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Abstract—Absorption and steady state fluorescence
spectra and localization of exciton states for ring molecular
systems are presented. The cyclic antenna units LH2 and
LH4 of the bacterial photosystem from purple bacterium
Rhodopseudomonas acidophila and Rhodopseudomonas
palustris can be modeled by such systems. The cumulant-
expansion method of Mukamel et al. is used for the
calculation of spectral responses of the system. Dynamic
disorder, interaction with a bath, in Markovian approximation
simultaneously with uncorrelated static disorder in local
excitation energies are taking into account in our simulations.
We also discuss different types of exciton dynamics, that are
coupled to above mentioned effects and compare the results
in that the dynamic disorder is taken into account with the
results without dynamic disorder.
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I. INTRODUCTION

Photosynthesis starts with the absorption of a solar photon
by one of the light-harvesting pigment-protein complexes and
transferring the excitation energy to the photosynthetic reaction
center, where a charge separation is initiated. These initial
ultrafast events have been extensively investigated. Knowledge
of the microscopic structure of some photosynthetic systems,
e.g., photosynthetic systems of purple bacteria, invokes during
last twenty years long and intensive effort of many theoretical
and experimental laboratories. No final conclusion about the
character of exited states, energy transfer, etc. can be generally
drawn.

The antenna systems of photosynthetic units from purple
bacteria are formed by ring units LH1, LH2, LH3, and LH4.
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Czech Republic (e-mail: david.zapletal@upce.cz).

The geometric structure is known in great detail from X-
ray crystallography, e.g., for the LH2 complex of the pur-
ple bacterium Rhodopseudomonas acidophila [1], [2]. The
bacteriochlorophyll (BChl) molecules are organized in two
concentric rings. One ring features a group of nine well-
separated BChl molecules (B800) with absorption band at
about 800 nm. The other ring consists of eighteen closely
packed BChl molecules (B850) absorbing around 850 nm.
LH2 complexes from other purple bacteria have analogous ring
structures. The similar ring structure but with larger number of
BChl molecules is supposed for LH1 rings. The intermolecular
distances under 1 nm in rings determine strong exciton cou-
plings between corresponding pigments. Complexes LH3 and
LH4 with modified structure (Rhodopseudomonas palustris)
have been also discovered [3]. While the B850 dipole moments
in LH2 ring have tangential arrangements, in the LH4 one
they are oriented more radially. Mutual interaction of the
nearest neighbour BChls is therefore two times smaller and
has opposite sign. Besides ring with sixteen BChl molecules,
an additional BChl ring is also present in LH4 complex.

Due to the strong interaction between BChl molecules, an
extended Frenkel exciton states model is considered in our the-
oretical approach. In spite of extensive investigation, the role
of the protein moiety in governing the dynamics of the excited
states has not been totally clear yet. At room temperature the
solvent and protein environment fluctuate with characteristic
time scales ranging from femtoseconds to nanoseconds. The
simplest approach is to substitute fast fluctuations by dynamic
disorder and slow fluctuations by static disorder.

Static disorder effect on the anisotropy of fluorescence for
LH2 rings was studied by Kumble and Hochstrasser [4] and
Nagarajan et al. [5]–[7]. We extended these investigations by
consideration of dynamic disorder. We studied this effect for
simple model systems [8]–[10] and then for the models of
LH2 rings [11], [12]. Various types of the uncorrelated static
disorder (in local excitation energies, in transfer integrals, etc.)
and correlated one (e.g., elliptical deformation) were used in
the past [12]–[15] and also different arrangements of optical
dipole moments were compared [16]–[19].

Recently we have focused on the modeling of the steady
state fluorescence and absorption spectra for LH2 complex
[20], [21]. In addition, we have investigated the exciton state
localization of this complex and also time dependence of
exciton density matrix [22], [23]. Main goal of this paper
is the presentation of the steady state fluorescence and ab-
sorption spectra simulations for LH4 ring. In our simulations
the dynamic disorder (interaction with the phonon bath) in
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Markovian approximation is taken into account simultaneously
with uncorrelated static disorder in local excitation energies.
In addition, we present the comparison of the results relating
to the exciton state localization for LH2 complex with our new
results for LH4 one.

