



Abstract— In this paper three evolutionary algorithms are

compared, in particular, of the Self-Organizing Migration Algorithm

(SOMA) as a most important one is put into the contrast with

Differential Evolution (DE) and Particle Swarm Optimization (PSO).

In order to compare performances of the above-mentioned

algorithms, selected objective functions have been tested. In total 15

different benchmark functions were used and each considered

algorithm was employed 100 times on each one producing 4500 set

experimental runs. Acquired results were then statistically evaluated

and compared.

The paper also describes individual parameters, strategies, and

some of the termination criteria of the algorithms

Keywords—Optimization, Evolutionary algorithms, Objective

function, SOMA, DE, PSO.

I. INTRODUCTION

volutionary algorithms are a fitting device for solving and

optimizing functions with multiple extremes. As the name

suggest, they draw inspiration from the mechanics of

evolution, whereby they strive to gradually arrive at the best

possible solutions while employing crossbreeding, mutagenic

processes, and other methods.

Manuscript received July 30, 2012: Revised version received August 16,

2012. This paper is supported by the Internal Grant Agency at TBU in Zlin,

project No. IGA/FAI/2012/041, No. IGA/FAI/2012/056 and project No.

IGA/FAI/2012/019 and by the European Regional Development Fund under
the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089.

P. Vařacha is with the Department of Informatics and Artificial
Intelligence, Faculty of Applied Informatics, Tomas Bata University in Zlin,

nam. T. G. Masaryka 5555, 760 01 Zlin Czech Republic (e-mail:.

varacha@fai.utb.cz).
M. Pospíšilík is with the Department of Informatics and Artificial

Intelligence, Faculty of Applied Informatics, Tomas Bata University in Zlin,

nam. T. G. Masaryka 5555, 760 01 Zlin Czech Republic (e-mail:

pospisilik@fai.utb.cz).

I. Motýl is with the Department of Informatics and Artificial Intelligence,

Faculty of Applied Informatics, Tomas Bata University in Zlin, nam. T. G.

Masaryka 5555, 760 01 Zlin Czech Republic (e-mail: motyl@fai.utb.cz).
M. Bližňák is with the Department of Informatics and Artificial

Intelligence, Faculty of Applied Informatics, Tomas Bata University in Zlin,

nam. T. G. Masaryka 5555, 760 01 Zlin Czech Republic (e-mail:
bliznak@fai.utb.cz).

D. Slovák is with the Department of Informatics and Artificial Intelligence,

Faculty of Applied Informatics, Tomas Bata University in Zlin, nam. T. G.
Masaryka 5555, 760 01 Zlin Czech Republic (e-mail: slovak@fai.utb.cz).

J. Krampl is with the Department of Informatics and Artificial Intelligence,

Faculty of Applied Informatics, Tomas Bata University in Zlin, nam. T. G.
Masaryka 5555, 760 01 Zlin Czech Republic (e-mail: j_krampl@fai.utb.cz).

J. Kolek is with the Department of Informatics and Artificial Intelligence,

Faculty of Applied Informatics, Tomas Bata University in Zlin, nam. T. G.
Masaryka 5555, 760 01 Zlin Czech Republic (e-mail: kolek@fai.utb.cz).

The most significant advantage of evolutionary algorithms

is their ability to solve even highly complex optimization

problems while focusing on finding global, rather than local

extremes, as it is with numerical methods. Among their

disadvantages is a certain dependence on chance, which

prevents us from predicting whether the solution we have

found is the best one possible. That is why it is advisable to

draw on experience with these algorithms.

II. EVOLUTIONARY ALGORITHMS

Optimization algorithms make a very strong and powerful

tool in the search for an optimum solution where the analytic

route is often very complicated and sometimes border-line

unrealistic.

Most engineering problems can be reduced to a

mathematical problem described by a corresponding function

formula whose parameters we try to optimize in respect to the

value of the object function.

Last two decades have seen the development of a group of

some very powerful algorithms, known as the evolutionary

algorithms. These algorithms employ given rules for using

cycles (generations) of populations of individuals in order to

arrive at the best possible solution. [1][2]

A. The Population

The population is the cornerstone of all evolutionary

algorithms and its members are generated based on a

predefined template known as the specimen. We can visualize

a population as a matrix consisting of the its members × the

number of parameters. Each single individual then represents a

solution to the defined problem. To each such solution, an

objective function value is assigned, together describing the

quality of a given individual. [1]

B. The Specimen

The specimen is a sample individual, based on which the

initial population is generated. It has a predefined variable

type (real, integer, discrete, etc.) with a predefined range of

permissible values for each parameter of an individual. A

poorly chosen range may give rise to unsubstantiated or

physically unrealistic solutions.

