
 

 

  
Abstract—An iterative nonlinear inversion method in the line 

source pattern synthesis problem is newly presented for extracting the 
source distribution functions corresponded to the arbitrarily prescribed 
sum and difference pattern sidelobe levels. In this method, the 
generalized Fourier transform pair is first formulated which enables 
the desired patterns and the distributions to be simultaneously 
extracted by the optimum perturbation of pattern null positions. A 
significant result is that the difference patterns with the individually 
specified sidelobe levels are optimally synthesized by appropriately 
updating the Taylor line source sum pattern formula. Furthermore the 
method can be extended to the synthesis of the discrete linear array 
antennas. The scheme for extracting the excitation current weights of 
discrete array is also based on the perturbations of pattern nulls which 
are represented by the complex root locations on Schelkunoff’s unit 
circle. Numerical examples show the flexibility and effectiveness of 
the proposed procedures.  
 

Keywords—Array antennas, line source, null positions, sum and 
difference patterns  

I. INTRODUCTION 
N the designing monopulse tracking array antennas, the sum 
pattern and the difference pattern have to be synthesized. 

Sum pattern must have high gain and low sidelobe levels 
(SLLs) for long range target detection and interference 
mitigation. The difference pattern is also required for fine 
angular tracking, thus should have a large slope at boresight for 
accurate angle tracking. A variety of methods have been 
developed for the synthesis of the patterns [1]–[4]. A review of 
them reveals that the formulas of Taylor sum pattern [5] and 
Bayliss difference pattern [6] have been basically used for these 
antenna performance characteristics, evoking the synthesis 
problem on the continuously distributed line source antennas 
with arbitrary patterns. Since the patterns are expressed by an 
integral equation in which the integrand stands for the source 
distribution, the efficient inverse transform is crucial to 
recovering the distributed source potential corresponding to a 
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desired pattern. Generally, the analytical solution of the 
potential is not easy to find, especially in the case of the 
patterns with arbitrary SLLs. So the previous numerical inverse 
transform methods have required an iterative sampling method, 
and/or the overall optimization routines for fitting to the 
objective pattern window [7].  
 

 
In order to overcome the above specific and complex 

methods, this paper presents a generalized design scheme for 
both sum and difference patterns with arbitrary SLLs. In this 
scheme, the relationship between the patterns and the source 
distribution functions is analytically established by formulating 
an generalized Fourier transform pair, and then the source 
distribution is numerically adapted to the specified patterns by 
using an appropriate perturbation of null positions inherent to 
the pair. Especially, the difference patterns with the desired 
individual SLLs, which have more rapid sidelobe decay rates 
than Bayliss difference pattern, are optimally synthesized by 
appropriately modifying the Taylor line source sum pattern 
formula. Furthermore the concept of null perturbation can be 
applied to the discrete array antennas with the relative 
excitation current weights of antenna elements. The procedure 
is based on the optimum perturbation of null points which are 
inherent to the Schelkunoff’s polynomial [8] represented for 
the pattern array factor. Accordingly, opposite to the 
conventional method [8], [9] in which the excitation weights 
are directly optimized, this method is advantageous in that the 
patterns with the desired individual SLLs and the 
corresponding excitation weights are easily synthesized by the 
control of null positions. It is showed that two types of 
difference patterns can be synthesized as imposing the different 
initial values of null positions in the optimization process. 
Some numerical results show the validity and usefulness of the 
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proposed procedures.  

II. ALGORITHMS FOR PATTERN SYNTHESIS 
Radiation from a continuous line source is assumed and the 

appropriate geometry is showed in Fig. 1 where L2  is the line 
source length and θ  is the angle measured from the endfire 
direction to a far field point. Let λ  be the wavelength. 
Defining Lxp /π=  and θλ cos)/2( Lz = , the continuous 
line source have a distribution function )( pg . Then the related 
space factor pattern )(zF is given by the following Fourier 
transform relationship [5], [10].  
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Expanding )( pg  as ∑ = += N

n nn npbnpapg 0 ))sin()cos(()( , 
(1) can be rewritten by the restricted set of sampling functions 
as follows. 
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where )()( nn jbanF −= π  and 02)0( aF π= . The real and 
imaginary parts are even and odd in the z  domain, respectively. 
The problem we now are considering is how to take full 
advantage of )(zF  for patterns with arbitrary lobe heights for 
cases not only sum pattern but also difference pattern.  

