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Departamento de Matemáticas. Universidad de Cádiz.

PO.BOX 40, 11510 Puerto Real, Cádiz, Spain.
E-mail: matematicas.casem@uca.es.

Abstract— In this paper, we consider a generalized Benjamin-
Bona-Mahony-Burgers equation. Classical symmetries of this equa-
tion are considered. The functional forms, for which the BBMB
equation can be reduced to ordinary differential equations by classical
Lie symmetries, are obtained. A catalogue of symmetry reductions
and a catalogue of exact solutions are given. A set of new solitons,
kinks, antikinks, compactons and Wadati solitons are derived.

I. INTRODUCTION

In this paper we solve a group classification problem for
equation

∆ ≡ ut − uxxt − αuxx + βux + (g(u))x = 0, (1)

where u(x, t) represents the fluid velocity in the horizontal
direction x, α is a positive constant, β ∈ IR and g(u) is a C2-
smooth nonlinear function [2]. We study the functional forms
g(u) for which equation (1) admits the classical symmetry
group.

When g(u) = uux with α = 0 and β = 1 equation
(1) is the alternative regularized long-wave equation proposed
by Peregrine [15] and Benjamin [3]. Equation (1) feature a
balance between nonlinear and dispersive effects, but takes no
account of dissipation. In the physical sense, equation (1) with
the dissipative term αuxx is proposed if the good predictive
power is desired, such problem arises in the phenomena for
both the bore propagation and the water waves.

In [2], Khaled-Momani-Alawneh implemented the Ado-
mian’s decomposition method for obtaining explicit and nu-
merical solutions of the BBMB equation (1).

By applying the classical Lie method of infinitesimals
Bruzón and Gandarias [4] obtained, for a generalization of a
family of BBM equations, many exact solutions expressed by
various single and combined nondegenerative Jacobi elliptic
functions.

Tari and Ganji, [16], have applied two methods for solving
nonlinear differential equations known as “variational itera-
tion” and “homotopy perturbation” methods in order to derive
approximate explicit solutions for (1) with g(u) = u2

2 .
El–Wakil–Abdou–Hendi [9] used the “exp-function”

method with the aid of symbolic computational system
to obtain the generalized solitary solutions and periodic
solutions for (1) with g(u) = u2

2 . In [10] Fakhari et al. solved
the resulting nonlinear differential equation by homotopy
analysis method to evaluate the nonlinear equation (1) with
g(u) = u2

2 , α = 0 and β = 1.

The classical theory of Lie point symmetries for differential
equations describes the groups of infinitesimal transformations
in a space of dependent and independent variables that leave
the manifold associated with the equation unchanged [11],
[13], [14]. The fundamental basis of this method is that,
when a differential equation is invariant under a Lie group of
transformations, a reduction transformation exists. For partial
differential equations (PDEs) with two independent variables
a single group reduction transforms the PDE into a ordinary
differential equations (ODEs), which are generally easier to
solve. Since the relevant calculations are usually rather labori-
ous, they can be conveniently carried out by means of symbolic
computations. In our work, we used the MACSYMA program
symmgrp.max [8]. Most of the required theory and description
of the method can be found in [13], [14].

Wadati [17], [18], [19] developed solitons for the Korteweg-
de Vries (KdV) and the modified KdV (MKdV) equations. He
proved that if

u(x, t) = 2∂x arctan

(

c sin(Nx + δt)

N cosh(cx + γt)

)

,

γ = c(3N2 − c2) and δ = N(N2 − 3c2), then u is solution
of the MKdV

ut + uxxx + 6u2ux = 0.

In [5], [7] the authors obtained solutions in terms of Wadati
solitons for some models.

The structure of the work is as follows: In Sec. II we
find conditions on g(u) such that it allows symmetries. We
use the classical Lie method to find these symmetries, in
particular those beyond the translational symmetries of the
independent variables. We obtain the symmetry reductions,
similarity variables and the reduced ODEs. In Sec. III we
derive, for some functions g(u), exact solutions which describe
solitons, kinks, anti-kinks, compactons and Wadati solitons.
Finally, in Sec. IV some conclusions are presented.