Present paper is the extension of our contribution [24]
presented on WSEAS conference MACMESE’12. The rest of
the paper is structured as follows. Section II. introduces the
ring model with the uncorrelated static disorder and dynamic
disorder (interaction with phonon bath) and the cumulant
expansion method of Mukamel et al. [25], [26], which is used
for the calculation of spectral responses of the system with
exciton-phonon coupling, is presented . Also the quantities
describing localization of exciton states and the equations
for time development of exciton density matrix are shown
here. In Section III. the computational point of view for
our calculations is discussed. The presented results of our
simulations and used units and parameters could be found in
Section IV. In Section V. some conclusions are drawn.

II. PHYSICAL MODEL

We assume that only one excitation is present on the ring
after an impulsive excitation. The Hamiltonian of an exciton in
the ideal ring coupled to a bath of harmonic oscillators reads

H = H0
ex +Hph +Hex−ph +Hs. (1)

Here the first term,

H0
ex =

∑
m,n(m6=n)

Jmna
†
man, (2)

corresponds to an exciton, e.g. the system without any disorder.
The operator a†m (am) creates (annihilates) an exciton at site
m, Jmn (for m 6= n) is the so-called transfer integral between
sites m and n. The second term,

Hph =
∑
q

h̄ωqb
†
qbq, (3)

represents phonon bath in the harmonic approximation (the
phonon creation and annihilation operators are denoted by b†q
and b−q , respectively). The third term in (1),

Hex−ph =
1√
N

∑
m

∑
q

Gmq h̄ωqa
†
mam(b†q + b−q), (4)

describes exciton-phonon interaction which is assumed to be
site-diagonal and linear in the bath coordinates (the term
Gmq denotes the exciton-phonon coupling constant). The last
term in (1), Hs, corresponds to static disorder. Influence of
uncorrelated static disorder is modeled by the local excitation
energy fluctuations δεn with Gaussian distribution and stan-
dard deviation ∆

Hs =
∑
n

δεna
†
nan. (5)

Inside one ring the pure exciton Hamiltonian can be diagonal-
ized using the wave vector representation with corresponding

delocalized ”Bloch” states α and energies Eα. Considering
homogeneous case with only nearest neighbour transfer matrix
elements

Jmn = J0(δm,n+1 + δm,n−1) (6)

and using Fourier transformed excitonic operators (Bloch
representation)

aα =
∑
n

eiαkn, α =
2π

N
l, l = 0,±1, . . . ,±N

2
, (7)

the simplest exciton Hamiltonian in α - representation reads

H0
ex =

∑
α

Eαa
†
αaα, Eα = −2J0 cosα. (8)

The cumulant-expansion method of Mukamel et al. [25], [26]
is used for the calculation of spectral responses of the system
with exciton-phonon coupling. Absorption OD(ω) and steady-
state fluorescence FL(ω) spectrum can be expressed as

OD(ω) = ω
∑
α

d2α×

×Re

∫ ∞
0

dtei(ω−ωα)t−gαααα(t)−Rααααt, (9)

FL(ω) = ω
∑
α

Pαd
2
α×

×Re

∫ ∞
0

dtei(ω−ωα)t+iλααααt−g∗αααα(t)−Rααααt. (10)

Here ~dα =
∑
n c

α
n
~dn is the dipole strength of eigenstate

α, cαn are the expansion coefficients of the eigenstate α in
site representation and Pα is steady state population of the
eigenstate α. The inverse lifetime of exciton state Rαααα
[27] is given by the elements of Redfield tensor Rαβγδ [28].
It is a sum of the relaxation rates between exciton states,
Rαααα = −

∑
β 6=αRββαα. The g-function and λ-values in

(10) are given by

gαβγδ = −
∫ ∞
−∞

dω

2πω2
Cαβγδ(ω)×

×
[
coth

ω

2kBT
(cosωt− 1)− i(sinωt− ωt)

]
, (11)

λαβγδ = − lim
t→∞

d

dt
Im{gαβγδ(t)} =

=

∫ ∞
−∞

dω

2πω
Cαβγδ(ω). (12)

The matrix of the spectral densities Cαβγδ(ω) in the eigenstate
(exciton) representation reflects one-exciton states coupling to
the manifold of nuclear modes. In what follows only a diagonal
exciton phonon interaction in site representation is used (see
(1)), i.e., only fluctuations of the pigment site energies are
assumed and the restriction to the completely uncorrelated
dynamical disorder is applied. In such case each site (i.e. each
chromophore) has its own bath completely uncoupled from the
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baths of the other sites. Furthermore it is assumed that these
baths have identical properties [13], [29], [30]

