
 

 

 

Abstract— This paper is focused on the description, as to how to 

represent the network topology. It is very important to know the 

network topology and to understand its properties. This work 

describes how to find all the Giant Connected Component in directed 

network. The growing complex networks with preferential linking 

were used for experimental testing within this research. Roulette-

wheel selection method was used as a preferential selection algorithm 

in the task of generation of complex networks. 
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I. INTRODUCTION 

IRECTED networks can be found in both nature and in 

man-made systems, i.e., network of citations of scientific 

papers, communication network, network of collaboration, 

telephone call graph, neural network, network of metabolic 

reaction etc. 

It is important to understand to the topological structure of 

networks and its changes under external action [1 - 4]. Then, it 

is possible to understand, where the network is vulnerable to 

damage and when are resistant. The first random graphs were 

studied in the sixties [5, 9]. Later, studies about dynamic of 

growing networks [10 - 14] were performed. Nowadays, it is 

possible to study and easily simulate the real network [15 - 

20]. For example, the model of small world networks contains 

many real networks such as the World Wide Web [21]. 

For the overview of directed complex networks, the giant 

connected components [3] are used. General structure of 

directed network, where the giant connected component is 

present, is depicted in Fig. 1. How to calculate the sizes of all 

giant connected components of a directed graph is described in 

[22]. 

In this paper, it is proposed, how to find all giant connected 

component. This work is an extension and continuation of 

previous research focused on Investigation on relations 

between complex networks and evolutionary algorithms 

dynamics [24]. 
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This paper is focused on the description, as to how to find 

all giant connected components in directed network by means 

of computer technology. Growing complex networks with 

preferential linking were used for testing [25]. Roulette-wheel 

selection was used as a preferential linking algorithm. 

The structure of the paper is following: Firstly, the term 

Giant connected component is explained, and then a problem 

design is proposed. The following sections are focused on the 

description of used complex network and a visualization 

algorithm. Results and conclusion follow afterwards. 

  

 
Fig. 1 General structure of directed network where the giant 

connected component is present. 

 

 
Fig.2 General structure of undirected network. 
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II. EXPERIMENT DESIGN 

In undirected network, Giant Connected Component (GCC) 

and Disconnected Component (DC) are present Fig. 2. 

However the structure of directed network can be more 

complex (See Fig. 1). In case that directness of edges is not 

present, the network consists of Giant Weakly Connected 

Component (GWCC) and Disconnected Components (DC). 

After the projection of edges orientation, the GWCC is 

composed from the Giant Strongly Connected Component 

(GSCC), the Giant Out-Component (GOUT), the Giant In-

Component (GIN) and the Tendrils (TE). 

The giant strongly connected component is the set of 

vertices attached each by each with a directed path. The giant 

out-component is the set of vertices approachable from the 

GSCC by a directed path. The giant in-component contains all 

vertices from which the GSCC is approachable. The tendrils 

are the vertices which have no access to the GSCC and are not 

reachable from it. In particular, it indeed includes something 

like ―tendrils‖ going out of GIN or coming in the GOUT but 

also there are ―tubes‖ going from the GIN to GOUT without 

passage through GSCC and numerous clusters which are only 

―weakly‖ connected. Network where giant components are 

present, are depicted in Fig. 3. 

Please note, that the definitions of the Giant In-connected 

Component and Giant Out-connected Component given in [25] 

differ from the new definitions presented in [22]. In the old 

definition, the Giant Strongly Connected Component is 

included into both GIN and GOUT, so the GSCC is the 

interception of the GIN and GOUT. The new definition was 

introduced for the sake of brevity and logical presentation. 

 

 
Fig. 3 Network where GCC is present. S – GSCC, I – GIN, O 

– GOUT, T – Tendrils, D – DC. 

