
 

 

  
Abstract—The standard beam bending problem has been 

obtained where the beam height is assumed to have spatial 
uncertainty. The formulation to determine the response variability of 
the beam due to randomness of the beam height is given. The concept 
of variablity response function is extended to beam bending problem 
where the beam height is considered to be one-dimensional, 
homogenous stochastic field. The randomness of the beam height has 
than influence not only on the flexural rigidity of the beam, but also 
on self-weight load of the beam. Through the proposed formulation it 
becomes possible for the weighted integral stochastic finite element 
analysis to consider complete influence of uncertain geometrical 
property on response variability. The coefficeint variation and 
variance of the response deflection was calculated as the function of 
the coefficeint of variation and variance of the beam height as the 
input quantity. Numerical example shows good agreement of the 
proposed weighted integral method with solution calculated by 
Monte Carlo simulation. 
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I. INTRODUCTION 
he assumption that structures have deterministic material 
properties, is implicitly involved in the most calculation 

of standard finite element structural analysis of the structures. 
The material and geometrical properties of real structures have 
uncertainties, which have to be considered in structural 
analysis. The uncertainties of the structures are than 
considered through the increase of the safety factors using 
deterministic analysis. 

The concept of variability response function was introduced 
in [1] and used in [2,3,4]. The weighted integral method was 
introduced in [2] and generally applied in [3,4]. In those 
works the variability was involved through the variability of 
elastic modulus.  

This study is concentrated on the randomness in 
geometrical parameters (the beam height) and its influence on 
the both side of equation, on the stiffness matrix and on the 
load vector. The first and second moment of the beam height 
are used to describe randomness of the input quantities. The 
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new autocorrelation function is written for the flexural rigidity 
of the beam considering the randomness of the beam height. 
The variability response function is used to find spectral-
distribution-free upper bounds of the response variability. The 
structural response variability is represented as second 
moment, variance and coefficient of variation,  of the response 
deflection.   

II. VARIABILITY OF INPUT QUANTITIES 
We consider a beam of length L with a spatially varying 

height H(x). The beam height is assumed to constitute a 
homogenous one-dimensional random field in the following 
form:  

( )[ ]  ,x h  HH(x) += 1  (1) 
where H0=H0(x)=const. is expectation of the beam height 
taken equal for any point at the beam and h(x) is homogenous 
one-dimensional random field with expectation equal to zero. 
This random field is represented with its variance shh

2 and 
autocorrelation function  

( ) ( ) ( )[ ] ,    E   xhxhRhh χχ +=  (2) 
what leads to variance and coefficient of variation of beam 
height H(x) 

( )[ ] ( )[ ] .   COV  ,     Var 2
hh

2
0 hhxHHxH σσ ==  (3) 

The flexural rigidity of the beam, EI(x), is now also random 
field of the form  

( )[ ]  ,xd EIEI(x) += 10  (4) 
where d(x) is homogenous one-dimensional random field with 
expectation zero defined as 

( )[ ] ( ) ( ) ( ) .3311 323   xhxhxh- xhd(x) ++=+=  (5) 
Autocorrelation function of this random field is then 
according to [5]  
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The variance and the coefficient of variation of random field 
d(x) are 

6422 15459 hhhhhhdd σσσσ ++=  (7) 

 .   513  )](COV[ 4
3
52

hhhhhhxd σσσ ++=  (8) 

This was the calculation of the influence of uncertain beam 
height on the stiffness of the beam. But, the variability of the 
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beam height, obviously, leads to the variability of loading. 
The self-weight of the beam directly depends on the beam 
height. We define the load as some prescribed load, 

.)( constxqq == , added to self-weight calculated with 

constant weight density of the beam, .) constx =(= γγ , 
what leads on load expressed as linear combination of 
deterministic and stochastic part, 

( ) ( ) ( )[ ]
[ ], )(1         

q1  

0

0

xqq
xhHqxHxq

Δ+=
++=+= γγ

 (9) 

where deterministic part is expressed as 
,  q00 += Hq γ  (10) 

and stochastic part, with introduced supstitution qH
HG +=
0

0
γ

γ , 

is expressed as  

( ) ( ) ( ) .  
0

0 xGhxh
qH

Hxq =
+

=Δ
γ

γ
 (11) 

Autocorrelation function of loading as random field is then  
( ) ( ) , 2 χχ hhqq RGR =  (12)   (12) 

and the variance is 

 .   222
hhqq G σσ =  (13) 

III. FINITE ELEMENT FORMULATION 
Standard deterministic finite element formulation of the 

beam bending problem is  
.  00 qwK =  (14) 

Involving the randomness of the beam properties, the finite 
element formulation for the stochastic analysis is according to 
[2] 
( ) ,   00 qqwKK Δ+=Δ+  (15) 
where K0 and q0 are deterministic stiffness matrix and load 
vector respectively and DK and Dq are stochastic parts of 
stiffness matrix and load vector respectively. The 
displacement vector, with assumption that variance is 
sufficiently small, is approximated with   

( )[ ]( )
. -
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The stochastic part of displacement vector is now given 
according uncertain stiffnes matrix and uncertain load vector 
as 

.  - -1
00

-1
0 qKKwKw Δ+Δ=Δ  (17) 

The expression for expectation of displacement vector is 
[ ] 0E ww =  (18) 

where w0 is the solution of standard deterministic finite 
element problem and the covariance matrix of the response 
deflection w is given as  
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where W0 = w0 w0
T. The first part, the first row, of (19) is 

same as in former analysis [2] with influence of uncertain 
beam properties only on stiffness matrix. The second part, the 
second row, includes the randomness of the loading. Last two 
parts, the third and the fourth row, exist only when stochastic 
field of stiffness and stochastic field of load is correlated. If 
we represent self-weight load as function of the beam height, 
those fields are strictly correlated.  