The initial population of individuals is made based on

formula (1) where rnd is a random number from the interval

<0;1>; i marks an individual and j its parameter; Hi and Lo

denote the top and bottom boundaries of a given parameter.

[1]

Competitive Evaluation of Selected

Evolutionary Algorithms and SOMA

Pavel Vařacha, Martin Pospíšilík, Ivo Motýl, Michal Bližňák, Dalibor Slovák, Jakub Krampl

and Jan Kolek

E

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 42

 (1)

III. SELF-ORGANIZING MIGRATION ALGORITHM

SOMA (Self-Organizing Migrating Algorithm) is an

algorithm made in 1999 and has many successful applications

on various problems of multiobjective-optimization, e.g. [3 -

6]. It is an evolutionary algorithm, although no children are

created in course of its evolutionary cycles (migration cycle).

A more fitting description of the SOMA algorithm, however,

would be as a memetic algorithm. Such algorithms can be

described as competition strategies and cooperation strategies.

The foundation of SOMA can interpreted as the behavior of

a certain group of intelligent individuals, wherein such

individuals collaborate in order to solve a common problem,

such as finding a food source. It is therefore based on

cooperative search of an enclosed space.

SOMA’s self-organizing progression is the result of mutual

interference among the population members, as they

determine the direction they will take when searching for a

better solution in the area. [1]

A. Parameters

PathLength determines the distance from the leading

member at which an active individual will stop.

Step determines the step size of an active individual who is on

its way to the leading member.

 PRT is one of the most important and most sensitive

parameters, and it denotes perturbation. The perturbation

vector (PRTVector), which describes the direction in which an

active individual will be moving, is generated based on this

quantity.

The dimension of a problem, the number of parameters

(arguments) of the object function that the algorithm aims to

optimize to the best values possible in light of the object

function’s value.

PopSize determines the number of individuals present in a

population that take part in the migration cycles with the goal

of finding the global extreme.

The Migrations gives the number of migration cycles in

which reorganization—a rebirth of the whole population

aimed at finding fitter individuals occurs. [1]

Parametr Recommended Range

PathLength <1.1,5>

Step <.11,PathLength>

PRT <0,1>

D problem-specific

PopSize <10,user-defined>

Migrations <10,user-defined>

Table 1, Summary of SOMA Parameters [1]

B. Strategies

The AllToOne is characteristic for having a specific leading

individual (a leader) towards whom the other population

members migrate. Once the initial population has been

created, each individual is evaluated by the object function,

and its value will determine the future leading individual (the

leader) of the next migration cycle. Other population members

will then start moving in steps towards the leader.

Fig. 1: PRTVector and its action on individual movement

The AllToAll lacks a leading individual. Population members

thus do not migrate towards the fittest member; rather they

move towards all other members. If they find a better extreme

on their way, they will complete their journey towards the

other members, and only after they have done so will they

return to the position at which the best extreme was found. It

is at this position that they start at in the next migration cycle.

AllToAllAdaptive is the same strategy as the AllToAll. The

difference is at the point of return to the better position found.

If members find a better extreme in their locomotion, they will

complete their migration to the one member they are just

migrating to. After that, they will return to the position at

which the better extreme was found, and they begin they

migration cycle there.

AllToOneRand is based on the principle of individuals

migrating towards a leader, where such leader is not the

individual with the best value based on the object function, but

rather it is some randomly chosen member of the whole

population. [1]

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 43

Fig. 2: Main SOMA principles depiction

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 44

Fig. 3: All-to-One SOMA migration loop

I. DIFFERENTIAL EVOLUTION

DE (Differential Evolution) is an evolutionary algorithm

with its origins dating back to 1995. It has characteristics

similar to those of genetic algorithms: in particular, the

generation of children or the use of generations. On the other

hand, unlike genetic algorithms, it does not limit itself to using

only two individuals for the creation of offspring, but it rather

employs combinations of four others to create a new

individual.

In principle, it is based on the so-called genetic annealing,

which was later on changed by switching representation from

the binary to the decimal system and by changing logic

operations to vector operations. By means of these

modifications, an algorithm suitable for numeric optimization

was created. The Differential Evolution was later enhanced

when the so-called differential mutation was found. [1].

A. Parameters

The dimension parameter determines the number of

parameters in the object function.

PopSize determines the total number of those individuals

that participate in the evolutionary cycle, aiming to find the

fittest individual.

The mutation constant affects the calculation of the noise

vector. Its value determines how much and how many parents

will take part in the creation of a new individual.

