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An analysis of the beam bending problem with
random beam height

Mladen Mestrovic

Abstract—The standard beam bending problem has been
obtained where the beam height is assumed to have spatial
uncertainty. The formulation to determine the response variability of
the beam due to randomness of the beam height is given. The concept
of variablity response function is extended to beam bending problem
where the beam height is considered to be one-dimensional,
homogenous stochastic field. The randomness of the beam height has
than influence not only on the flexural rigidity of the beam, but also
on self-weight load of the beam. Through the proposed formulation it
becomes possible for the weighted integral stochastic finite element
analysis to consider complete influence of uncertain geometrical
property on response variability. The coefficeint variation and
variance of the response deflection was calculated as the function of
the coefficeint of variation and variance of the beam height as the
input quantity. Numerical example shows good agreement of the
proposed weighted integral method with solution calculated by
Monte Carlo simulation.
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I. INTRODUCTION

he assumption that structures have deterministic material

properties, is implicitly involved in the most calculation
of standard finite element structural analysis of the structures.
The material and geometrical properties of real structures have
uncertainties, which have to be considered in structural
analysis. The uncertainties of the structures are than
considered through the increase of the safety factors using
deterministic analysis.

The concept of variability response function was introduced
in [1] and used in [2,3,4]. The weighted integral method was
introduced in [2] and generally applied in [3,4]. In those
works the variability was involved through the variability of
elastic modulus.

This study is concentrated on the randomness in
geometrical parameters (the beam height) and its influence on
the both side of equation, on the stiffness matrix and on the
load vector. The first and second moment of the beam height
are used to describe randomness of the input quantities. The
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new autocorrelation function is written for the flexural rigidity
of the beam considering the randomness of the beam height.
The variability response function is used to find spectral-
distribution-free upper bounds of the response variability. The
structural response variability is represented as second
moment, variance and coefficient of variation, of the response
deflection.

Il. VARIABILITY OF INPUT QUANTITIES

We consider a beam of length L with a spatially varying

height H(x). The beam height is assumed to constitute a
homogenous one-dimensional random field in the following
form:
H(x) = H [l + h(x)] , (1)
where Ho=Hy(x)=const. is expectation of the beam height
taken equal for any point at the beam and h(x) is homogenous
one-dimensional random field with expectation equal to zero.
This random field is represented with its variance sy’ and
autocorrelation function

Rin (7() =E [h(X +x )h(X)] ' )

what leads to variance and coefficient of variation of beam

height H(x)

Var [H(x)|=H,* o,,> , COV[H(x)]=0,, . 3)
The flexural rigidity of the beam, EI(x), is now also random

field of the form

El(x) = El 1+d(x)] , @)

where d(x) is homogenous one-dimensional random field with

expectation zero defined as

d(x) = [L+ h(x)['- 1= 3n(x)+3h?(x)+ h3(x) . 5)
Autocorrelation function of this random field is then
according to [5]

R (Z) = 9O'hh4 + (9 +18th2 + 9(ThhA )th (Z) ©)

+18th2(l)+ 6th3(75) .

The variance and the coefficient of variation of random field
d(x) are

O'dd2 = 9O'hh2 + 450‘hh4 +150'hh6 @
COVId(X)] =30 y1+507," + 207, - ®)

This was the calculation of the influence of uncertain beam
height on the stiffness of the beam. But, the variability of the
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beam height, obviously, leads to the variability of loading.
The self-weight of the beam directly depends on the beam
height. We define the load as some prescribed load,

g = g(x) =const., added to self-weight calculated with

constant weight density of the beam, y = y(X) = const.,

what leads on load expressed as linear combination of
deterministic and stochastic part,

q(x)=H (x)+7 = H, L+ h(x)]+g

= apli+ aa(0)] ¥
where deterministic part is expressed as
0o = M a (10)
and stochastic part, with introduced supstitution G = ;Hy:' 35 ,
is expressed as
_ M _
Aq(x) AT h(x)=Gh(x) . (11)

Autocorrelation function of loading as random field is then

qu(l): GZth(Z)’ (12)
and the variance is
O'qq2 = GZO'th (13)

11,

Standard deterministic finite element formulation of the
beam bending problem is

Kw=q, . (14)

Involving the randomness of the beam properties, the finite

element formulation for the stochastic analysis is according to

[2]