Cmnm′n′(ω) = δmnδmm′δnn′C(ω). (13)

After transformation to exciton representation we have

Cαβγδ(ω) =
∑
n

cαnc
β
nc
γ
nc
δ
nC(ω). (14)

Various models of spectral density of the bath are used in
literature [27], [31], [32]. In our present investigation we have
used the model of Kühn and May [31]

C(ω) = Θ(ω)j0
ω2

2ω3
c

e−ω/ωc (15)

which has its maximum at 2ωc.
Delocalization of the exciton states contributing to the steady

state FL spectrum can be characterized by the thermally
averaged participation ratio 〈PR〉, which is given by

〈PR〉 =

∑
α PRα e

− Eα
kBT∑

α e
− Eα
kBT

, (16)

where

PRα =

N∑
n=1

|cαn|4. (17)

Time evolution of exciton density matrix ραβ is governed
by Redfield equation [28],

∂ραβ(t)

∂t
= −iωαβραβ(t) +

∑
γδ

Rαβγδργδ(t), (18)

which is equivalent to Čápek’s equation [13]. Exciton density
matrix in site representation is given by

ρmn =
∑
αβ

cαnc
β
nραβ . (19)

III. COMPUTATIONAL POINT OF VIEW

To have steady state fluorescence spectrum FL(ω) and
absorption spectrum OD(ω), it is necessary to calculate single
ring FL(ω) spectrum and OD(ω) spectrum for large number
of different static disorder realizations created by random num-
ber generator. Finally these results have to be averaged over
all realizations of static disorder. Time evolution of exciton
density matrix has to be calculate also for each realization of
static disorder. That is why it was necessary to put through
numerical integrations for each realization of static disorder
(see (10)).

For the most of our calculations the software package
Mathematica [33] was used. This package is very convenient
and has very wide range of applications in different areas
of research [34]–[36] not only for symbolic calculations [37]
which are needed for expression of all required quantities, but
it can be used also for numerical ones [38]. That is why the
software package Mathematica was used by us as for symbolic
calculations as for numerical integrations and also for final
averaging of results over all realizations of static disorder.

As concerns the time development of our system, for the
solution of the Redfield equation we have used the program
written in Fortran and standard Runge-Kutta method.

IV. RESULTS

Above mentioned uncorrelated static disorder in local exci-
tation energies has been taken into account in our simulations
simultaneously with dynamic disorder in Markovian approx-
imation. Dimensionless energies normalized to the transfer
integral J12 = J0 in LH2 ring and dimensionless time τ

have been used. Estimation of J0 varies in literature between
250 cm−1 and 400 cm−1. For these extreme values of J0 our
time unit (τ = 1) corresponds to 21.2 fs or 13.3 fs.

The values of transfer integrals in LH4 ring differ
from that of LH2 ring. Furthermore, stronger dimeriza-
tion can be found in LH4 in comparison with LH2
[3]. Therefore we have taken the values of transfer inte-
grals in LH4 ring as follows: JLH4

12 = −0.5JLH2
12 = −0.5J0,

Fig. 1. Resulting absorption OD(ω) (dashed lines) and steady-state fluorescence FL(ω) spectra (solid lines) of LH4 ring at room temperature
kT = 0.5 J0 (red lines) and low one kT = 0.1 J0 (blue lines) averaged over 2000 realizations of Gaussian uncorrelated static disorder in
local excitation energies δε – three strengths ∆ = 0.1, 0.3, 0.6 J0.
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Fig. 2. Peak position distributions of calculated steady-state single ring fluorescence spectra FL(ω) of LH4 ring at room temperature
kT = 0.5 J0 (red lines) and low one kT = 0.1 J0 (blue lines) for 2000 realizations of Gaussian uncorrelated static disorder in local
excitation energies δε – three strengths ∆ = 0.1, 0.3, 0.6 J0.