Based on the value of the crossbreeding limit, crossbreeding

of an active individual with the mutated noise vector will give

rise to a new testing vector, which will be the result of

hybridization, based on the crossbreeding limit value.

The Generations parameter determines the number of

evolutionary cycles, in which the whole population is

generally cultivated. [1]

Parameter Interval Optimum

F <0,2> <.3,.9>

CR <0,1> <.8,.9>

D problem-specific -

PopSize <2D,100D> 10D

Generations user-defined -

Table 2, Set of Parameters DE [1]

B. Versions

 Differential evolution offers a whole score of versions that

mainly differ in how they calculate the noise vector and

compose the testing vector after that.

DE/best/1/exp

 (2)

DE/rand/1/exp

 (3)

II. PARTICLE SWARM OPTIMIZATION

 PSO (Particle Swarm Optimization) is a stochastic

optimization technique developed in 1995. Like many other

algorithms, the technique is inspired by nature. Its foundations

in this case are based on the behavior of bird and fish swarms.

 In many aspects, it is similar to genetic algorithms where

the foundation is comprised of random solutions populations

whose members take part in the search for the optimum

solution. In PSO, such potential solutions (individuals) are

called particles. Unlike genetic algorithms, PSO has no

“evolutionary methods” such as crossbreeding or mutation. [7]

A. Parameters

The Dimension parameter describes the number of

parameters for the object function whose optimum

combination we seek.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 45

The Particles parameter determines the number of particles

that take part in the search for the best solution. This

parameter is known as the PopSize in SOMA and in the

differential evolution algorithm.

The vMax parameter defines the maximum velocity of a

particle in the course of an iteration cycle.

C1 and C2 are learning factors that determine the direction

of the journey that a particle will take. C1 attracts particulars

towards its so-far best solution found. C2, on the other hand,

strives to direct all particles towards the best global solution.

It proved to be difficult in more complicated optimization

problem to focus the particles around the most promising

solution in the last phase of the optimization procedure, as the

particles’ velocity was too high. The inertia parameter (wstart,

wend), was therefore introduced to the calculation of a

particle’s velocity, thereby reducing gradually the velocity of

the particle with each iteration.

MaxIteration denotes the number of cycles during which the

best solution is being found. We view this as a termination

parameter. This parameter is designated Migrations or

Generations in the SOMA and DE algorithms respectively. [7]

Parameter Recommended Range

D problem-specific

Particles <20, 40>

vMax determined by the search space

C1, C2 <0, 4>

wstart .9

wend .4

MaxIterations user-defined

Table 3, Review of Parameters PSO [7]

III. TERMINATION CRITERIA

 Termination criteria are a tool for terminating a running

optimization algorithm. Unlike setting a maximum number of

iterations, these criteria are more adaptive and flexible, given

the state of optimization at a given time.

A. Minimal Diversion

 MinDiv determines the maximum permissible diversion

between the objective function values in the best and the worst

ranking individual in a population. [8]

B. Maximum Distance

MaxDist (maximum distance) denotes the maximum

permissible distance of any individual in the population from

the best solution found.

If we are only considering a given fraction of the

population, e.g. 90 percent, then we are talking the

MaxDistQuick version. [4]

 (5)

C. Standard Deviation

StdDev (Standard Deviation) or the standard of objective

function values in the whole population. Should it go bellow

our predefined value, the optimization process will be

terminated. [8]

 (6)

D. MinDiv + MaxDist

Some of the criteria can even be readily combined. For

example, the MinDiv+MaxDist combination starts by

comparing the difference in objective function values in the

fittest and the worst individual, using our predefined

permissible value (MinDiv). Once that is satisfied, only then

the second criterion is applied (MaxDist). [8]

IV. TESTING

 The algorithms were tested using an application that was

developed in the .NET environment (the C# programming

language) as part of the bachelor thesis [9].

 Parameter settings and the SOMA and DE strategies were

used from tests carried out under [1]; PSO was set according

to range recommendations (Table 3) with the number of

migration loops having been set to the same value as with DE.

Each experiment was repeated 100 times, and the best instance

was always selected (Tab. 5).

Testing

Function

Distance from the Global Extreme

in %

SOMA DE PSO

1
st
 De Jong .01 .053 .024

3
rd

 De Jong .24 .98 .56

4
th

 De Jong .00081 1.77 .0011

Ackley function .012
1.99 × 10

-

15

.1

Egg holder
1
 -58927.25 -29637.74 -37304.29

Griewangk

function
.45 0 .44

Masters‘s cosine

wave function
5.84 26.68 12.83

Michalewicz

function
.3 59.85 4.41

Pathological

function
1

32.37 38.36 33.56

Rana function
1
 -24914.55 -18193.55 -22231.81

Rastrigin

function
.051 .043 .2

Rosenbrock‘s

saddle
.026 .026 .025

Schwefel

function
.00097 .00097 17.56

Stretched V sine 16.33 17.88 14.2

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 46

wave function

Test Function

(Ackley)
1.44 1.72 1.3

Table 4, Test Results [9]

1 % could not be determined as the global extreme is unknown. Absolute

values are given instead.