(K, +AK)w =q, +Aq , (15)
where Kq and qo are deterministic stiffness matrix and load
vector respectively and DK and Dq are stochastic parts of
stiffness matrix and load vector respectively. The

FINITE ELEMENT FORMULATION

displacement vector, with assumption that variance is
sufficiently small, is approximated with
w = K'g = [K, (1 + K, K )|g, + Aq) "

~ W, - K, "AKw, + K, "Aq.
The stochastic part of displacement vector is now given

according uncertain stiffnes matrix and uncertain load vector
as

Aw =- K, AKw, + K, 'Aq. (17)
The expression for expectation of displacement vector is
Elw]=w, (18)

where w, is the solution of standard deterministic finite
element problem and the covariance matrix of the response
deflection w is given as
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Cov [w,w]=E|(w-w,) (w-w,)|
+E[K,AqAqK,
~E[K,AKw,Aq K, ]

-1 T -1
—E[K0 Agqw, AKK, ]

where Wy = wo Wo'. The first part, the first row, of (19) is
same as in former analysis [2] with influence of uncertain
beam properties only on stiffness matrix. The second part, the
second row, includes the randomness of the loading. Last two
parts, the third and the fourth row, exist only when stochastic
field of stiffness and stochastic field of load is correlated. If
we represent self-weight load as function of the beam height,
those fields are strictly correlated.

(19)

IV. WEIGHTED INTEGRAL METHOD

Weighted integral method was primary introduced in [3,4].
Stochastic part of element stiffness matrix is represented as
linear combination of NWI random variables X© called
weightgd integrals,

NWI-1
AK® = 3" PAK,©. (20)

k=0
The number of weighted integrals, NWI, depends on the
choice of finite element. Using the standard cubic finite
element follows, (NWI=3), 3 weighted integrals. The
weighted integrals X;® are defined as

L®

X% = [&d(g)d¢ .

The element matrices, the coefficients of linear combination
DK;®, are all deterministic.

The stochastic part of element load vector is defined as
NWIQ-1
AG® =Y Y,¥Aq.
k=0
where NWIQ is the number of weighted integrals Y;©. Using
the cubic finite element follows, (NWIQ=4), 4 weighted
integrals. The weighted integrals Y, are defined as
L©

YO = [&h(g)ds .

where all vectors in(e) , the coefficients of linear combination,
are deterministic.

(21)

(22)

(23)

V. RESPONSE VARIABILITY

The response vector, the vector of unknown displacements
w, could be approximated with linear part of Taylor series
around the expectation of weighted integrals X, and Y,
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NI NO) (28)
(e) (e)
W=W,+ > > X, { ()} 2.2 () LY L0
o O = ) A S A Y= j £ PhO(& e, j £,"dO(&, e,
N NC!
o= OO KTAKOwW X, @+ 3TN K Ag, Y, e
P
CEE CEE = [ [&PemehO ()0 e, -
(24) 00
Using the first-order approximation around the zero-mean (29)
value of weighted integrals, first-order approximation of Lo
covariance matrix of response vector follows as E[Yp(e)Yr(f)] [ If ph(e) 5 )dffeI J.fff f) ~ff )dgfj
Cov[w,w]= E[(W -WO)(W-WO)T]
NE  N© . . L@ 0 ;
=5 S, owfa, O (e el ox, 7] = T Tare b note oz,
(e),(f)=1k,m=1 0 0
N(e) N(e) (30)
aY ;
S SO faa O T, e o]
@)=Lk E[d §e (§f )]— Rdh(AXfe + L(f)ff - L(e)ée), (31)
NE  NE (f) )
3K, a0, %W, ( AK (f)) (Ko ) E[Yp(e’xm(f)] E[h(£)d (&, )]= Ry (A, + L, -L9&), (32)
(e)“ff”"l'? e ()= Rulaxe + L0, -19%,), @
N N
(e) (f) -\ (e with introduced autocorrelation function and its variance
+ > YK, aa, ) k) Ely, 0] \
@.(f)=1pr= Rdh(l):th(l)(l"'o'hh )1
(25) 2 2 4 (34)
where the only unknowns are the values for expectations of  Cdh = Omn + O -
weighted integrals  products  E[XX, "1,  E[XeY, ], The variance vector of response displacement vector w is
ELY, X" and E[Y,®Y,7]. The first expectation is to find as  than evaluated as
in [4]. Considering that the beam height for all finite elements
are characterised by the same stochastic field h(x), what leads ~ Var [W I de VRF (K)dl(
than to the same stochastic field d(x) for flexural rigidity for
all elements. The unknown expectation in the first part of
equation (25) can be expressed with I S, VRF )+ VRFg(K)]d K (35)
L L(H
@y O
x| [a'a(enz | a0l s
J.Shh(K)VRF4(K)dK'
L) ® -
_ Ky m where Sy(K), Sgn(K) and Sp(K) are spectral density function
— Eld®© g® d ’ dd
I I S & [ (59) (gf )]dfe S and the vectors VRF;(K) are the first-order approximations of
the variability response function parts respectively
(26) (e) (f)
with VRF, ()= 3" diag(K,, "AK, ©w, K, *AK P,
E[d (&.)d ( f)] R (Axfe +L0¢, L(e)ége) @7) ;- (f)k(:; ® ©cy
where Rg(C) is autocorrelation function of stochastic field ‘[(Clk Cl,”+SI, 7SI, )COS(AXfeK)
r(c), and Dxg is given as the distance of the first k(r:)ots((;f -(Slk(e)Clm(f) -Clk(e)SIm(f))Sin(AXfeK)] ’
finite elements (e) and (f) expressed asAX = X; -X; (36)
After similar algebra and same simplification about field (e) 1, ()
characterisation follow the other unknown expectations with VRF g(;)kzr:d'ag( AKk W )Ko Aq,
LN
f
oy Jerorens | fonnt e fer o1 451,91, )cosox )
o -(51,9¢1,7-¢1,951, )Jsin(ax o)
= [ [& e Elao(e)n0le, Jeae, | (37
0 0
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VRF, (k)= 3 Y diag(K,*Aq,® K, *AK , w,