Fig. 3. The distributions of PRα values (α = 1, . . . , 16) of LH4 ring as a function of FL spectrum peak position at room temperature
kT = 0.5 J0 calculated for 2000 realizations of Gaussian uncorrelated static disorder in local excitation energies δε, for the highest strength
∆ = 0.6 J0.
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Fig. 4. The distribution of 〈PR〉 values of LH4 ring as a function of FL spectrum peak position at low temperature kT = 0.1 J0 (first row)
and room temperature kT = 0.5 J0 (second row), calculated for 2000 realizations of Gaussian uncorrelated static disorder in local excitation
energies δεn – three strengths ∆ = 0.1, 0.3, 0.6 J0.

Fig. 5. The distribution of 〈PR〉 values of LH2 ring as a function of FL spectrum peak position at low temperature kT = 0.1 J0 (first row)
and room temperature kT = 0.5 J0 (second row), calculated for 2000 realizations of Gaussian uncorrelated static disorder in local excitation
energies δεn – three strengths ∆ = 0.1, 0.3, 0.6 J0.
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JLH4
23 = 0.5JLH4

12 = −0.25J0. All our simulations of LH4
spectra have been done with the same values of J0 and
unperturbed transition energy from the ground state ∆E0, that
we found for LH2 ring [21].

Contrary to Novoderezhkin et al. [27], different model of
spectral density (the model of Kühn and May [12]) has been
used. In agreement with our previous results [16], [19] we
have used the strength of dynamic disorder j0 = 0.4 J0 and
cut-off frequency ωc = 0.212 J0 (see (15)). The strengths of
uncorrelated static disorder has been taken in agreement with
[39]: ∆ = 0.1, 0.3, 0.6 J0,.

Resulting absorption OD(ω) and steady state fluores-

Fig. 6. The diagonal exciton density matrix elements of LH4 ring
in the site representation ρnn without dynamic disorder (coherent
dynamics) at low temperature kT = 0.1 J0 are shown as a function
of time τ for the realizations of Gaussian uncorrelated static disorder
in local excitation energies δεn with lowest 〈PR〉 value (first column)
and highest 〈PR〉 value (second column) – three different strengths
of static disorder ∆ = 0.1 J0 (first row), 0.3 J0 (second row), 0.6 J0
(third row).

cence spectra FL(ω) for LH4 ring at room temperature
(kT = 0.5 J0) and low one (kT = 0.1 J0) averaged over 2000
realizations of static disorder for three strengths ∆ can be seen
in Fig. 1.

Fig. 2 presents the peak positions distributions of calcu-
lated steady state single ring fluorescence spectra at room
temperature kT = 0.5 J0 and low one kT = 0.1 J0 for 2000
realizations of static disorder. The distributions are shown for
three strengths of static disorder mentioned above.

The distributions of the participation ratios PRα for each of
sixteen eigenstates α can be seen in Fig. 3 for highest strength
of static disorder (∆ = 0.6J0).

Fig. 7. The diagonal exciton density matrix elements of LH4 ring in
the site representation ρnn with dynamic disorder effect taking into
account at low temperature kT = 0.1 J0 are shown as a function of
time τ for the realization of Gaussian uncorrelated static disorder in
local excitation energies δεn with lowest 〈PR〉 value (first column)
and highest 〈PR〉 value (second column) – three different strengths
of static disorder ∆ = 0.1 J0 (first row), 0.3 J0 (second row), 0.6 J0
(third row).

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 90



Fig. 8. The diagonal exciton density matrix elements of LH4 ring
in the site representation ρnn without dynamic disorder (coherent
dynamics) at room temperature kT = 0.5 J0 are shown as a function
of time τ for the realizations of Gaussian uncorrelated static disorder
in local excitation energies δεn with lowest 〈PR〉 value (first column)
and highest 〈PR〉 value (second column) – three different strengths
of static disorder ∆ = 0.1 J0 (first row), 0.3 J0 (second row), 0.6 J0
(third row).

Fig. 4 shows the values of thermally averaged participation
ratio 〈PR〉 for LH4 ring as a function of FL spectrum
peak position at room temperature kT = 0.5 J0 and low one
kT = 0.1 J0 calculated for 2000 realizations of the disorder.
For comparison, the same as in Fig. 4 but for LH2 ring is
presented in Fig. 5.