II. CLASSICAL SYMMETRIES

To apply the Lie classical method to equation (1) we
consider the one-parameter Lie group of infinitesimal trans-
formations in (x, t, u) given by

x∗ = x + εξ(x, t, u) + O(ε2), (2)
t∗ = t + ετ(x, t, u) + O(ε2), (3)
u∗ = u + εη(x, t, u) + O(ε2), (4)
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where ε is the group parameter. We require that this transfor-
mation leaves invariant the set of solutions of equation (1).
This yields to an overdetermined, linear system of equations
for the infinitesimals ξ(x, t, u), τ(x, t, u) and η(x, t, u). The
associated Lie algebra of infinitesimal symmetries is the set
of vector fields of the form

v = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (5)

The functions u = u(x, t), which are invariant under the
infinitesimal transformations v, are, in essence, solutions to
an equation arising as the “invariant surface condition”:

η(x, t, u) − ξ(x, t, u)
∂u

∂x
− τ(x, t, u)

∂u

∂t
= 0. (6)

The symmetry variables are found by solving the invariant
surface condition. The reduction transforms the PDE into
ODEs.

We consider the classical Lie group symmetry analysis of
equation (1). The set of solutions of equation (1) is invariant
under the transformation (2)-(4) provided that

pr(3)v(∆) = 0 when ∆ = 0,

where pr(3)v is the third prolongation of the vector field (5).
Hence we obtain the following ten determining equations for
the infinitesimals:

τu = 0,

τx = 0,

ξu = 0,

ξt = 0,

ηuu = 0,

ατt + ηtu = 0,

2ηux − ξxx = 0,

ηuxx − 2ξx = 0,

ηxgu − αηxx + βηx − ηtxx + ηt = 0,

−αξxx − guξx − βξx − guτt − βτt − ηguu

+2αηux + 2ηtux = 0.

(7)

From system (7) ξ = ξ(x), τ = τ(t) and η = γ(x, t)u+δ(x, t)
where α, β, ξ, τ , γ, δ and g satisfy

γt + α τt = 0,

2 γx − ξxx = 0,

γxx − 2 ξx = 0,

2 αγx + 2 γtx − guu u γ − αξxx − gu ξx − β

ξx − gu τt − β τt − δ guu = 0,

−αu γxx + gu u γx + β u γx − u γtxx + u

γt + δx gu − α δxx + βδx − δtxx + δt = 0.

(8)

From (8) we obtain

γ =
e−2x

8

(

(k4 + 2 k3) e4 x + (4k1 − 8ατ) e2x

−k4 + 2k3) ,

ξ =
(k4 + 2k3) e2x

8
+

(k4 − 2k3) e−2x

8
− k4 − 4k2

4
,

and α, β, τ , δ and g are related by the following conditions:

((gu + β − 2α) k4 + (2gu + 2 β − 4α) k3) ue4x

+ (−4ατtu + δx (4gu + 4β) − 4αδxx − 4δtxx

+4 δt) e2 x + ((gu + β + 2 α) k4 + (−2 gu

−2 β − 4 α) k3) u = 0, (9)
((guu k4 + 2 guu k3) u + (2 gu + 2 β) k4

+ (4gu + 4β) k3) e4 x + ((4guuk1 − 8αguuτ) u

+8guτt + 8 β τt + 8 δguu) e2 x

+ (2 guuk3 − guuk4) u + (−2gu − 2 β) k4

+ (4gu + 4 β) k3 = 0. (10)

Solving system (9)-(10) we obtain that if g is an arbitrary
function the only symmetries admitted by (1) are

ξ = k1, τ = k2, η = 0, (11)

which are defined by the group of space and time translations,

v1 = λ
∂

∂x
, v2 = µ

∂

∂t
.

Substituting (11) in the invariant surface condition (6) we
obtain the similarity variable and the similarity solution

z = µx − λt,

u(x, t) = h(z).
(12)

Substituting (12) into (1) we obtain

λµ2h′′′ − αµh′′ + (βµ − λ)h′ + µh′gh(h) = 0. (13)

Integrating (13) once we get

λµ2h′′ − αµh′ + (βµ − λ)h + µg(h) + k = 0. (14)

In the following cases equation (1) have extra symmetries:
(i) If α = 0, g(u) = −βu + k

a(n+1) (au + b)n+1, a 6= 0,

ξ = k1, τ = k2t + k3, η = − k2

an
(au + b).

Besides v1 and v2, we obtain the infinitesimal generator

v3 = t∂t −
au + b

an
∂u.

(ii) If α 6= 0, β 6= 0 and g(u) = au + b,

ξ = k1, τ = k2, η = δ(x, t),

where δ satisfy

αδxx − guδx − βδx + δtxx − δt = 0.

We do not considerer case (ii) because in this case equation
(1) is a linear PDE.

In order to determine solutions of PDE (1) that are not
equivalent by the action of the group, we must calculate the
one-dimensional optimal system [13]. The generators of the
nontrivial one-dimensional optimal system are the set

µv1 + λv2, v3, v1 + v3.