For generality, we first introduce the Taylor line source sum 
pattern [4] compatible with the real part of (2), and then modify 
it in order to activate the case of 0≠nb , based on the 
Orchard’s ripple making theory [9], [11]. We choose to keep all 
null positions at the integer location for nz ≥ , and to move 

those for Nnz =−≤ 1  near the locations nz  that would 
produce the nearly constant sidelobes near the main beam. The 
result is as follows: 
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whose real and imaginary parts are  even and odd in the entire 
z  domain. That is, )()()( zFzFzF oe +=  where 0)0( =oF . 
So, the framework of (3) is consistent with that of (2). Here, nz  
is the null or dip position to be perturbed in the z  domain. mv  
causes a dip in position. nz  and mv  are optimally perturbed 
for  

magnitude of )(zF , which has the individually prescribed N  
lobe heights with the furthest lobes exponentially decaying in 
level according to the coefficient A .  

For example, the dotted line in Fig. 2 (a) is Taylor sum 
pattern with 20 dB sidelobe peaks in the case that 

61 =+= Nn .  
For a difference pattern, it is required that 0)0( =F  and 

)(zF  have no deviation against the regular pattern at 0≠z . 
Thus, )(zFe  must become odd for 0)0( =eF . Once the 
alteration is done, )(zFo  must become even and then the 
position of two deviations must be interchanged to maintain the 
framework, which is consistent with the need to have )( pg  be 

real. Letting the altered )(zF  be )()()( zjFzFzF A
e

A
o

A +=  

and defining )()( zjFzF A=′ , )()()( zjFzFzF A
o

A
e +−=′  

yields. After some algebra on the even ↔ odd alteration in (2), 
the following relationships are derived: 
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Fig. 2  Conventional sum and difference patterns compared by 
optimized patterns. (a) sum pattern, (b) difference pattern 
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In (5), the subtraction by 0D  removes the numerical 

problem found in the constant A  in the case of difference 
pattern. Accordingly, when A

nb  and A
na  are the updated 

 nb and na , the following relationships are obtained for sum 
and difference patterns, respectively. 
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For example, the dotted line in Fig. 2 (b) is Bayliss difference 

pattern with 20 dB sidelobe peaks in the case that 

61 =+= Nn . As expected, the nulls for nz ≥  are located at 
half points between the integer locations.  

 
 

 
If the antenna elements are uniformly and linearly spaced, 

the far field patterns are represented by the following array 
factor instead of space factor. 
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in which mI  is the relative excitation current weights of the 
m’th element and )exp( ϕjw = , with θλπϕ cos)/2( d= , 
where d  is the interelement spacing. If the roots mw  are 
effectively derived from (11), current weights are automatically 
calculated by comparing coefficients. The roots are expressed 
as )/2exp( Mzjw mm π=  in which mz  are the null positions to 
be optimally perturbed. In this paper, opposite to the direct 
optimization of weights [8], [12], the nulls mz  are optimized.  

III. OPTIMIZATION AND VALIDATIONS 
Letting the general notation for )(zF  and )(zAF  be GF , 

the error function )(XE  for null positions adapted to the 
prescribed m’th sidelobe peak values is defined by the least 
square method as follows and the iteration for the minimization 
with stopping condition ε≤E  goes along with the conjugate 
gradient method.  
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where ),( VZX = in which ],,[ 1 Nzz ⋅⋅=Z  and ],,[ 1 Nvv ⋅⋅=V . 
Minimization of E  is achieved by updating  X  to reduce the 
logarithmic difference between the performances GF  during 
the updating process and the specifications S  which represent 
the prescribed objective p’th peak value and d’th dip value.  
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Fig. 3  Distribution functions corresponding to Fig.2. (a) for sum 
pattern, (b) for difference pattern 
 
 

Table I  Extracted coefficients for distribution functions of the 
optimized patterns (Fig. 2)  
 

Sum pattern Difference pattern  
n 
 

na  

( 310−× ) 
nb  

( 310−× ) 

A
na  

( 310−× ) 

A
nb  

( 310−× ) 
0 
1 
2 
3 
4 
5 

159.210 
32.497 
13.417 

-16.943 
16.136 

-11.434 

 
-0.927 
-1.360 
-9.602 

1.592 
-0.666 

 
-293.617 

17.996 
-27.983 

28.308 
-21.981 

 
3.576 

-0.753 
10.526 

1.301 
-0.583 
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The summary of the algorithm mentioned above is as 
follows. 
 

1) Determine the desired sidelobe number N  to be 
controlled, individual sidelobe levels and dip values. 

2) Synthesize the magnitude of pattern satisfying the 
prescribed goal by optimally perturbing the nz  and mv  
from (3). 

3) Calculate na  and nb  from the relationships that 
)()( nn jbanF −= π , 02)0( aF π=  and then calculate 

)( pgs  from (9) .  

