyze the shortest-path properties of a
decision process. In this sense, we use a Lypunov-like function
as a state-value function for path planning, obtaining as a
result new characterizations for �nal decision points. We show
that the dynamics of the DPPN can be captured by a KS
and, some dynamic properties of a DPPN can be stated in
temporal logics. The temporal logic is constructed according
to the Lypunov-like function syntax and semantics. Moreover,
we consider some results and discuss possible directions for
further research.
In this paper we introduce a new modeling paradigm for

developing decision process representation. It extends the
Kripke structure theoretic approach. KSs are used for process
representation taking advantage of the formal syntax and
semantics, and the graphical display. Markov decision process
is utilized as a tool for path planning via a Lyapunov-like
function. As result, we obtain new characterizations for �nal
decision points (optimum point). We propose a temporal logic
constructed according to a state-value function syntax and
semantics for DK allowing the speci�cation of new properties
that have not yet been addressed in the literature.
The rest of the paper is organized as follows. The next

section presents the necessary mathematical background and
terminology on Decision Process Petri nets needed to under-
stand the rest of the paper. Section 3 presents the formulation
of the problem including the decision Kripke structure and
the proposed decision process logic. Finally, some concluding
remarks and future work are provided in Section 4.

II. PRELIMINARIES

We introduce the concept of Decision Process Petri nets by
locally randomizing the possible choices, for each individual
place of the Petri net ([5], [6]).
De�nition 1: A Decision Process Petri net is a 7-tuple

DPPN = fP;Q; F;W;M0; �; Ug where
� P = fp0; p1; p2; :::; pmgis a �nite set of places,
� Q = fq1; q2; :::; qng is a �nite set of transitions,
� F � I [ O is a �ow relation where I � (P � Q) and
O � (Q� P ) such that P \Q = ? and P [Q 6= ?,

� W : F ! N1+ is a weight function,

� M0: P ! N is the initial marking,
� � : I ! R+ is a routing policy representing the
probability of choosing a particular transition, such that
for each p 2 P ,

P
qj :(p;qj)2I

�((p; qj)) = 1;

� U : P ! R+ is a state-value function.
We adopt the standard rules about representing nets as

directed graphs, namely places are represented as circles,
transitions as rectangles, the �ow relation by arcs, and mark-
ings are shown by placing tokens within circles ([?], [11]).
As usual, we will denote z� = fy j (z; y) 2 Fg and �z =
fy j (y; z) 2 Fg ; for all z 2 I [O: A source place is a place
p0 2 P such that �p0 = ? (there are no incoming arcs into
place p0). A sink place is a place pf 2 P such pf� = ?
(there are no outgoing arcs from pf ). A net system is a pair
� = (N;M0) comprising a �nite net N = (P;Q; F ) and
an initial marking M0. A transition q 2 Q is enabled at a
marking M; denoted M [qi ; if for every p 2 �q we have that
M(p) � 1. Such a transition can be executed, leading to a
marking M 0 de�ned by M 0 = M � �q + q�. We denote this
by M [qiM 0 or M [iM 0. The set of reachable markings of �
is the smallest (w.r.t. set inclusion) set [M0i containing M0

and such that if M 2 [M0i and M [iM 0 then M 0 2 [M0i.
Uk(:) denotes the trajectory-tracking value at place pi 2

P at time k and let Uk = [Uk(:); :::; Uk(:)]
T denote the

trajectory-tracking state of DPPN at time k. FN : F ! R+
is the number of arcs from place p to transition q (the number
of arcs from transition q to place p).
Consider an arbitrary pi 2 P and for each �xed transition

qj 2 Q that forms an output arc (qj ; pi) 2 O, we look
at all the previous places ph of the place pi denoted by
the list (set) �p�ij = fph : h 2 �ijg where �ij =
fh : (ph; qj) 2 I & (qj ; pi) 2 Og, that materialize all the in-
put arcs (ph; qj) 2 I and form the sum

X
h2�ij

	(ph; qj ; pi) Uk(ph) (1)

where 	(ph; qj ; pi) = �(ph; qj) � FN(qj ;pi)
FN(ph;qj)

and the index
sequence j is the set � = fj : qj 2 (ph; qj) \ (qj ; pi) & ph
running over the set �p�ijg.
Continuing with all the qjs we form the vector indexed by

the sequence j identi�ed by (j0; j1; :::; jf ) as follows:

264
P

h2�ij0

	(ph; qj0 ; pi) Uk(ph);
P

h2�ij1

	(ph; qj1 ; pi) Uk(ph); :::;P
h2�ijf

	(ph; qjf ; pi) Uk(ph)