Since equation (1) has additional symmetries and the reduc-
tions that correspond to v1 and v2 have already been derived,
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we must determine the similarity variables and similarity
solutions corresponding to the generators v3 and v1 + v3.
• v3: We obtain the reduction

z = x, u = t−
1
n h(x) − b

a ,

where h(t) satisfies

h′′ + knanhnh′ − h = 0. (15)

Equation (15) does not admit Lie symmetries. By making the
change of variables

y(s) = h′(z), s = h(z)

equation (15) becomes

y′y + knansny − s = 0.

•v1 + v3: The reduction is

z = x − ln |t|, u = t−
1
n h(z) − b

a . (16)

The reduced ODE is

nh′′′ + h′′ − nh′ + nkanhnh′ − h = 0. (17)

Equation (17) does not admit Lie symmetries.
We can observe that, for the reduction (16), we have that

u(x, t) = t−
1
n h(x − ln |t|) − b

a
.

This solution describes a travelling wave with decaying veloc-
ity v = 1

t and decaying amplitude t−
1
n if n > 0.

III. TRAVELLING WAVE SOLUTIONS

If g is an arbitrary function the similarity variables are
given by z = µx − λt, u = h, so that u(x, t) = h(z) =
h(µx−λt). Consequently the corresponding solutions of (14)
are travelling-wave solutions.

As the derivative of trigonometric, hyperbolic and exponen-
tial functions can be expressed in terms of themselves, we can
choose g as an algebraic function of h, so that the equation
(14) admits the trigonometric functions (p sinq z, p cosq z,

p tanq z, p sinhq z, p coshq z, p tanhq z), hyperbolic functions
(p snq (z|m), p cnq (z|m), p dnq (z|m)) and exponential func-
tion (exp(z)), as solutions. In the following we present same
exact solutions of equation (14) for k = 0.
•

h(z) = p sinq(z)

is solution of equation (14) for

g(h) = −µ p
2
q q2 λ

h
2
q
−1

+ h µ q2 λ + µ p
2
q q λ

h
2
q
−1

+ h λ
µ

+α

√

p
2
q −h

2
q q

h
1
q
−1

− β h.

(18)

Consequently, an exact solution of equation (1), where g(u)
is obtained substituting h by u in (18), is

u(x, t) = p sinq(µx − λt). (19)

For µ = λ = k
2 , k =

√

5
12 , p = 1, q = 2, the solution

u(x, t) =

{

sin2(µx − λt) |x − t| ≤ 2π
k ,

0 |x − t| > 2π
k

-10 -5 0 5 10

-10

-5

0

5

10

0.0

0.5

1.0

Fig. 1. Solution (19) for µ = λ =
k

2
, k =

√

5

12
, p = 1 and q = 2.

is a sine-type double compacton (that is solution which has
two peaks, see Fig. 1)
• For

g(h) = −µ p
2
q q2 λ

h
2
q
−1

+ h µ q2 λ + µ p
2
q q λ

h
2
q
−1

+ h λ
µ

−α

√

p
2
q −h

2
q q

h
1
q
−1

− β h

(20)

a solution of (14) is

h(z) = p cosq(z).

So an exact solution of equation (1) is

u(x, t) = p cosq(µx − λt), (21)

where g(u) is obtained substituting h by u in (20). For µ =

λ = k
2 , k =

√

5
12 , p = 1 and q = 2, the solution

u(x, t) =

{

cos2(µx − λt) |x − t| ≤ π
k ,

0 |x − t| > π
k

is a compacton solution with a single peak, (see Fig.2).
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Fig. 2. Solution (21) for µ = λ =
k

2
, k =

√

5

12
, p = 1 and q = 2.

• For

g(h) = µ p
2
q qλ(1−q)

h
2
q
−1

− h
2
q
+1

µ qλ(q+1)

p
2
q

− 2 h µ q2 λ

+h λ
µ + α p

1
q q

h
1
q
−1

+ α h
1
q
+1

q

p
1
q

− β h

(22)

a solution of (14) is

h(z) = p tanq(z).
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So an exact solution of equation (1), where g(u) is obtained
substituting h by u in (22), is

u(x, t) = p tanq(µx − λt). (23)

• For

g(h) = µ p
2
q qλ(1−q)

h
2
q
−1

− h µ q2 λ + h λ
µ − β h

+α

√

p
2
q +h

2
q q

h
1
q
−1

,

(24)

a solution of equation (14) is

h(z) = p sinhq(z)

So an exact solution of equation (1), where g(u) is obtained
substituting h by u in (24), is

u(x, t) = p sinhq(µx − λt). (25)

• For

g(h) = µ p
2
q qλ(q−1)

h
2
q
−1

− h µ q2 λ + h λ
µ − β h

+α

√

p
2
q +h

2
q q

h
1
q
−1

(26)

a solution of equation (14) is

h(z) = p coshq(z).

