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Abstract— In this paper three evolutionary algorithms are 

compared, in particular, of the Self-Organizing Migration Algorithm 

(SOMA) as a most important one is put into the contrast with 

Differential Evolution (DE) and Particle Swarm Optimization (PSO). 

In order to compare performances of the above-mentioned 

algorithms, selected objective functions have been tested. In total 15 

different benchmark functions were used and each considered 

algorithm was employed 100 times on each one producing 4500 set 

experimental runs. Acquired results were then statistically evaluated 

and compared. 

The paper also describes individual parameters, strategies, and 

some of the termination criteria of the algorithms 
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I. INTRODUCTION 

volutionary algorithms are a fitting device for solving and 

optimizing functions with multiple extremes. As the name 

suggest, they draw inspiration from the mechanics of 

evolution, whereby they strive to gradually arrive at the best 

possible solutions while employing crossbreeding, mutagenic 

processes, and other methods. 
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The most significant advantage of evolutionary algorithms 

is their ability to solve even highly complex optimization 

problems while focusing on finding global, rather than local 

extremes, as it is with numerical methods. Among their 

disadvantages is a certain dependence on chance, which 

prevents us from predicting whether the solution we have 

found is the best one possible. That is why it is advisable to 

draw on experience with these algorithms. 

II. EVOLUTIONARY ALGORITHMS 

Optimization algorithms make a very strong and powerful 

tool in the search for an optimum solution where the analytic 

route is often very complicated and sometimes border-line 

unrealistic. 

Most engineering problems can be reduced to a 

mathematical problem described by a corresponding function 

formula whose parameters we try to optimize in respect to the 

value of the object function.   

Last two decades have seen the development of a group of 

some very powerful algorithms, known as the evolutionary 

algorithms. These algorithms employ given rules for using 

cycles (generations) of populations of individuals in order to 

arrive at the best possible solution. [1][2] 

A. The Population 

The population is the cornerstone of all evolutionary 

algorithms and its members are generated based on a 

predefined template known as the specimen. We can visualize 

a population as a matrix consisting of the its members × the 

number of parameters. Each single individual then represents a 

solution to the defined problem. To each such solution, an 

objective function value is assigned, together describing the 

quality of a given individual. [1] 

B. The Specimen 

The specimen is a sample individual, based on which the 

initial population is generated. It has a predefined variable 

type (real, integer, discrete, etc.) with a predefined range of 

permissible values for each parameter of an individual. A 

poorly chosen range may give rise to unsubstantiated or 

physically unrealistic solutions. 

The initial population of individuals is made based on 

formula (1) where rnd is a random number from the interval 

<0;1>; i marks an individual and j its parameter; Hi and Lo  

denote the top and bottom boundaries of a given parameter. 

[1] 
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III. SELF-ORGANIZING MIGRATION ALGORITHM 

SOMA (Self-Organizing Migrating Algorithm) is an 

algorithm made in 1999 and has many successful applications 

on various problems of multiobjective-optimization, e.g. [3 - 

6]. It is an evolutionary algorithm, although no children are 

created in course of its evolutionary cycles (migration cycle). 

A more fitting description of the SOMA algorithm, however, 

would be as a memetic algorithm. Such algorithms can be 

described as competition strategies and cooperation strategies. 

The foundation of SOMA can interpreted as the behavior of 

a certain group of intelligent individuals, wherein such 

individuals collaborate in order to solve a common problem, 

such as finding a food source. It is therefore based on 

cooperative search of an enclosed space. 

SOMA’s self-organizing progression is the result of mutual 

interference among the population members, as they 

determine the direction they will take when searching for a 

better solution in the area. [1] 

A. Parameters 

PathLength determines the distance from the leading 

member at which an active individual will stop. 

Step determines the step size of an active individual who is on 

its way to the leading member. 

    PRT is one of the most important and most sensitive 

parameters, and it denotes perturbation. The perturbation 

vector (PRTVector), which describes the direction in which an 

active individual will be moving, is generated based on this 

quantity. 

The dimension of a problem, the number of parameters 

(arguments) of the object function that the algorithm aims to 

optimize to the best values possible in light of the object 

function’s value. 

PopSize determines the number of individuals present in a 

population that take part in the migration cycles with the goal 

of finding the global extreme. 

The Migrations gives the number of migration cycles in 

which reorganization—a rebirth of the whole population 

aimed at finding fitter individuals occurs. [1] 

 

Parametr Recommended Range 

PathLength <1.1,5> 

Step <.11,PathLength> 

PRT <0,1> 

D problem-specific 

PopSize <10,user-defined> 

Migrations <10,user-defined> 

 
Table 1, Summary of SOMA Parameters [1] 

B. Strategies 

The AllToOne is characteristic for having a specific leading 

individual (a leader) towards whom the other population 

members migrate. Once the initial population has been 

created, each individual is evaluated by the object function, 

and its value will determine the future leading individual (the 

leader) of the next migration cycle. Other population members 

will then start moving in steps towards the leader. 

