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Evolutionary Processes Solved with Lie Series
and by Picard Iteration Approach
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show in future papers. Anyway, in this work we igél the

Abstract— The solution of evolutionary Cauchy problems byclassical Picard’s iteration procedure in ordeceastruct the

means of Lie series expansion and its linkage tar#i iteration
method, is presented. Thanks to a Taylor transfamd to the
introduction of a differential Lie-Groebner openato, the initial
generally non-linear and non-autonomous problembsareduced to
a linear one, whose solution is given in termstaf tie operator
exp(D).

The Picard procedure applied to the Volterra irdegquation that
turns out from the initial problem, can rigorousimtroduce
generalized Lie series since its steps are thdapaums of those
series.

Keywords— Lie series, Nonlinear Cauchy problems, Picard

iteration, P.D.E. .

I. INTRODUCTION

INDING solutions to partial differential equatio(iBDES),

in a general, fast and efficient way, is as impurtes it is a
difficult task. In previous papers [1]-[8] we facHte problem
to find out a unique method capable to solve eimhaty
PDEs, both linear and nonlinear, both autonomous raom-
autonomous, under the constraint of analyticityarding the
evolutionary operator, i.e. the transformed functiof the
unknown one were analytic, developable in a mutipbwer
series of its arguments. We reached this goal fpyaring and
extending a method, based on Lie series, proposetlvb
Groebner and others in the 70’s [9]-[11].

Inspired by those ideas, we started a systematay dtoth
aimed at a better theoretical foundation and atractjcal
applicability of that method. So we fixed what céme
considered a generalization of the Groebner's aaroThe
present paper is a further step in that directinrit we study
the integration of a linear or nonlinear PDE of éwelutionary
type in the Cauchy’s formulation of the problemr Bre sake
of simplicity of exposition, here we treat a twandinsional
problem, but the method is easily extendible tohéig
dimensions, to systems of equations and to boundalye
problems, as we partly already showed and pardygaing to
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unique solution, whose components will remain repnéed by
Lie series.

In fact, as a standard result from nonlinear funl

analysis, we know Picard’s iteration gives a gelndraorem
on the existence (and uniqueness) of the solufitverefore
we are going to revisit that approach in orderhtovs that the
Picard’s procedure is constructive also becausegusypoint
of view, it allows to write the solution in explicform by
means of Lie series.
Finally we stress from a practical point of viewat the
Improved method gives an approaching polynomialthie
frame of an integration by series, with the recgiipeecision,
to the solution to the assigned Cauchy problem,neive
situations when other methods fail. We want to ndmthat
here, at the end, we shall find a link between Rteard’s
iteration and the series, belonging to a specias<lof the
Lie's type, representative of the unique solutiow dy this
approach, we reach, in a rigorous way, the fundsahessult.

We have elsewhere, [7], also approached the saaisepn
by a quite different point of view. There we havsoafound
the convergence radius of the generalized Lie sémelied in
the representation of solution [7]. It will be ugiefo remember
that result in what follows.

Resuming, we can say, apart from results of the dasd
note: [7], two principal approaches are possiblalidg with
Lie series method: either

1) a heuristic one, [1]-[8]. Its foundation is arfuebation
procedure (PP): we can consider a sequence of gmsbl
overall equivalent to the assigned Cauchy’s probéemd all
resolvable a’ la Groebner. That author concernedlugion of
n initial value problem (i.v.p.) for a differential/stem of first
order normal ordinary equations in finite numbed]-[LL1].
The method approaches the solution and requirggmbcheck
of the results. It is an alternative pathway indéearder to
gain solution and in the sequel will be remembendttre
useful;

or

2) the use of a Picard’s iteration method, whichliswed if
the evolutionary operator is Lipschitzian or (inrtgalar)
analytic.

Picard’s method, in addition, reveals that, in thse under
study, its steps are partial sums of special Ligesg our
generalized ones.
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By using one of the above procedures we want itiqodatr
to show that the Lie series method is, at the arhearizing
method of integration. Indeed, even if the evoligy
operator is nonlinear, analytic in its argumentd afso time
dependent, we are able to change it into a linear tame
independent operator. This is accomplished viaedirpinary
Taylor’s transformation at a non singular pointitsfdomain,
and by a contemporary "symmetrization" proceduretiaf
variables. The latter, as is well known, and aslltbe clear in
what follows, consists in treating th&' variable on the right
hand side (r.h.s.) functions of considered equafi@n the
same foot of the other variables by adding a vemple
differential equation to the system.