Dynamics of the diagonal exciton density matrix elements
in site representation ρnn at room temperature kT = 0.5 J0
and low one kT = 0.1 J0 is shown in Fig. 6 – Fig. 9 for three
above mentioned strengths of static disorder. Initial density
matrix in eigenstate representation ραβ(t = 0) is chosen by
us corresponding to coherent wavepacket with steady state

Fig. 9. The diagonal exciton density matrix elements of LH4 ring in
the site representation ρnn with dynamic disorder effect taking into
account at room temperature kT = 0.5 J0 are shown as a function of
time τ for the realization of Gaussian uncorrelated static disorder in
local excitation energies δεn with lowest 〈PR〉 value (first column)
and highest 〈PR〉 value (second column) – three different strengths
of static disorder ∆ = 0.1 J0 (first row), 0.3 J0 (second row), 0.6 J0
(third row).

(thermally equilibrated) populations Pα and arbitrary fixed
phases ϕα [27],

ραβ =
√
PαPβ ei(ϕα−ϕβ), (20)

and
ραα = Pα ∼ e−

εα
kT . (21)

Timescale τ ∈ 〈0; 70〉 corresponds to t ∈ (0; 1.4 ps) or
(0; 1 ps) for limit values of J0 mentioned above. Contrary
to [27] the dynamic disorder have been taken into account
in our simulations. Fig. 6 and Fig. 8 show the coherent
dynamics (without dynamic disorder) for the realizations of
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static disorder with lowest and highest 〈PR〉 values. Fig. 7
and Fig. 9 show the same but with the dynamic disorder effect
taking into account.

V. CONCLUSIONS

Software package Mathematica has been found by us very
useful for the simulations of the molecular ring spectra. From
the comparison of our simulated FL and OD spectra for LH4
ring (Fig. 1) with our previous results for LH2 ring [20] we can
see that the spectral lines for LH4 ring are shifted to smaller
wavelengths (higher energies).

The shift of fluorescence spectral line to higher wavelengths
(lower energies) is visible for increasing strength of static
disorder. It corresponds with the creation of the second peak
in the fluorescence peak position distribution (Fig. 2).

Another difference can be found in widths of spectral
line profiles. Absorption line of LH4 at low temperature
kT = 0.1 J0 for small strength of static disorder is signif-
icantly wider then fluorescence one. On the other hand the
absorption and fluorescence spectral lines have similar widths
for LH2 ring [21].

If we compare the distributions of the participation ratios
PRα for LH4 ring (Fig 3) with the same for LH2 ring [23],
we can conclude that localization of exciton eigenstates in
LH4 ring is higher. Also correlation between PRα value and
single molecule FL spectrum peak position for LH4 ring is
not evident in contrast with LH2 ring.

From Fig. 4 it can be seen growing of 〈PR〉 values in
case of higher strength of static disorder for LH4 ring similarly
as for LH2 (Fig. 5).

On the other hand, comparison of Fig. 4 and Fig. 5 shows
significant differences in 〈PR〉 values for LH2 and LH4
rings. The participation ratio 〈PR〉 of LH4 ring for highest
strength of static disorder (∆ = 0.6 J0) reaches values about
0.9. Contrary 〈PR〉 of LH2 ring has only values about 0.5
for the same strength of static disorder. It also corresponds to
more localized exciton states in LH4 ring.

From Fig. 6 – Fig. 9 we can see that different strengths of
static disorder (different degree of localization 〈PR〉) produce
different types of coherent excitation dynamics. The popu-
lation distribution for small 〈PR〉 is more or less uniform,
i.e., excitation can be found on any part of the ring. The
wavepacket moves around the ring in this case. On the other
hand, higher values of 〈PR〉 lead to higher localization of
excitation on a smaller group of pigments or even on a single
pigment. Excitation can be even totally localized on a single
molecule without any migration to the other sites in case of
highest 〈PR〉. If the dynamic disorder is taken into account,
oscillations in exciton dynamics are suppressed. The dynamics
can be characterized by relaxation. From comparison of Fig. 6,
Fig. 7 with Fig. 8, Fig. 9, the slower exciton dynamics is visible
in case of low temperature kT = 0.1 J0.
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[20] P. Heřman, D. Zapletal, J. Šlégr, Comparison of emission spectra of
single LH2 complex for different types of disorder, Physics Procedia 13,
2011, pp. 14–17.
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[23] D. Zapletal, P. Heřman, Simulation of molecular ring emission spectra:
localization of exciton states and dynamics, IJCMS 6, 2012, pp. 144–
152.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 92
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