 

  

Fig.  1: PRTVector and its action on individual movement 

 

The AllToAll lacks a leading individual. Population members 

thus do not migrate towards the fittest member; rather they 

move towards all other members. If they find a better extreme 

on their way, they will complete their journey towards the 

other members, and only after they have done so will they 

return to the position at which the best extreme was found. It 

is at this position that they start at in the next migration cycle. 

AllToAllAdaptive is the same strategy as the AllToAll. The 

difference is at the point of return to the better position found. 

If members find a better extreme in their locomotion, they will 

complete their migration to the one member they are just 

migrating to. After that, they will return to the position at 

which the better extreme was found, and they begin they 

migration cycle there. 

AllToOneRand is based on the principle of individuals 

migrating towards a leader, where such leader is not the 

individual with the best value based on the object function, but 

rather it is some randomly chosen member of the whole 

population. [1] 
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Fig. 2: Main SOMA principles depiction 
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Fig. 3: All-to-One SOMA migration loop 

 

I. DIFFERENTIAL EVOLUTION 

DE (Differential Evolution) is an evolutionary algorithm 

with its origins dating back to 1995. It has characteristics 

similar to those of genetic algorithms: in particular, the 

generation of children or the use of generations. On the other 

hand, unlike genetic algorithms, it does not limit itself to using 

only two individuals for the creation of offspring, but it rather 

employs combinations of four others to create a new 

individual. 

In principle, it is based on the so-called genetic annealing, 

which was later on changed by switching representation from 

the binary to the decimal system and by changing logic 

operations to vector operations. By means of these 

modifications, an algorithm suitable for numeric optimization 

was created. The Differential Evolution was later enhanced 

when the so-called differential mutation was found. [1]. 

A. Parameters 

The dimension parameter determines the number of 

parameters in the object function. 

PopSize determines the total number of those individuals 

that participate in the evolutionary cycle, aiming to find the 

fittest individual. 

The mutation constant affects the calculation of the noise 

vector. Its value determines how much and how many parents 

will take part in the creation of a new individual. 

Based on the value of the crossbreeding limit, crossbreeding 

of an active individual with the mutated noise vector will give 

rise to a new testing vector, which will be the result of 

hybridization, based on the crossbreeding limit value. 

The Generations parameter determines the number of 

evolutionary cycles, in which the whole population is 

generally cultivated. [1] 

 

 

 

 

 

 

 

Parameter Interval Optimum 

F <0,2> <.3,.9> 

CR <0,1> <.8,.9> 

D problem-specific - 

PopSize <2D,100D> 10D 

Generations user-defined - 

 
Table 2, Set of Parameters DE [1] 

 

B. Versions 

 Differential evolution offers a whole score of versions that 

mainly differ in how they calculate the noise vector and 

compose the testing vector after that. 

 

DE/best/1/exp 

          
          

       
   (2) 

DE/rand/1/exp 

        
          

       
   (3) 

 

II. PARTICLE SWARM OPTIMIZATION 

 PSO (Particle Swarm Optimization) is a stochastic 

optimization technique developed in 1995. Like many other 

algorithms, the technique is inspired by nature. Its foundations 

in this case are based on the behavior of bird and fish swarms. 

 In many aspects, it is similar to genetic algorithms where 

the foundation is comprised of random solutions populations 

whose members take part in the search for the optimum 

solution. In PSO, such potential solutions (individuals) are 

called particles. Unlike genetic algorithms, PSO has no 

“evolutionary methods” such as crossbreeding or mutation. [7] 

A. Parameters 

The Dimension parameter describes the number of 

parameters for the object function whose optimum 

combination we seek. 
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The Particles parameter determines the number of particles 

that take part in the search for the best solution. This 

parameter is known as the PopSize in SOMA and in the 

differential evolution algorithm. 

The vMax parameter defines the maximum velocity of a 

particle in the course of an iteration cycle. 

C1 and C2 are learning factors that determine the direction 

of the journey that a particle will take. C1 attracts particulars 

towards its so-far best solution found. C2, on the other hand, 

strives to direct all particles towards the best global solution. 

It proved to be difficult in more complicated optimization 

problem to focus the particles around the most promising 

solution in the last phase of the optimization procedure, as the 

particles’ velocity was too high. The inertia parameter (wstart, 

wend), was therefore introduced to the calculation of a 

particle’s velocity, thereby reducing gradually the velocity of 

the particle with each iteration. 