So the principal aspects of this paper could berghinto
the following two:

1) We treat about the linearization of a problemicivh
firstly is nonlinear analytic and time dependent.

2) Thanks to the Picard’s iteration, we introdueeeyalized
Lie series in order to explicit the solution. Thoseries
represent the components of the solution of thealnvalue
problem that a preliminary Taylor's transformatiaoes
equivalent to the assigned Cauchy problem conogrtiie
original evolutionary equation. The solution of Buegn open
differential system (i.e. with non limited nhumbédreguations),
may be find also, as above affirmed, in a procedofre
perturbation (PP) considering a sequence of aphiogc
problems all finite and solvable according with E€lvoer’s
approach.

This last observation will turn useful as well, bbdh its
theoretical and practical implications.

In fact by a (PP), automatic calculus is allowede W
ourselves developed a suitable software, in théenbtaatica ®
framework, in order to establish the practical iieiéisy and
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of a multiple powers series representation withpees to
(w.r.t.) all its arguments in a multidimensionaskidomA. The
importance of analyticity will be stressed at diffiet levels in
the sequel. Let us also suppose, what is not cted| the
analyticity regarding the spatial varialbte is confined to a
compact,(x) O domA, a neighbourhood of the origin.

Then, how are we going to treat the above problem?

1) we write, by a Taylor’s transformation at artiadi non
singular point, e.gx =0 O [(X), an equivalent initial value
problem (i.v.p.), concerning aopen (i.e. with non limited
number of eqs) differential system of normal firstder
differential equations;

2) we solve the i.v.p. by the Picard’s iteratidmttensures a
unique solution to exist and that also is a cowsitra pathway
finding explicitly the solution by special powerrigs;

3) we recognize the solution as expressed by liesef a
generalized type;

4) we write the unique solution of the original Chy
problem (1) by its Taylor’s anti- transformation.

As it is clear from the above considerations thatsgy of
Lie series is also recommendable in linear problems
Especially when more standard tools, e.g. semigrdhgory,
with the aim of an integration in closed form, act available.

Now the basic idea of our approach is a Taylor's
transformation which allows us to act on the linspaceS of
the Cauchy sequences @) the complex field. That space
includes the vector of the Taylor’'s coordinateshef unknown
function, i.e. the sequence of the coefficientstsnTaylor’s
representation at the initial poixt= 0.

More in details, let us observe that, we are logkior an
analytic function with respect tox on the compact
(x) O domA, which solves our problem (1). Then by a

convenience of this method. The numerical problemEaylor's transformation, at the point=0 0 [J(X), we deal,

connected with this procedure will be the subjeét a
foregoing paper. Anyway this method proves to befulseven
when more standard techniques fail, and capablsotee
nonlinear problems of the non autonomous type lbypla
means although in the frame of power series devedops.

Il. GENERAL PROBLEM AND ITS REDUCTION TO LINEARITY

The most general problem we must deal with, is the

following Cauchy problem:

dP
— = A(P),
pm (P)

PO.x) =R (X

1)

concerning with an evolutionary equation wahnonlinear
differential operator of orde: in the spatial variable and,

in general, time dependent. The sole hypothesisrad\(P)
is its analyticity, i.e. this function is supposedbe susceptible
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instead with problem (1), with the following i.v.(2) for an
open differential system, which can be done autonomaoas,

time independent, adding another eq. for the vigigh, as
reported in the following picture:

d
%:en(p—lapy+n,---,po+n’-"’po)’ nDNO
dp =1
dt
1/9"P 1| 3"AP
Pn :_| n ;Gn:_ # @)
n| 9x <o nl| ox <=0
1|0"P, +o0
PO =2, a, =1 }  Po = (@n)nso
n ox" |
p_,(0) =0.