375
(2)

Intuitively, the vector (2) represents all the possible trajectories
through the transitions qjs to a place pi for a �xed i, where j
is represented by the sequence (j1; j2; :::; jf ) and f = #(�):
Then, formally we de�ne the trajectory-tracking function U

as follows:
De�nition 2: The state-value function U with respect a

Decision Process Petri net DPPN = fP;Q; F;W;M0; �; Ug
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is represented by the equation

U
qj
k (pi) =

�
Uk(p0) if i = 0; k = 0

L(�) if i > 0; k = 0 & i � 0; k > 0
(3)

where

� =

2666664

P
h2�ij0

	(ph; qj0 ; pi) U
qj0
k (ph);P

h2�ij1

	(ph; qj1 ; pi) U
qj1
k (ph); :::;P

h2�ijf

	(ph; qjf ; pi) U
qjf
k (ph)

3777775 (4)

the function L : D � Rn+ ! R+ is a Lyapunov-like
function which optimizes the trajectory-tracking value through
all possible transitions (i.e. trough all the possible trajectories
de�ned by the different qjs), D is the decision set formed
by the j�s ; 0 � j � f of all those possible transitions (qj
pi) 2 O, 	(ph; qj ; pi) = �(ph; qj) � FN(qj ;pi)

FN(ph;qj)
, �ij is the

index sequence of the list of previous places to pi through
transition qj , ph (h 2 �ij) is a speci�c previous place of pi
through transition qj .

III. FORMULATION

The aim of this section is to associate to any Decision
Process Petri net ([5], [6], [7]) a Kripke structure (KS).
De�nition 3: Let DPPN = fP;Q; F;W;M0; �; Ug be a

Decision Process Petri net. The Kripke structure of a DPPN
is a tuple KS = (S; s0; R;M0; L; �; U) where:
� S is a �nite set of states,
� s0 is the initial state,
� R is the set of triples (s; r; s0) such that the transition
r 2 R is enabled at state s and s0 is obtained by executing
r at state s,

� L : S ! 2� is a function which associates with each
state a set of atomic propositions �.

The Kripke structure KS = (S; s0; R;M0; L; �; U) satis�es
recursively the following properties:
1) M0 2 S
2) If M 2 S and M [qiM 0 such that M 0 = U(M) then

M 0 2 S and (M;M 0) 2 R
3) S and R have no other elements
The executions of the KS are in�nite sequences

M0M1M2::: of states in S leaded by a state-value function
U where M0 is the initial state and (Mi;Mi+1) 2 R holds
for i � 0.
We have clear that the existing approaches for decision

process and Kripke structure have characteristics in common.
The goal now is to integrate these two approaches even more
introducing a logic (linear temporal logic) to reason about
decision process. Our approach includes a Lyapunov (steady-
state) operator S for a path ([1], [2], [3], [4], [10]). The steady-
state operator is related with the trajectory-tracking value of
residing in a particular set of states.
Formulas are built from the set of atomic proposition �

and are closed under the application of Boolean connectives,
the unary temporal connective X (next), the binary temporal

connective U (until) and, the Lyapunov operator S satisfying
the following properties:
1) the atomic proposition a 2 � is a formula,
2) if ' and  are formulas then (:') and (' ^  ) are
formulas,

3) if ' is a formula then S' is a formula,
4) if ' and  are formulas then X' and  U' are formulas.
Boolean connectives are derived in the usual way, i.e.

false = :true, '_ = :(:'^: ), and ' =)  = :'_ .
Formulas keep the usual interpretation, with the added

understanding that: the formula S' asserts that the state-
value function U for the paths that satisfy ' approaches to an
in�mum or attains the minimum, i.e. U(s4) = 0 or U(s4) =
C .
The logic is interpreted under computations. A computation

is a �nite or in�nite sequence � = K(0)K(1)::: of sets
of atomic proposition of �. Intuitively, K(i) is the set of
propositions that hold in the computation after i steps. A
formula  is true in a computation � and a point i, i.e.
�; i j=  , under the following conditions:
1) �; i j= a for a 2 � iff a 2 K(i):
2) �; i j= ' ^  iff �; i j= ' and �; i j=  
3) �; i j= : iff not �; i j=  
4) �; i j= X iff there exists a point i+1 in the computation
and �; i+ 1 j=  

5) �; i j= 'U iff for some j � i, we have �; j j=  and
for all l, i � l < j, we have �; l j= '

6) �; i j= S iff there exists a point j � i in the
computation such that U(j) ! 0 (approaches to an
in�mum) or U(j) = C (the minimum is attained).

