
 

 

  
Abstract— The algebra of operator and its application to a certain 
set of differential equations is presented. In particular it is considered 
the possibility to transform a Sturm-Liouville problem in an 
equivalent one which exploits the property of symmetric operators 
and is capable to furnish “by eye” problem solutions. Such a method 
is then applied to a typical problem of electrostatics, i.e. a spherical 
conductor embedded in a uniform external field. As an example, the 
Laplace equation is considered and solved with this powerful 
technique in a very elegant way. 
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I.  INTRODUCTION AND OPERATOR ALGEBRA 
 

HIS work has a twofold aim: to present an operatorial 
technique for solving partial differential equations and, at 

the same time, to make detailed calculations on the 
electrostatic field generated by a charged sphere placed in a 
uniform external field. As for the first problem we recall the 
followings: Laplace equation often is the end point of 
transformations starting from different equations (Poisson, 
Helmholtz, etc.). This equation can be solved by separation of 
variables method, if a suitable coordinates transformation is 
performed, e.g. writing the problem in one of the eleven 
system of coordinates that can be built using second degree 
surfaces and requiring that they are locally orthogonal. This is 
usefully accomplished only if the physical problem at hands 
has the same well definite symmetry. For example the 
problem we are going to present, i.e. a sphere in a uniform 
field, has a well definite symmetry which allows us to replace 
the Laplace equation with two Sturm-Liouville’s equations. In 
an old paper, one of us [1] showed an operatorial way of 
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transforming a second rank differential form, with variable 
coefficients of whatsoever degree, into a Sturm-Liouville’s 
operator. This technique allows one to automatically find out 
the weight function and to infer the functional space that 
render that operator a Hermitian operator. 

For easy reference some main ideas are here reported. 
Consider the following expression (where coefficients are real 
functions): 
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and, remembering that the commutator of a derivative and a 

function is just the derivative of the function: [D, F(x)] = 
F’(x), one can put the expression in its quasi-symmetric form, 
by the following manoeuvres: 
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where we used the following operatorial equality: 
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In view of finding the self-adjont (and Hermitian) 

properties of the expression (2), and omitting for a while 

function 
1−W , we name function ZWP ≡  and YWR ≡ , 

obtaining 
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In this form the quasi-symmetry of the expression emerges. 

”Quasi”, because we need to free the  expression from 
1−W  

before obtaining its full symmetric form. This is always 
possible  multiplying both sides by W. In order to show the 
symmetry of (3), let us remember transposition rules for (both 
limited and unlimited) operators: TTT ABAB =)( , 

DD T −=)(  and (f(x))T = +f(x), where A and B are generic 
limited operators, D and f(x) represent respectively the 
unlimited operators pertaining to d/dx and f(x). 

So one has: (DZD + Y )T = (-D)Z(-D) + Y = DZD+Y  which 
proves that the unlimited operator, DZD + Y, we are studying, 
is self-adjoint.  

More over if we choose to work in a suitable Hilbert 
functional space the unlimited self-adjoint operator becomes 
also Hermitian [2], [3]. For this to happen is sufficient to 
eventually integrate between two (proper or improper) points 
in which Z vanishes [1], [2]. Besides, W results to be just the 
weight function of that functional space.  

Resuming, we showed that the (Sturm-Liouville) operator 
 

RQDPD ++2  ,                                     (4) 
 
can be put in the symmetrical form 
 

YDZD + ,                                                    (5) 
 
after having freed it from a multiplicative function. In what 

said till now, we had no need to limit the algebraic degree of 
the coefficients. Now, if we put some more conditions on the 
degree of coefficients, namely P is up to a second degree 
polynomial, Q is up to a first degree polynomial, while R is a 
constant, then, we have the solutions of the Sturm-Liouville 
problem 
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“at first sight” in operatorial form. They are: 
 

( )∞<<∞−Ψ=Ψ nZD nn
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where 0Ψ  could also be the identity function. 