MaxIteration denotes the number of cycles during which the 

best solution is being found. We view this as a termination 

parameter. This parameter is designated Migrations or 

Generations in the SOMA and DE algorithms respectively. [7] 

 

Parameter Recommended Range 

D problem-specific 

Particles <20, 40> 

vMax determined by the search space 

C1, C2 <0, 4> 

wstart .9 

wend .4 

MaxIterations user-defined 

 
Table 3, Review of Parameters PSO [7] 

III. TERMINATION CRITERIA 

 Termination criteria are a tool for terminating a running 

optimization algorithm. Unlike setting a maximum number of 

iterations, these criteria are more adaptive and flexible, given 

the state of optimization at a given time. 

A. Minimal Diversion 

 MinDiv determines the maximum permissible diversion 

between the objective function values in the best and the worst 

ranking individual in a population. [8] 

 

B. Maximum Distance 

MaxDist (maximum distance) denotes the maximum 

permissible distance of any individual in the population from 

the best solution found. 

If we are only considering a given fraction of the 

population, e.g. 90 percent, then we are talking the 

MaxDistQuick version. [4] 

 

                     
 

 

   

 (5) 

C. Standard Deviation 

StdDev (Standard Deviation) or the standard of objective 

function values in the whole population. Should it go bellow 

our predefined value, the optimization process will be 

terminated. [8] 

 

   
 

         
                

       

   

 (6) 

 

D. MinDiv + MaxDist 

Some of the criteria can even be readily combined. For 

example, the MinDiv+MaxDist combination starts by 

comparing the difference in objective function values in the 

fittest and the worst individual, using our predefined 

permissible value (MinDiv). Once that is satisfied, only then 

the second criterion is applied (MaxDist). [8] 

IV. TESTING 

 The algorithms were tested using an application that was 

developed in the .NET environment (the C# programming 

language) as part of the bachelor thesis [9]. 

 Parameter settings and the SOMA and DE strategies were 

used from tests carried out under [1]; PSO was set according 

to range recommendations (Table 3) with the number of 

migration loops having been set to the same value as with DE. 

Each experiment was repeated 100 times, and the best instance 

was always selected (Tab. 5). 

 

Testing 

Function 

Distance from the Global Extreme 

in % 

SOMA DE PSO 

1
st
 De Jong .01 .053 .024 

3
rd

 De Jong .24 .98 .56 

4
th

 De Jong .00081 1.77 .0011 

Ackley function .012 
1.99 × 10

-

15
 

.1 

Egg holder
1
 -58927.25 -29637.74 -37304.29 

Griewangk 

function 
.45 0 .44 

Masters‘s cosine 

wave function 
5.84 26.68 12.83 

Michalewicz 

function 
.3 59.85 4.41 

Pathological 

function
1
 

32.37 38.36 33.56 

Rana function
1
  -24914.55 -18193.55 -22231.81 

Rastrigin 

function 
.051 .043 .2 

Rosenbrock‘s 

saddle 
.026 .026 .025 

Schwefel 

function 
.00097 .00097 17.56 

Stretched V sine 16.33 17.88 14.2 
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wave function 

Test Function 

(Ackley) 
1.44 1.72 1.3 

 
Table 4, Test Results [9] 

 
1 % could not be determined as the global extreme is unknown. Absolute 

values are given instead. 

 

Used benchmark functions are depicted by following 

figures: 

 

Fig. 4: Ackley 3D visualization 

 

Fig. 5: Ackley 2D visualization 

 

Fig.  6: EggHolder 3D visualization 

 

Fig. 7 EggHolder 2D visualization 

 

Fig. 8: Michalewicz 3D visualization 

 

Fig. 9: Michalewicz 2D visualization 

 

Fig. 10: Masters 3D visualization 
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Fig.  11: Masters 2D visualization 

 

Fig.  12: Michalewicz 3D visualization 

 

Fig.  13: Michalewicz 2D visualization 

 

Fig.  14: Rana 3D visualization 

 

Fig.  15: Rana 2D visualization 

 

Fig.  16: Rastrigin 3D visualization 

 

Fig.  17: Rastrigin 2D visualization 

 

Fig.  18: Rosenbrock 3D visualization 
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Fig.  19: Rosenbrock 2D visualization 

 

Fig.  20: Schwefel 2D visualization 

 

Fig.  21: Schwefel 2D visualization 

 

Fig.  22: SineWave 3D visualization 

 

Fig.  23: SineWave 2D visualization 

 

V. CONCLUSION 

One can conclude, based on the tests having been carried 

out, that test functions have their specific properties and not all 

algorithms deal with them in the same manner. As an 

example, we may take the Michalewicz function where some 

SOMA give a solid result of .3 and DE gives 59.85. As a 

result, we must carefully consider which of these algorithms to 

use. 

Evolutionary algorithms are particularly sensitive to their 

parameter settings. Even a minute change can give rise to 

radically different results. That is why it is very important to 

pay much attention to their parameter settings as well. 
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