Integrating (1) is equivalent to solve (2) and vessa and
we shall utilize this fundamental observation ia fequel. We
want also to notice that the possibility of tramgfong a non
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autonomous problem into an autonomous one, by mefns 2 3 n

) : ) . o _ "2 U s t on
this very simple trick, which often however couldnder e =1+tD +5D +§D +"'+HD +..
nonlinear an original linear system, is particylazbnvenient ' )
in this context when linear and nonlinear probleres treated
in the same way. As is known this position is veoynmon in o
the Lagrangian dynamics field. Then let us rewcite i.v.p. above two operatdd ande™ :

Then it needs preliminarily more deeply to speaiuatihe

(2) in a more compact form: We can gain for them a rigorous definition by atypdration
strategy.
dp As said above, in a procedure of perturbation (Rie)can
E =Dp 3 consider, at every stap, only the firstm + 1 equations of the
e @) equivalent system (2) to the assigned Cauchy pnoklg, and
PO)=ps, Ps = (O, (an)n:O)! write the pertinentm-th approaching i.v.p. in a compact form:
which involves the sequengeof the Taylor's coordinates dp(m) b
of P with the addition of p_;, i.e. p=(p_,,(p,)i%)0S, at P
being: 0 il 9
D= + Y O (TT e d T sy ey T, T ) ——
) . ) 577-1 ;) n( k+n o+n 0 l)aﬂn
D= +Z@n(nk+n,...,770+n,...,77;,,ﬂ_l)a—ﬂ Py = (Pts Poseees Posnsess Psrm)
-1 n=0 n

Py ©) = Pimys s Pimys = (0: (anmzo)
the Lie-Groebner operator, wherg are complex numbers

which have no linkage to the unknown functiops, i.e. they Now the following fundamental statement holds:

o _ as m - +oo, the sequence (D(m))+°° is a Cauchy
are parameters. Their variability has only one trairg: all m=0

©, must be defined on those values. Better sayinaallin gequence, then such is (etD(m ):io i

functions on the r.h.s. of the egs (3), suitablepeters take

place of the previous arguments in order to buhd D In fact in theSup-norm in S, operatorsD(m) have finite

operator. o __ _
It is important to notice that the above compactrfds NOrms, and holds the Lipschitz's condition for atil
allowed by the following rule: exponential operators:
Remark : The linear operator D acts on p through the ePm _ gtPimy ” < K"D(m) _ D(ml)”, m=m,
following steps:
o firstly, an arbitrary sequence, say " D(m)” = Sup”D(m)n‘", 7 0S| <1;
= (7'[_1, (ﬂn);‘;"o)D S, is  substituted  to
p= (p_l,(pn ;":"O)D S: Now if 700S, D(m)r[— D(ml)rr is the sequence:
+  then, having written the image D,,, the terms of the p (0,---0,0, 11 (Mrm 415+ Tlormy 41+ Tl s Tlg) oy
s;:qt:eg?e in it take place of the corresponding ones of O Ty ey Ty 7T4),0...) |
Dp= (D7, . » =O(p) Since:
where O(P) = (0, (Pt Posrs Posnsees Po) g s 1-6 O
O, (T s Ty T4, 7T,) - 08S - +00

depends on p. This means that the n+ 1-th term of the sequence
depends on the finite sequence (or numerical vector):

(P_1: Por--vs Posnsees Pyan) - Equivalently the components of then for everye >0 there is a pair

© depend on sequences:

(o Bt o 0.)0S (mm): Sup(Dyy 77— Dy 77) < €
1 Posess Posnseess Pruan s ) OIS,

Then the existing limits of two sequences:

(D(m) )+m°i0 ' (etD(m) )r:io

In the sequel besidP, a preeminent role is played by the
exponential operator:
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define: D, €P.
A formal consequence of the existence of the twovab

operators:D and e®, may be that, bein@ linear, it is a
standard result:

_of d d(._
e?e™| —p-Dp|=0 = €’ —(e™®p)=0
(dtp p] °7)

which, after integration, reads:

e’p-p;=0 = p=€"ps

i.e. the operato»:etD gives the formal solution to i.v.p. (3), a
well known implication.

But here our aim is different from the above pathwa

In a less formal path let us observe that we needtégrate
the Volterra’s integral equation:

p= p6+J.;Dpdf 4)

which can be derived by integration from i.v.p..(3)
It is also well known that, if the integral lineaperator:

£:£Dmf

is a contraction mapping, then an iteration procedwhich
in the sequel will be recognized as the same inRicard’s
one, may be followed in order to integrate the a&bfomctional
equation. Then a unique solution exists to the abdalterra’s
equation (4). In addition, we can opportunely cleobs T in
order to satisfy the sufficient condition of intafility of (4)
by a Neumann series:

||£|| <1.

Let us finally observe that often in applied sciesce.g. in
guantum mechanics, it is convenient, dealing wiiimilar
problems, in a first time, to limit ourselves to farmal

introduction of the exponential operat(mID and to require
only at the end a check that the series:

p=€’p, ®)
is really the solution to the assigned i.v.p. (8je shall

return on final check of result in the last parggraf present

note, being this possibility strictly linked to dytéity of A.