Consequently, an exact solution of equation (1), where g(u)
is obtained substituting h by u in (26), is

u(x, t) = p coshq(µx − λt). (27)

For λ = µ = 1, p = 1 and q = −2 the solution

u(x, t) = sech2(x − t)

describes a soliton moving along a line with constant velocity
(see Fig.3).
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Fig. 3. Solution (27) for λ = µ = 1, p = 1 and q = −2.

• For

g(h) = µ p
2
q qλ(1−q)

h
2
q
−1

+ 2 µ p
1
q qλ(q−1)

h
1
q
−1

− h µ q2 λ

− 2h
1
q
+1

µ q λ

p
1
q

+ 3 h µ q λ + h λ
µ + α p

1
q q

h
1
q
−1

−αh q − β h,

(28)

a solution of equation (14) is

h(z) = p tanhq(z).

Consequently, an exact solution of equation (1), where g(u)
is obtained substituting h by u in (28), is

u(x, t) = p tanhq(µx − λt). (29)

For µ = 1, λ = 1
2 , p = 1

4 and q = 1 the solution

u(x, t) =
1

4
tanh

(

x − t

2

)

describes a kink solution (see Fig.4).
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Fig. 4. Solution (29) for µ = 1, λ =
1

2
, p =

1

4
and q = 1.

For µ = 1, λ = 1
2 , p = 1 and q = 3 the solution

u(x, t) = tanh3

(

x − t

2

)

describes an anti-kink solution (see Fig.5).
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Fig. 5. Solution (29) for µ = 1, λ =
1

2
, p = 1 and q = 3.

• For

g(h) = −h
(

µ2 q2 λ − λ − α µ q + β µ
)

µ
, (30)

a solution of (14) is

h(z) = p exp(qz).

Consequently, an exact solution of equation (1), where g(u)
is obtained substituting h by u in (30), is

u(x, t) = p exp[q(µx − λt)]. (31)

• For

g(h) = µ p
2
q qλ(1−q)

h
2
q
−1

− h
2
q
+1

mµ qλ(m+1)(q+1)

p
2
q

+h m2 µ q2 λ + h µ q2 λ − β h − h m2 µ q λ

+h m µ q λh λ
µ + α

√

p
2
q −h

2
q

√

p
2
q −h

2
q m q

h
1
q
−1

p
1
q

,

(32)
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a solution of equation (14) is

h(z) = p snq(z|m).

Consequently, an exact solution of equation (1), where g(u)
is obtained substituting h by u in (32), is

u(x, t) = p snq(µx − λt|m). (33)

For µ = λ = p = q = 1 and m = 0.996 the solution

u(x, t) = sn(x − t|0.996)

shows a stable nonlinear nonharmonic oscillatory periodic
wave (see Fig.6).

0

10

20

30

40

-5

0

5

-1.0

-0.5

0.0

0.5

1.0

Fig. 6. Solution (33) for µ = λ = p = q = 1 and m = 0.996 .

• For

g(h) = (m2−1) µ p
2
q q2 λ

h
2
q
−1

+ h
2
q
+1

mµ q λ(m+1)(q+1)

p
2
q

+h µ q2 λ − (1−m2) µ p
2
q q λ

h
2
q
−1

− β h

+h m2 µ q λ(1 − 2q) − h m µ q λ + h λ
µ

−α

√

p
2
q −h

2
q

√

−m2 p
2
q +p

2
q +h

2
q m2 q

h
1
q
−1

p
1
q

,

(34)

a solution of equation (14) is

h(z) = p cnq(z|m).

Consequently, an exact solution of equation (1), where g(u)
is obtained substituting h by u in (34), is

u(x, t) = p cnq(µx − λt|m).

• For

g(h) = µ p
2
q q2 λ

h
2
q
−1

m2

− µ p
2
q q2 λ

h
2
q
−1

+ h
2
q
+1

µ q2 λ

m2 p
2
q

− 2 h µ q2 λ
m2

+h µ q2 λ − µ p
2
q q λ

h
2
q
−1

m2

+ µ p
2
q q λ

h
2
q
−1

+ 2 h
2
q
+1

µ q λ

m p
2
q

−h
2
q
+1

µ q λ

m2 p
2
q

+ h m µ q λ − 2 h µ q λ
m + 2 h µ q λ

m2

−α

√

p
1
q −h

1
q

√

p
1
q +h

1
q

√

m2 p
2
q −p

2
q +h

2
q q

h
1
q
−1

m p
1
q

−h µ q λ + h λ
µ − β h,

(35)
a solution of equation (14) is

h(z) = p dnq(z|m).