Obviously also nn ngK Ψ=Φ )( , where K is a constant 
and g(n) an arbitrary function, is still a solution of (6). As it is 
well known this degree of freedom can be used to normalize 

nΨ . As a matter of fact, by means of the procedure 
previously described, one can “at sight” obtain almost all the 
orthogonal polynomials of the classical “special” functions 

and, at the same time, one can link Hermitian  properties of 
O.D.E.s to their symmetry properties.  

Let us very briefly discuss why the Sturm-Liouville 
operator is Hermitian. Actually, a symmetric 2-nd order 
operator, like DZD+Y , is Hermitian in the manifold of its own 
eigenvectors if they are definite and continuous (up to the 
second derivatives) in [ ]ba, , a and b being two zeros of the 
central function Z. In particular, we have the statement: if 

0)()( == bZaZ  then 21 || XYDZDX +  = 

= 12 || XYDZDX + . In fact, 
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which, being symmetric with respect to the two indices, 

reveals the Hermitian nature of the operator1.  
Now, as previously said, we are going to apply these ideas 

to the solution of a simple physical problem like that arising in 
the case of a charged conductor sphere embedded in a uniform 
electrostatic field. In such a case, in order to investigate the 
physics of the problem, one has to solve a Laplace equation 
which describes the behaviour of the electrostatic potential 
defined in the space.  

Let us remember that the electrostatic problem is 
characterized by means of the Poisson equation 

0

2

ε
ρ

−=∇ V , where V is the electrostatic potential defined 

by VE ∇−= . In the domain where electrostatic charges are 
lacking, this equation becomes its well known homogeneous 
associate expression 

 
02 =∇ V ,                                                   (8) 

 
i.e. a Laplace equation. Obviously, in order to find the 

solution of such an equation, one has to add proper boundary 
conditions. At this aim one has to remember that: 

Field lines have to be perpendicular to the tangent plane 
defined at each point of the conductor surface. Such a 
geometrical property is equivalent, from the physical point of 
view, to state that the conductor has to be characterized by the 
same electrostatic potential at each point of its surface 
(equipotential surface). 

Lines of force have to be parallel to the external field when 
measurements are performed very far from the conductor 
system. Equivalently, the same phenomenon is in order when 
system dimensions are negligible with respect to the 
geometrical size of the problem.  

 
1Notice that this result only holds if we work in a real space. 
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So, let us consider a charged spherical conductor with 

radius R embedded in an external uniform electrostatic field 

E  (see Fig.1). According to the physical properties of a 
conductor system we can assign an electric potential V0 to the 
whole system. Actually, the flow lines of a localized 
electrostatic field, in presence of a conductor, will be affected 
by 

 
 

E  
O 

R 

 
 
Fig. 1: A spherical conductor with R radius embedded in an 

external electrostatic field E . The electrostatic potential is V0 . 
 
the particular geometry of the system. In particular, 

remembering that each line of force has to be  perpendicular 
to the surface tangent when it matches the conductor, this will 
characterize the structure of the field in the neighbourhood of 
the system. Since we are dealing with a spherical system, the 
problem admits a symmetry when considering a straight line 
passing for the centre O of the sphere which is parallel to the 

external field E . As we said in the introduction, the problem 
of solving what is the shape of the electrostatic field around a 
whatever conductor system is related to the so called 
“electrostatic problem” which requires solving  the Poisson 
equation with well defined boundary conditions. Since we 
want to obtain the configuration of the electrostatic outside the 
conductor2 one has to take into account the Laplace equation 
(8) which does not consider charges.  

Let us consider a polar coordinate system { }φϑ,,r  centred 
in the conductor centre O which embodies the spherical 
symmetry in an intrinsic way (Fig.2). 