In this work, as already said, we want to followmare
rigorous procedure based on the integration of abeve
Volterra's equation (4), of course pleonastic i the final
check of result.

Resuming, we can affirm that beiflylinear two paths are
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possible: the former, formal, which requires a ipnlary

introduction of the exponential operat@ID. The latter, a
consequence of the contraction mapping theoremgchwhi
reveals itself to be not different from Picard'erétion
procedure (PI) and the same conducts to a finaddottion of

the exponential operata:‘rID in order to write in compact form
the result. This latter is a constructive procedof€5), the
solution to i.v.p. (3). In every instance firstly tastly, the

introduced operatoetD is a generalized exponential operator
becauseD is a symbolic non finite sum of terms, all linear
differential operators.

Ill.  PROOFS OF MAIN STATEMENTS

In order to legitimate each of the above proposgjowe
shall prove:

1) e p; is an absolutely convergent series.

2) the sequence(p,)ne, Of vectors which represent the

steps to be run in integration a’ la Picard of ip Cauchy
sequence and converges t@alS.

That is:

~ ~ t o~
pn = po + J.OD pn—j_ df

po = pﬁ '
are the steps of Picard’s iteration (Pl) which apgh a
pOS.
3) the partial sums of® p, are the functionsp,, then:

p=€"p; .
4) functions }5n are also the partial sums of the Neumann
series which solves the above Volterra's equatinir the

unknownp. That provesp = p in a convergence disk, which
at least includes the neighbourhood:
[oT] : g <1
Finally we have:
p=¢e’p;,
as a sequence of Lie Series.

Theorem: € p; isa convergent series.
Proof of the absolute convergence:
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[t(D ps =D B <tk ps - P

<

2
%(D(D ps) - D(D P))

t2 ”
E(D ps —D p)H:

2
< %ku(D ps) - (D p)| <

t? .
<2 Klps Bl

o e .
—I(D Ps —D" p) S—Ik”pa_p”
n n!

=

if p=0, ;tn—!D" P

< 400

Then therefore the serieg® p; converges in norm, then
(o)

absolutely in some neighbourhoodtef 0.
Furthermore we easily obtain:

that is the function which represents thth step of Picard’s
iteration, but also it is thent+1-th partial sum of the

exponential series® p,, then the sum of the series is the

limit function, say p, of the sequence(p,)re, -
Theorem: Provided that (P,) . the sequence of PI, is a

Cauchy sequence, then it convergesto €° p, = €® p;.
Proof:

We have:
dp, -~ db, - -
—n = P =Dp,,+Dp,-Dp,=>
dt pn 1 dt pn 1 pn pn

etD

n

P - ) =DF, .- DR

etD

d o=~ ~ ~
ae‘Dpnszn_l—Dpn:>

D ~ ~ t _ ~ ~
B, =P, + | €“°(D Py~ DB, dE

_ _ t - -
B = €%, +€°[ e “°(D B, ~DF,)d¢

P, - €°P, ,asn - +oo
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In fact:

< k[B] |Prs ~ P

t
¢ ['e*°(Dp,,-D pn)df‘

t
if B is the linear similarity operatoe™ J.Oe"(D Odé,

since”eID ” <elPl < 4o, then|[B] < +co.

Theorem: Since D isa Lipschitzian mapping, then (,,)r=,

isa Cauchy sequence.
Proof:
Ifn>m,
d"p _
@ PP =
d"p,
Fzm =0 =
dt
dn

—(p, - P,)=D"(p, -0
dtn(pn Prm) (P, =0)

integratingn times and thanks to the linearitydf we have:
— ~ (i (6 n = _
pn pm - -[O-[O - ..[O D ( po 0) dS_I. . 'dSn—l dS“l

BeingD a Lipschitzian linear mapping:

-~ o~ t" -
|5 = Bl < k"B~
nl

approaching 0 agl — +oo. Q.E.D.
The space of Cauchy sequences is a Banach spate so

Cauchy sequencép, ) ~, converges to g, consequently it
exists and it is unique.

Theorem: Picard iterations integrate the above Volterra
equation.