Consequently, an exact solution of equation (1), where g(u)
is obtained substituting h by u in (35), is

u(x, t) = p dnq(µx − λt|m).

• In order to obtain Wadati solitons for the BBMB equation
we consider solutions of equation (14) in the form

h(z) = 2∂x arctan

(

c sin(nz)

n cosh(cz)

)

. (36)

If we take c = 2 and n = i in (36)

h(z) =
4(cosh(3z) − 3 cosh(z))

3 − 4 cosh(2z) − cosh(4z)
.

If we set w = cosh(z) then

h =
12w − 8w3

−3 + 4w4
. (37)

We obtain

h′ =
4
√

w2 − 1
(

8w6 − 36w4 + 18w2 − 9
)

(4w4 − 3)
2

and

h′′ =
4w

(4w4 − 3)3
[

135− 2w2(441 − 684w2

+552w4 − 248w6 + 16w8)
]

.

Substituting h, h′ and h′′ into equation (14) we get

g =
4w(32w10−496w8+1104w6−1368w4+882w2−135)λµ2

µ(4w4−3)3

+
4
√

w2−1(8w6−36w4+18w2−9)αµ

µ(4w4−3)2
− k

µ

+
4w(2w2−3)(βµ−λ)

µ(4w4−3) .

(38)

From (37) we obtain

w = ±1

2

√

−h2 + θ2 + 2

hθ
+

1

h2
± 1

2

√

α1 + α2

h3
− 1

2h
, (39)

where θ =
(

3h +
√

h6 − 6h4 + 21h2 − 8
)1/3

,

α1 = −h2θ + 2h +
h2(h2 − 2)

θ
, α2 =

2 − 6h2

√

1
h2 + 2−h2+θ2

hθ

.

By substituting (39) into (38) we obtain g(h) and from (12)
a solution of the PDE (1) is

u(x, t) =
4(cosh(3(x − λt)) − 3 cosh(x − λt))

3 − 4 cosh(2(x − λt)) − cosh(4(x − λt))
. (40)

In Fig. 7 we show solution (40) for λ = −2
If we take c = 1, n = 7 in (36) then

h(z) =
28(sin(7z) sinh(z) − 7 cos(7z) cosh(z))

cos(14z) − 49 cosh(2z) − 50
. (41)

In Fig. 8 we show the solution (41) obtained
• Equation (14) for α = 0, k = Aλµ2 and β = c+ λ

µ becomes

h′′ + ch + g(h) + A = 0. (42)
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Fig. 7. Solution (40) for λ = −2.

-4 -2 2 4

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

Fig. 8. Solution (41).

From [12] we see that either g(h) is quadratic in h, then (42)
may be solved in terms of the Weierstrass elliptic functions, or
g(h) is cubic in h and (42) may be solved in terms of Jacobi
elliptic functions. For non-algebraic g(h) we consider here
the two special cases which are non-algebraic above, namely
g(h) = eh and g(h) = ln h.

• If g(h) = eh we differentiate (42) and make the transfor-
mation h(z) = ln w(z) so that (42) becomes rational

w2w′′′ − 3 ww′w′′ +2 (w′)
3
+w2 (w + c) w′ = 0. (43)

• If g(h) = ln w we again differentiate (42), to get a
rational equation

ww′′′ + w′(1 + cw′) = 0. (44)

Equation (42) falls into the classification of Painlevé and his
colleagues who look for equations that are of Painlevé-type,
for algebraic g(h). Equations (43) and (44) are not of Painlevé-
type [6].

IV. CONCLUSIONS
In this paper we have seen a classification of symmetry

reductions of a generalized Benjamin–Bona–Mahony–Burgers
equation, depending on the values of the constants α and
β, and the function g(u), by making use of the theory
of symmetry reductions in differential equations. We have
found the functions g(u) for which we have obtained the Lie
group of point transformations. We have constructed all the
invariant solutions with regard to the one-dimensional system
of subalgebras. Besides the travelling wave solutions, we have
found new similarity reductions for this equation. We have
constructed all the ODEs to which (1) is reduced. We have
obtained for some functions many exact solutions which are
solitons, kinks, anti-kinks, compactons and Wadati solitons.
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