The electrostatic potential at the position P distant r from 
the source origin, because of the symmetry of the problem, 
depends only on the variables { }ϑ,r  i.e. V = V (r, ϑ ). In 
fact, being embedded in an external field the conductor sphere 
turns out to be polarized and an asymmetry with respect to one 
of the angles arises. As a matter of fact the whole system 
depends on both { }ϑ,r . Eq.(8) can be explicitly written in 
spherical coordinates as follows:  

 

0sin
sin
11

2
2

2 =⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

ϑ
ϑ

ϑϑ
V

rr
Vr

rr
 .  (9) 

 
2 It has to be remarked that the electrostatic field inside a conductor system is 
vanishing. This very well known property is related to the solenoidality of the 
electrostatic field in vacuum. 

 

 
Multiplying both sides of Eq.(9) by r2 and rewriting the 

resulting expression in operatorial form (which means that 
each operator acts on all other operators at its right if no 
parenthesis is present), we have: 
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where =̂  reminds us the operatorial nature of the equation. 

Realizing that 
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we can write:  
 

0)cos,())cos1(( cos
2

cos
2 =∂−∂+∂∂ ϑϑ ϑϑ rVr rr .    (12) 

 
Putting x=ϑcos  we finally find eq.(10) in its 

symmetrical and with separated variables form: 
 

0),())1(( 2 =∂−∂+∂∂ xrVxr xxrr .                 (13) 
 
Now, thanks to the symmetry matching between the 

physical problem and the coordinate system chosen, we can 
write: 

 
)()(),( xgrhxrV = , 

 
and write (13) as the equivalent system  
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which represent two distinct Sturm-Liouville problems. It is 

evident that both the operators rr DrD 2 and xx DxD )1( 2−  
(Legendre operator) are already in the foreseen form that 
allows one to apply the “solution  at sight” formula, thus we 
have: 

 
1)( 2nn
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1)1()( 2 nn
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where as initial function we choose  100 == gh  and “n” 

generally varies into the range [,] ∞∞− . 
Let us remark that, in our approach, negative values of n, 

when considered with respect to the derivative operator, imply 
an integration. With these premises in mind, if we perform 
calculations and search for orthonormal eigenfunctions it is 
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possible to obtain a complete set of such solutions. Eq. (15) 
provides the complete solution for h(r),  as : 
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On the other side Eq.(16) furnishes the solution for 
gn(x). In particular, in the case of positive n one has 
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Fig. 2: A polar coordinate system embodying spherical symmetry 

centred in the spherical conductor under consideration. 
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with  ϑcos=x  which can be easily recognized as the 
Legendre polynomials given by the Rodriguez formula [4]. 
While the second set of solutions fulfilling field equations 
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which are obtained from (16) considering negative n, as well 
as the Legendre polynomials of second kind, turn out to be 
physically ill defined since they explode on the boundaries of 
the integration interval which determines these polynomials. 
As a matter of fact this second set of solution must be 
discarded. 

Actually, solutions (17) and (18) are defined for less 
than a multiplying constant which can be determined 

imposing boundary conditions. Finally, the complete solution 
of (13) can be written as 

 

),(cos),(
0

1 ϑϑ n
n

n
nn

n P
r
BrArV ∑

+∞

=
+ ⎥⎦

⎤
⎢⎣
⎡ +=              (20) 

 
introducing generic constants condensing also the 

normalizing factors. Such expression coincides with the well 
known textbooks solution [4] and it has been obtained without 
recurring to very lengthy calculations as typically done in 

differential equation resolution. 
At this point, in order to completely determinate the 

solution one needs to fix constants considering the (20) in 
relation with boundary conditions. Let us summarize the 
physical conditions the electrostatic potential has to satisfy : 

 
The electrostatic potential has to be constant on each point 

of the spherical conductor surface and inside the conductor 
itself. In term, of mathematical relations: 