Used benchmark functions are depicted by following

figures:

Fig. 4: Ackley 3D visualization

Fig. 5: Ackley 2D visualization

Fig. 6: EggHolder 3D visualization

Fig. 7 EggHolder 2D visualization

Fig. 8: Michalewicz 3D visualization

Fig. 9: Michalewicz 2D visualization

Fig. 10: Masters 3D visualization

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 47

Fig. 11: Masters 2D visualization

Fig. 12: Michalewicz 3D visualization

Fig. 13: Michalewicz 2D visualization

Fig. 14: Rana 3D visualization

Fig. 15: Rana 2D visualization

Fig. 16: Rastrigin 3D visualization

Fig. 17: Rastrigin 2D visualization

Fig. 18: Rosenbrock 3D visualization

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 48

Fig. 19: Rosenbrock 2D visualization

Fig. 20: Schwefel 2D visualization

Fig. 21: Schwefel 2D visualization

Fig. 22: SineWave 3D visualization

Fig. 23: SineWave 2D visualization

V. CONCLUSION

One can conclude, based on the tests having been carried

out, that test functions have their specific properties and not all

algorithms deal with them in the same manner. As an

example, we may take the Michalewicz function where some

SOMA give a solid result of .3 and DE gives 59.85. As a

result, we must carefully consider which of these algorithms to

use.

Evolutionary algorithms are particularly sensitive to their

parameter settings. Even a minute change can give rise to

radically different results. That is why it is very important to

pay much attention to their parameter settings as well.

REFERENCES

[1] ZELINKA I. Umělá inteligence v problémech globální optimalizace.

Praha: BEN, 2002. ISBN 80-7300-069-5.

[2] KVASNIČKA V., POSPÍCHAL, J., TIŇO, P. Evoluční algoritmy.
Bratislava: STU, 2000. ISBN 80-227-1377-5.

[3] SENKERIK R., OPLATKOVA Z., ZELINKA I., DAVENDRA D.

Synthesis of feedback controller for three selected chaotic systems by
means of evolutionary techniques: Analytic programming,

Mathematical and Computer Modelling, Available online 27 May 2011,

ISSN 0895-7177, 10.1016/j.mcm.2011.05.030.
[4] CHRAMCOV B., BERAN P., DANÍČEK L., JAŠEK R.. A simulation

approach to achieving more efficient production systems. International

Journal of Mathematics and Computers in Simulations, 2011, year 5,
issue 4, page 299-309. ISSN 1998-0159.

[5] KRÁL E., VAŠEK, L., DOLINAY V., ČÁPEK P. Usage of Peak

Functions in Heat Load Modeling of District Heating System.
In Recent Researches in Automatic Control. Montreux : WSEAS Press,

2011, p. 404-406. ISBN 978-1-61804-004-6.
[6] POSPÍŠILÍK M., KOUŘIL L., MOTÝL I., ADÁMEK M. Single and

Double Layer Spiral Planar Inductors Optimisation with the Aid of

Self-Organising Migrating Algorithm. In Proceedings of the 11th
WSEAS International Conference on Signal Processing, Computational

Geometry and Artificial Vision. Venice : WSEAS Press (IT), 2011, p.

272 - 277. ISBN 978-1-61804-027-5.
[7] HU, Xiaohui. Particle Swarm Optimization: Tutorial [online]. 2006 [cit.

2011-05-09]. PSO Tutorial.

WWW: <http://www.swarmintelligence.org /tutorials.php>.
[8] ZIELINSKI K., LAUR R. Stopping Criteria for a Constrained Single-

Objective Particle Swarm Optimization Algorithm. Informatica : An

International Journay of Computing and Informatics [online]. 2007, 31,
1, [cit. 2011-05-11].

WWW: <http://www.informatica.si/PDF/31-1/16_Zielinski-

Stopping%20Criteria%20for%20a%20Constrained...pdf>.
[9] KRAMPL J. Implementace vybraných evolučních algoritmů v prostředí

.NET. Zlín, 2011. Bachelor thesis (Bc.). Tomas Bata University in Zlín,

Faculty of Applied Informatics

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 49