4) For difference patterns, perform the step 2)-3) by setting
 δ→A  (for instance, 310−=δ ) for the convergence 
consideration. In this process, )(zFe  and )(zFo  are 

replaced by )(zF A
o  and )(zF A

e , respectively, in the man
ner of (4)-(8) at each iteration. When the goal set by step 
1) is satisfied, the final updated A

na  and A
nb  are 

derived and then )( pgDP is calculated from (10). 
 
The solid line of Fig. 2 (a) is the pattern with 30 dB dip 

( 3=m ), which is the result performed by the optimization 
process mentioned above. The solid line of Fig. 2 (b) is the 
pattern with 30 dB dip ( 3=m ), which is the result performed 
by (9) and (10) through the optimization process. This figure 
shows that the proposed difference pattern has nulls at the 
integer locations for nz ≥ , and the sidelobe decay rate is 
faster than the conventional difference pattern. Fig. 3 shows the 
corresponding source distribution functions calculated by (9) 
and (10). From these figures, the null positions of patterns 
synthesized from (10) are different from those of optimized 
Bayliss pattern as mentioned above, showing more rapid decay 
of SLLs in the range 6≥n . And 0)( =pgDP  at the edge of 
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Fig. 4  Synthesis procedures for difference patterns. (a) initial 
pattern, (b) update process, (c) evaluated pattern. 
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Fig. 5  Examples of synthesized sum patterns. (a) optimized 
patterns. (b) the corresponding distribution and weights 
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line source, satisfying the physical realization. Table I shows 
the extracted Fourier coefficients for distribution functions of 
the optimized sum and difference pattern of Fig. 2. 

The solid line of Fig. 4 (a) is the pattern of )(zFs  with -30 

dB SLLs in the case that 0=nb ,  310−→A , and 51 =−n . 
From the optimization process, the pattern was calculated for 
the synthesis of )(zFDP . The dotted line shows the initial 

)(zFDP  to be updated by (4)-(8). The update process from this 
initial pattern is showed in Fig. 4 (b). In Fig. 4 (c), the 
synthesized pattern is compared with the evaluated pattern 
which is calculated by the extracted A

na  of (10), showing the 
good consistency in the visible region in the case of λ102 =L .  

Fig. 5 (a) shows the optimized sum patterns of continuous 
line source with 8=n , and discrete array antenna with 

2/λ=d  and 15=M . The corresponding distribution 
function and weights are shown in Fig. 4 (b). In the case of 

discrete array, the roots mw  are effectively optimized from 
(12) and then the corresponding current weights are 
automatically calculated by comparing coefficients from (11). 
The roots are expressed as )/2exp( Mzjw mm π=  in which the 
null position mz  are optimally perturbed. Each initial values of 

nulls are simply set as ]7,,2,1[0 ⋅⋅⋅=Z . Since 15=M  and 
2/λ=d , the number of nulls are M-1=14 in the visible region.  

Fig. 6 shows the optimized difference patterns with 20=N  
and λ7.0=d  in the case of the discrete arrays which have 
prescribed SLLs of -30, -40, -40, -30, and -30 dB near the main 
beam. It is showed that two types of difference patterns can be 
synthesized as imposing the different initial values of null 
positions in the optimization process. The initial values of nulls 
are given by nulls extracted by the optimizations for continuous 
line source with same prescribed SLLs. In Table II, The 
corresponding weights are shown with the optimized nulls. 
When the values are substituted in (11), the resulting patterns 
are consistent with Fig. 6. Since λ7.0=d , the w-excursion is 
1.4 revolutions around the Schelkunoff unit circle. Fig. 6 also 
shows that  the SLLs of the proposed difference pattern have 
more rapid decay rate than the optimized Bayliss pattern. 
 

IV. CONCLUSION 
A general iterative scheme was newly presented to 

synthesize simultaneously both the sum and difference patterns 
with arbitrary sidelobe levels. The scheme is based on the 
generalized Fourier transform pair which enables the pattern 
nulls to be easily optimized for the prescribed patterns. The line 
source difference patterns are synthesized from well-known 
sum pattern formula by the developed Fourier transform pair. 
The concept of these synthesis procedures can be applied to 
extracting excitation weights for the discrete array antenna 
pattern with arbitrary SLLs. It was also showed that two types 
of difference patterns can be synthesized as imposing the 
different initial values of null positions in the optimization 
process.  
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Fig. 6 Optimized difference patterns in the case of discrete array 
 

 
Table II Optimized nulls and relative weights of Fig. 6  
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Null Positions 
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