],0[,),( 0 πϑϑ ∈∀= VrV . 
The electrostatic potential at infinity is determined by the 

uniform electrostatic field outside the conductor system. Since 

VE ∇−= , one obtains 
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for less than an additive constant term. Thus : 
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In the external regions with respect to the conductor system 
the (20) reads 
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so that, if we introduce the explicit form of Legendre 

polynomials P0(x) ; P1(x) and omitting the additive constant 
A0, we obtain 
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In order to fulfil the boundary condition (ii) it has to be : An = 
0, with n = 2,3,4,5,….. so that the potential ),( ϑrV  at 

infinity behaves as well as ϑϑ cos),( 1rArV = . Therefore, 

the condition (ii) implies EA −=1  and one gets 
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The condition (i), on the other side, suggests that : 
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which is true ],0[ πϑ ∈∀  with  
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thus 
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Finally the (21) becomes: 
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II.  SURFACE CHARGE DISTRIBUTION 
 

Let us notice that the since we are dealing with a charged 
system the total amount of charge present  on the conductor is 

 
.4 00 RVQ πε=                                                   (24) 

 
Such a charge, also in the presence of an external 

electrostatic field, turns out to be constant in time (Principle of 
charge conservation). The radial component of the 
electrostatic field is: 
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which evaluated in r=R provides: 
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Actually, Coulomb theorem states that the charge  density 

on the conductor’s surface is: RrrE == )(0εσ , that is: 

ϑεεσ cos3 0
00 E

R
V
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Let us investigate the sign of σ with respect to variations in 

term of the potential V0. We assume that V0 ≥ 0 (the opposite 
case V0 ≤ 0 can be straightforwardly deduced from the first 
one). In such a case, the charge density σ on the surface is 
positive if : 
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• ERV 30 >   

In such a case Eq.(26) provides : πϑ ≤≤0 . In each point 
of the spherical conductor surface the charge density is 
positive (see Fig.3.) The maximum 

value of the charge by effect of the external field is 
obtained at the point P1 ( 0=ϑ ); while the minimum is 
obtained at the point P2 ( πϑ = ) : 
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One can now calculate the amount of positive charge on the 

conductor surface. Let dS be the infinitesimal surface spotted 
by an infinitesimal  angle ϑd , this quantity, in term of 
spherical coordinates, can be written down as 

ϑϑπ dRdS sin2 2= . Thus, according with Eq.(25) the 
positive charge is:  
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which is coherent with (24). 
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Fig. 3: The spherical conductor in presence of a positive charge. 
 
 

• ERV 30 =  
From Eq.(26) turns out that πϑ <≤0 . Each point of the 

conductor surface experiences a positive distribution of charge 
except for the point P2 ( πϑ = )  where 0

2
=Pσ . The 

maximum of the charge distribution is obtained at the point P1 
( 0=ϑ ); 
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• ERV 30 0 <<  

In such  a case, from Eq.(26) descends: αϑ <≤0      with 

)3/(cos 0
1 ERV−= −α . Points of conductor surface such 

that αϑ =  imply that surface density charge is vanishing. 
On the other side, in the regions where πϑ <≤0  the 
density of surface charge is positive. Finally, regions where 

πϑα ≤<  (Fig.4) experience a  negative charge. The 
maximum of positive density of charge distribution is 
obtained at the point P1 ( 0=ϑ ) while the maximum of 
negative charge distribution is obtained at the point P2 
( πϑ = ): 

 

⎪⎩

⎪
⎨
⎧

−=

+=

)3/(

)3/(

00

00

2

1

ERV

ERV

P

P

εσ

εσ
 

 

- 

- 
- 

+ 

+ 

+ 

+ 

+ 

+ 

+ - 
- 

- 

+ 
- 

- 

2P  
O 

R 

1P  α  x 

 
 

Fig. 4: The spherical conductor in presence of  both a 

positive charge and a negative charge. 
 
 
The amount of positive charge is  
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while the amount of negative contribute is: 
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the total charge is of course : 
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independent by the external electric field as it should be in 

relation to Eq.(24). 
 

00 =V  
 
This case coincides with a conductor initially uncharged. 