Proof: As is well known, a Neumann series integrate
Volterra’s equation (5):

P=ps+E£Ps +E P +...
and it converges in
[o[ : [g]<1

The partial sums of the above series are the stdpisard’s
iteration (PI):
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the variable transformed by the Lie exponentialraf).
S, = P, the starting point in Pl bein@o =p; We remark the necessity of the exchange theorem
(descending from the analyticity hypothesisA)ralso in order

S, = p, +£ p, the first step in PI; to verify, as final check, that
0 (0] 1

- etD
S, =P tEpP+E7 Py = P M
P, +J.tD P, d&, +J'tDJ"{2 D p, ds, ds, is the solution to the equivalent initial value ipiem
0 0o Jo iv.p.(2).
_ t L In fact
—pa"‘LD(pa"‘_[o D psds) ds, ntac
d tD —_ Oﬁ tD )
the second step in PI, and so on. a[e M. p, =O(€" 7y, ) =
=[° D, ,, =0(e® 7, ., ) =
IV. THE SOLUTIONP . [etD o(m],._. 0 = @([etD m,. o )
The sequencp represents the solution to (3) is true by the exchange theorem.

Finally let us observe that integrating an evolugicy

& t”[ n ] equation in linear instance, is an easy task ifknew the set
p= Zﬁ D7, ps ’ of eigenfunctions of\; a generator of the functional space in

"o which we search the solution. If we do not, we magain

introduce the Lie exponential operator, which isat of

passe-partout.

0 Again we remark that the method of Lie sefiesarizes the
p=[e”7,. Po assignednon-linear problem, and it is also useful in non

autonomous instances, when the alternative pathinear

Then the solution to problem (1) is obtained by Taglor's problems is the Tanabe’s method [12] and in noalineses

or in compact form

anti-transformation: the Magnus’ integration [13].
Resuming:P expressed by the Lie series (6), is the unique
P =[e® My, *2 solution to problem (1), in the more general cds® monlinear
" ° (6) evolutionary time dependent operator. It is analywith
z= (x")n=0 respect tax within the convergence disk arourd= 0, domA

of A(P), and w.r.t.t within [0; T[ at least. In truth the
This series has coefficients which are Lie seriesl a POssibility of an analytic continuation is expected t-axis

converges in(J(X), neighbourhood of=0, within domA, the  Within domA, how our study, [7], concludes. _
convergence disk g(P) In other words Lie series have not only a localdigl, as

method here used seem to suggest. Our reader azg @ the
cited note, [7].

The method which we have supplied foundations k& th
Picard’s general tool is based on an integrationspgcial
powers series and therefore asks for computerihedpder to

V. EXISTENCE OF THE SOLUTION

Itis very important to notice that: ~ handle the generalized Lie series involved. Wekttiircould
it is required the exchange theorem, [8], when the Lie e appreciated for its simplicity in approachingtblinear as
operator €® acts on the image obtained by (Dp =O(p) ). well as nonlinear, both autonomous as well as mbor@mous

In fact since the definition of the imag®p is given by €volutionary problems.

O(p), itis €®Dp =ePO(p). Now we notice that while the

former termDp, allows the action of VI. CONCLUSION
the Lie operator;etD, directly onp; being The commutator

[€P,D] =0; the same action demands the analyticity w.st. it Whilst in previous papers we dealt with the problef
solving an evolutionary problem with analytic ogeraby

means of the integration of a sequence of approgdii finite

; ; ) ) problems to the equivalent initial value problen), (2ere we
analytic function bye™ as the value of the same function on

arguments of every term of the sequer@®ein order to can
apply the exchange property (which writes the imafjean
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answer to this subject by means of the Picard'ssatal
iteration method. By this tool we can write an aggwhing
sequence to the unknown solution, using a consegueinthe
principle of the contraction mappings. The Picaritksation
tool furnishes mainly, as is well known, a theorem the
existence (and uniqueness) of a solution to thdudwoary
Cauchy problem. This because such a theorem holdthé
initial value problem, to be integrated B the space of

Cauchy sequences @) the complex numbers field, which a

Taylor's transformation at a non singular pointg(ex = 0)
associates as equivalent to the assigned CauchieproThis
transformation is peculiar of our approach and vedloto

reduce, to linear and autonomous systems, any ressig

analytical problems which had not these charackEenally we
show the linkage of Picard’s procedure with the kiries
finding again the fundamental result, which expessshe
components of the unique solution in terms of sdetie
series.

The true radius of convergence of the Lie serieslired,
has been studied, [7], in showing a wider validitfy the
representation withidomA.
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