(e).(Hp.m
er,9e,0 51,051, )cos(ax &)
-(51,9¢1,9-c1,9s1, 0 )sin(ax x| |

(38)
VRF, (k)= ZZdiag(Ko'lAq ) )Ko'lAqr(”
@0 pr
-[(CI ,0c1? 151 ©s) r(f))cos(Axfezc) (39)

(51,917~ 1,951, )sin(ax .« )|

and for (g)= (e),(f) follow the expressions for Cly and Sl
respectively

(9)

cLY = Lj £,“cos(xg, e, (40)
0
(9)

S1,9 = Lj g,'sin(xg, e, (41)
0

Consider a specific degree of freedom w; and corresponding
component of according response variabilities VRFji(k),
j=1...4, the coefficient of variation is bounded as
COV[w]<o \/F

o]
where

Vi =[0+456,,% +150,,* [VRF/ (") + VRF, (")

_(1+0'hh21VRF2i(K*) +VRF, (K*)],
and K~ is the point at which the function under square root
takes its maximum value.

(42)

(43)

VI.

The simply-supported beam of unit length under uniform
load is considered in numerical example. The variation of the
beam height is taken sy, =0.1 what leads to variation of the

flexural rigidity of the beam as o, ~0.3074 . The

NUMERICAL EXAMPLE

variability response function is calculated for the deflection in
the middle of the beam, w(0.5), by weighted integral method
with 4 finite elements. The results of the proposed weighted
integral method are compared arecompared with results of the
classical Monte Carlo simulation (MCS).
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Fig. 1 Coefficient of variation of the response deflection w(0.5)

The results show that the randomness of the beam height
has the influence on the response deflection of the beam. It is
also obvious that results obtained with finite elements by
using weighted integral method are in good agreement with
results obtained by MCS.

VIL.

The concept of the variability response function based on
weighted integral and local average method was extended to
the beam bending problem with random beam height. It has
been shown that randomness of the beam height has influence
not only on the randomness of the flexural rigidity what is
expressed as the randomness of the stiffness matrix than also
on the randomness of self-weight load what is expressed as
the randomness of the load vector. The influence on the
variability of the response deflection was calculated according
the concept of the variability response function. It has been
shown very good agreement of the results calculated with
weighted integral method with results obtained by MCS.

With proposed weighted integral formulation, that includes
randomness of the beam height on the randomnes of the
flexural rigidity and loading, it becomes possible for the
weighted integral stochastic finite element analysis to consider
complete influence of uncertain geometrical property on the
structural response variability.

CONCLUSION
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