Interpretation. A KS represents a set of allowable action
sequence. In particular, represents a set of action sequence that
starts in an initial state and follows the transitions conditions
obeying a state-value function U . At run-time, a KS can
interpreted in the following manner. At every discrete time
step, a decision maker is at one of the states, and it selects the
next action to take.
A path is an ordered sequence si; si+1; ::: of states generated

by U over the Kripke structure KS such that si+1 = U(si)
and (si; si+1) 2 R holds for i � 0.
Property 1: The relation �U� S�S de�ned by si �U si+1

=) U(si+1) � U(si), is an ordering on KS, i.e. its re�exive,
transitive and antisymmetric.

Proof: If we consider �U be the equivalence relation on
S induced by U as 8s; t 2 S : s �U t () U(s) = U(t).
Then the equivalence class (S= �U ) = f�(s)js 2 Sg is a
poset isomorphic to a subset of R. Thus, S= �U is linearly
ordered and, consequently, it is a lattice. The structure S= �U
is indeed trivial: all elements in S giving the same value under
U are identi�ed in this quotient set. On the other hand, let
us consider the relation �Uas 8s; t 2 S : s �U t ()
U(t) � U(s):This relation is re�exive and transitive, and it is
antisymmetric because U is a Lyapunov-like function strictly
decreasing and therefore it is one-to-one.
The sequence si; si+1; ::: of states of a path over the

Kripke structure KS are functions � : N ! S. We use
�i to denote the suf�x of the path � = s0; s1; ::: starting
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at the index i; such that �i = si; si+1; ::: We use �(i)

to denote the ith state of the path �. The set of paths
starting from a given state s over the Kripke structure KS
is �(s) =

�
�j�(0) = s ^ 8i 2 N : (�(i); �(i+1)) 2 R

	
. Con-

sequently, the set of all paths over S is �(S) =
S
s2S �(s):

A path sequence s0; s1; ::: of states over the Kripke structure
KS is called fair if for every set of states Fk 2 F (0 �
k < jF j) there are in�nitely many states �(i) in the path
that belong to Fk. The set of fairness paths starting from
a given state s over the Kripke structure KS is �(s) =�
� 2 �(s)j8Fk 2 F; 8i 2 N 9j 2 N : �(i+j) 2 Fk

	
: Con-

sequently, the set of all fair paths over S is �(S) =S
s2S �(s): Clearly, we have that �(s) � �(s): For F = ?

the requirement that every set Fk is visited in�nitely often
is vacuously true, and thus any path is fair. From now on,
we will assume all formulas to be interpreted over fair paths.
Therefore, the Kripke structure of a DPPN is a tuple KS =
(S; s0; R;M0; L; F; �; U) where F � 2S is a set of fairness
constraints.
A run � is a sequence s0; s1; ::: of states generated by

U over the Kripke structure KS such (si; si+1) 2 R holds
for i � 0. The language of KS is de�ned as L(KS) =
f� 2 � j � has a run �=s0; ::: in Sg.
Remark 1: In Petri nets the states of the system are the

markings. The atomic propositions are predicates on the possi-
ble markings of the net (having usually one atomic proposition
per place). Predicates are of the form '(p;m) where p is a
place of the net and m 2 N+, and it is read `the number
of token of p is greater then or equal to m', holding if at
markingM we have thatM(p) � m. The markings satisfying
the atomic proposition p are those that put a token in p. In
a Petri nets a computation is a sequence of sets of places.
As a consequence, a computation is a sequence of markings.
It is important to note that computations are the sequences
of markings obtained from the runs � leaded by the state-
value function U of the Petri net by removing the intermediate
transitions.
De�nition 4: A Petri net satis�es a formula ' if there is a

run � leaded by the state-value function U that satis�es '.
Remark 2: Intuitively, a Lyapunov-like function can be

considered as state-value function. In our case, an optimal
discrete problem, the trajectory-tracking values are calculated
using a discrete Lyapunov-like function. Every time a discrete
vector �eld of possible transitions is calculated over the
decision process. Each applied optimal transition (selected via
some `criterion', e.g. min(�) ) decreases the optimal value,
ensuring that the optimal course of action is followed and
establishing a preference relation. In this sense, the criterion
change the asymptotic behavior of the Lyapunov-like function
by an optimal trajectory-tracking value. It is important to
note, that the process �nished when the equilibrium point is
reached. This point determines a signi�cant difference with
the Bellman's equation.
Then, we can conclude the following theorem of existence.
Theorem 1: Let KS = (S; s0; R;M0; L; F; �; U) be a

Kripke structure. Then, if there is a run � = s0; s1; :::sn leaded
by the state-value function U that satis�es ' then the KS is
bounded by the state sn of the system.