IV. WEIGHTED INTEGRAL METHOD 
Weighted integral method was primary introduced in [3,4]. 

Stochastic part of element stiffness matrix is represented as 
linear combination of NWI random variables Xi

(e) called 
weighted integrals,  

.  
1

0
∑

−

=

Δ=Δ
NWI

k

(e)
k

(e)
k

(e) X KK  (20) 

The number of weighted integrals, NWI, depends on the 
choice of finite element. Using the standard cubic finite 
element follows, (NWI=3),  3 weighted integrals. The 
weighted integrals Xi

(e) are defined as 

( ) .   d  
(e)

xL

0

i∫= ξξξ dX (e)
i  (21) 

The element matrices, the coefficients of linear combination 
DKi

(e), are all deterministic.  
    The stochastic part of element load vector is defined as  

.  
1
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∑

−

=

Δ=Δ
NWIQ

k

(e)
k

(e)
k

(e) Y qq  (22) 

where NWIQ is the number of weighted integrals Yi
(e). Using 

the cubic finite element follows, (NWIQ=4), 4 weighted 
integrals.  The weighted integrals Yi

(e) are defined as 

( ) .   d  
(e)

xL

0

i∫= ξξξ hY (e)
i  (23) 

where all vectors Dqi
(e) , the coefficients of linear combination, 

are deterministic. 
 

V. RESPONSE VARIABILITY 
The response vector, the vector of unknown displacements 

w, could be approximated with linear part of Taylor series 
around the expectation of weighted integrals Xk

(e) and Yp
(e),  
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 (24) 
Using the first-order approximation around the zero-mean 

value of weighted integrals, first-order approximation of 
covariance matrix of response vector follows as 
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 (25) 
where the only unknowns are the values for expectations of 
weighted integrals products E[Xk

(eXm
(f)], E[Xk

(eYr
(f)], 

E[Yp
(e)Xm

(f)] and E[Yp
(e)Yr

(f)]. The first expectation is to find as 
in [4]. Considering that the beam height for all finite elements 
are characterised by the same stochastic field h(x), what leads 
than to the same stochastic field d(x) for flexural rigidity for 
all elements. The unknown expectation in the first part of 
equation (25) can be expressed with 
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                        (26) 
with  

( ) ( )[ ] ( ), -  E )(
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where Rdd(c) is autocorrelation function of stochastic field 
r(c), and Dxfe is given as the distance of the first knots of 

finite elements  (e) and (f) expressed as (e)
i

(f)
ife -xxx =Δ .   

After similar algebra and same simplification about field 
characterisation follow the other unknown expectations with 
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with 
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with introduced autocorrelation function and its variance 
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The variance vector of response displacement vector w is 
than evaluated as  
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where Sdd(k), Sdh(k) and Shh(k) are spectral density function 
and the vectors VRFi(k) are the first-order approximations of 
the variability response function parts respectively   
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and for (g)= (e),(f) follow the expressions for CIk and SIk 
respectively  

( ) gg

L
k

g
(g)

k d
g

ξκξξ cosCI
)(

0
∫=  (40) 

( ) gg

L
k

g
(g)

k d
g

ξκξξ sinSI
)(

0
∫=  (41) 

Consider a specific degree of freedom wi and corresponding 
component of according response variabilities VRFj

i(k), 
j=1…4, the coefficient of variation is bounded as  
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and k*  is the point at which the function under square root 
takes its maximum value. 

  

VI. NUMERICAL EXAMPLE 
The simply-supported beam of unit length under uniform 

load is considered in numerical example. The variation of the 
beam height is taken shh =0.1 what leads to variation of the 
flexural rigidity of the beam as  0.3074≈ddσ . The 
variability response function is calculated for the deflection in 
the middle of the beam, w(0.5), by weighted integral method 
with 4 finite elements. The results of the proposed weighted 
integral method are compared arecompared with results of the 
classical Monte Carlo simulation (MCS). 

 

 
Fig. 1 Coefficient of variation of the response deflection w(0.5)  

 
The results show that the randomness of the beam height 

has the influence on the response deflection of the beam. It is 
also obvious that results obtained with finite elements by 
using weighted integral method are in good agreement with 
results obtained by MCS. 

VII. CONCLUSION 
The concept of the variability response function based on 

weighted integral and local average method was extended to 
the beam bending problem with random beam height. It has 
been shown that randomness of the beam height has influence 
not only on the randomness of the flexural rigidity what is 
expressed as the randomness  of the stiffness matrix than also 
on the randomness of self-weight load what is expressed as 
the randomness of the load vector. The influence on the 
variability of the response deflection was calculated according 
the concept of the variability response function. It has been 
shown very good agreement of the results calculated with  
weighted integral method with results obtained by MCS.  

With proposed weighted integral formulation, that includes 
randomness of the beam height on the randomnes of the 
flexural rigidity and loading, it becomes possible for the 
weighted integral stochastic finite element analysis to consider 
complete influence of uncertain geometrical property on the 
structural response variability.  
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