From Eq.(26) it is obtained that 2/0 πϑ ≤< . The 
conductor surface by effect of the external field turns out to be 
half-charged with a positive contribute ( πϑα <≤ ) while a 
negative charge is distributed on the other half side of the 
conductor ( πϑπ ≤<2/ ). When 2/πϑ =  the density 
distribution of surface charge is vanishing. The maximum of 
positive charge is obtained when P1 ( 0=ϑ ),  whereas the 
maximum of the negative charge is obtained at P2 ( πϑ = ): 
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The total charge will be : 

 

⎪⎩

⎪
⎨
⎧

−=−=

==
−

+

.22/

,22/

00
)(

00
)(

RVQq

RVQq

πε

πε
 

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2,Volume 2, 2008 299



 

 

III.  LINES OF FORCE OF THE ELECTROSTATIC FIELD 
 

Let us recall here the potential expression (23) 
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from this relation on obtains that the components of the 

electrostatic field along the directions labelled by r and 
ϑ coordinate read :  
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Moving from polar coordinate to Cartesian ones we 
actually have 
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At the end of the day summing up the two components 

respectively with respect to x and y, one obtains the whole 
Cartesian contribute of the electrostatic field 
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By definition, the lines of force of a whatever field theory 

are characterized in such a way that considered a generic point 
on these lines the tangent shows the same direction of the 
field. Thus, if y = y(x) is the equation of the line of force, its 
derivative has to follow the field direction, that is: 
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Eq.(28) together the relations (27) for Ex and Ey provides: 
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Considering Rr ξ=  the last expression can be made 

dimensionless as:  
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where ξ  is depending on ϑ . If V0 = 0, the (31) reads : 
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which can be solved quite immediately by separating variables 
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Such equation provides a family of curves ),( kϑξξ =  

with 1≥ξ and 0≥k . Now, in order to construct the 
cartesian form of such family of curves one has to remember 
that : 
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As a matter of fact one obtains: 
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with 
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  and 1≥k . 

 
In Fig.(5), we show the lines of force (32) when it is 

considered a spherical conductor with a unitary radius (we 
have settled in this case the potential with the value V0 = 0), 
and with k :  

 
0=k   (x-axis),   5.0=k ,    0.1=k , 

 
5.1=k ,     0.2=k ,    5.2=k , 

 
0.3=k ,     2.3=k ,    5.3=k ,   0.4=k , 

 
Observing Fig.5 one can notice that the lines of  force 

approach a line parallel to the x-axis when k increases. In 
other words, the field lines approach the direction of the 
external electrostatic field when k increases according with the 
boundary conditions (ii). 

 
 

 
 
 
Fig. 5: The lines of force of the electrostatic field obtained setting 

V0 = 0. 
 
If one considers V ≠ 0, which means to consider a charged 

spherical system, Eq.(31) cannot be solved  in a 
straightforward way anymore. In particular one has to resort to 
numerical calculations in order to obtain the solution of the 
field lines problem. To this purpose we employed the Runge-
Kutta algorithm and the software DERIVE. 

Fig.6, shows the lines of force of the electrostatic field 
around a charged spherical conductor when this is equipped 
with a unitary radius. In particular we display the case 

 

40 =
ER
V

. 

 
In such case, since V > 3ER, the conductor is characterized 

in each point of its surface with a positive charge. This means 
that the lines of force will be leaving the conductor surface a 
moving towards infinity. 

 

 
 

Fig. 6: The lines of force of the electrostatic field  when V0 = 4ER. 
 

α  

 
 
Fig.7: Lines of force of the electrostatic field when V0 = 2ER. 
 

Fig.(7) shows the case 20 =
ER
V

. Now, since 0 < V0 < 3ER, 

the conductor surface is partially positively charged and 
negative elsewhere. The angulus α which divides the two 
regions holds: 

 
48.131)3/(cos 0

1 ≈= − ERVα .                 (33) 
 
As matter of fact, they will be lines moving from regions of 

the conductor where σ is positive and others approaching the 
conductor surface in the regions where σ is negative. Let us 
remark that positions where the system experiences a 
vanishing charge are characterized by cusps. 
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