Proof: Let us suppose that the KS is not �nite. Then sn
is never reached. Therefore, it is possible to evolve in time n
and to reduce the trajectory function value over sn. However,
the Lyapunov-like trajectory function converges to zero when
n!1 (or reached a minimum) i.e., Un = 0 or Un = C.
Property 2: Every Kripke structure KS =

(S; s0; R;M0; L; F; �; U) is bounded by a state sn.
Proof: Straightforward by the previous theorem.

De�nition 5: An equilibrium (steady-state) point with re-
spect a Kripke structure KS = (S; s0; R;M0; L; F; �; U) is
the last state of the net.
Remark 3: An equilibrium point with respect a Decision

Process Petri net DPPN = fP;Q; F;W;M0; �; Ug is a place
p� 2 P such that Ml(p

�) = C <1, 8l � k, and p� is a sink.
De�nition 6: A �nal decision state sf 2 S with respect a

Kripke structure KS = (S; s0; R;M0; L; F; �; U) is a state
s 2 S where the in�mum is asymptotically approached (or
the minimum is attained), i.e. U(s) = 0 or U(s) = C.
De�nition 7: An optimum state s4 2 S with respect a

Kripke structure KS = (S; s0; R;M0; L; F; �; U) is a �nal
decision state sf 2 S where the best choice is selected
`according to some criteria'.
Corollary 1: Every Kripke structure KS =

(S; s0; R;M0; L; F; �; U) has a �nal decision state.
It easy to show the correspondence between a steady-state,

�nal decision state and optimum state ([5], [6]).
(s; s0) 2 R is a total transition relation that means that the

state s0 can be reached from the state s, i.e., it is a possible
successor state of s. There may be more than one successor
state, and usually conditions over the transitions (probabilities,
etc.) are given to select a particular next state.
For the semantics of our logics, we must reason about

successor and predecessor states of a particular state. These
are formally de�ned as given below.
For any s 2 S let the successors of s be: s0 2 suc(s) iff

s 6= s0; (s; s0) 2 R and 8s� : (s; s�) 2 R _ (s�; s0) 2 R =)
(s� = s0) _ (s� = s). For any s 2 S let the predecessor of
s be: s0 2 pre(s) iff s0 6= s; (s0; s) 2 R and 8s� : (s0; s�) 2
R _ (s�; s) 2 R =) (s� = s) _ (s� = s0).
We assume that every state has an out degree in KS, i.e. a

number of immediate successors. The maximal elements are
those with no predecessors, i.e. state with null inner degree in
KS. The minimal elements are those with no successors, i.e.
state with null outer degree in KS.
Let us de�ne the upper distance d+ as follows:

d+(s; s0) = 1 () s0 2 suc(s)
d+(s; s0) = 1 + r ()

9s� : d+(s; s�) = r&d+(s�; s
0) = 1

Similarly, the lower distance d� is

d�(s; s0) = 1 () s0 2 pre(s)
d�(s; s0) = 1 + r ()

9s� : d�(s; s�) = r&d�(s�; s
0) = 1

Thus d+(s; s0) = d�(s0; s).
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The upper height of a node s is h+(s) =Maxfd+(s0; s)js0
is maximalg: The lower height of a node s is h�(s) =
Maxfd�(s0; s)js0 is minimalg.
We mainly use the above de�nitions for the transition

relations of Kripke structures to determine successor and
predecessor states.
We say that a state s0 2 S is reachable from a state s 2 S;

rs(s; s0), if there exists a path � 2 �(s) of states of the Kripke
structure KS leading from s to s0 by U , i:e:

rs(s; s0) = f�j�(0) = s ^ �(n) = s0 ^ 8i 2 N :
si+1 = U(si) ^ (�(i); �(i+1)) 2 Rg:

IV. CONCLUSION AND FUTURE WORK

We presented an approach for decision Kripke structures.
It contribute to bridging the gap between classical Kripke
structures and the decision process. We have proposed De-
cision Process Logic for property speci�cation of Decision
Kripke structures. The expressive power and the mathematical
formality of the decision process logic is also useful for
capturing the dynamics and describing the dynamic properties
of a DPPN. We have implemented a model checking system
which is optimized by use of a Lyapunov-like function for path
tracking. In this sense, there are a number of questions relating
classical model checking that may in the future be addressed
satisfactorily within this framework. We are currently working
in the generalization to game theory.
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