A. Numerical method 

Number of all components can be derived by numerical 

method. Z – transform was used, for undirected network (1), 

and for directed network (2) [22].  
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Where k is total number of connection, ki and ko is incoming 

and outgoing connection, obviously k = ki + ko. Degree 

distribution P(k) can be derived from  P(k) ≡ P
(w)

(k) = ∑ki 

(ki,k-ki) [6]. If all edges are within the considered network, 

average in and out degree distribution is based on ∂x Φ(1,y) | 

x=1 = ∂y Φ(y,1) | y=1 ≡ z
(d)

 Accordingly average degree 

distribution take the form z = 2z
(d)

 Degree distribution 

undirected network in Z-transformation is equal Φ
(w)

(x) = 

Φ(x,x). Of that relationship is derived pattern Φ1
(w)

(x) = 

Φ
(w)

’(x)/z. GWCC is determined if the relationship is valid 

Φ1
(w)

’(1) > 1 [22].That is similar like Molloy and Reed 

criterium (3) [7, 8]  
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Number of Giant weekly connect component W is given by 

(4) and (5) [22] 
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Number of Giant In-component and Giant Out-component 

can be derived like the previous form. Z-transformacion of 

out-degree distribution is equal Φ1
(o)

(y) ≡ ∂x Φ(x,y) | x=1 / z(d). 

In-degree distribution is obtain similarly Φ1
(i)

(x) ≡ ∂y Φ(x,y) | 

y=1 / z(d). The GIN and GOUT exist if Φ1
(i)’

(1)= Φ1
(o)’

(1)= ∂
2
xy 

Φ(x,y) | x=1,y=1/ z(d).>1. This implies (6) [22] 
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Then the equations are derived (7) 
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Relative size of Giant In-connected Component and Giant 

Out-Connected Component is given by (8) 
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Relative size of Giant Strongly Connected Component can 

be derived from (7), similarly Giant In-component and Giant 

Out-component [6]. If incoming edges ki and outgoing edges 

ko are statistically independent then the probability that all 

incoming edges come from finite in-components is equal to 

xc
ki. Then 1 - xc

ki is the probability that vertex has the infinite in 

component. Probability that the vertex has the infinite out-

component is equal to 1- yc
ko. If in and out-component are 

infinite, probability that the vertex belong to GSCC is (1 - xc
ki) 

(1- yc
ko). Then the probability, that the vertex is in GSCC, is 

given by (9) [15] 
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Relative size of Giant strongly connected component is 

equal to (10) [15] 
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If the relative size of W, S, I and O component is known, 

Relative size of Tendrils is (11) [15] 

 

.OISWT  (11) 

 

When joint distribution of in-and out-degrees induce, P (ki, 

ko) = P
(i)

 (ki) P
(o)

 (ko) (8), then S is equal IO. In another case 

such as the factorization S is impossible. Then, xc = yc = 1 and 

I, O, and S concurrently approaches zero [22]. 

 

B. Description of used method 

GSCC is very important part of the network. In general, it is 

the core of directed network. The challenging task is how the 

GSCC can be identified by means of computer technology. 

One possible way is to transform the network into a tree. 

Within this approach, one vertex is selected as the root of tree 

and links are transformed into routes (See Fig. 4). From the 

first vertex leads a lot of routes in the case of huge network, 

therefore some insignificant edges may be omitted. GSCC can 

be presented as a loop; therefore the example of insignificant 

route is the 2→4. In this case, GSCC include vertexes 2,3,5,1, 

thus the routes 2→3→1→2 and 2→1→2 may be omitted. For 

the detailed description of developed algorithm, please refer to 

pseudo-code depicted in Fig. 5. 

In addition, several loops may be found in larger networks. 

If there is a connection between several loops, GSCC includes 

these loops otherwise larger loop is intended as the GSCC. 

If the GSCC is addressed, other components can be found. 

Vertexes belonging into the GIN must be linked to the core of 

the network and there exists the road from the core to GOUT. 

Vertexes belonging to the GWCC and does not belong to the 

above three categories, are Tendrils. 

 

 
Fig. 4 Network with loop transferred into tree. 

 

C. Generation of complex networks examples 

For the testing of the developed algorithm, the growing 

complex networks with preferential linking were used. New 

vertex connections were chosen by means of Roulette-wheel 

selection. Developed algorithm was tested on the networks 

with five to eighty vertexes.  

III. EXPERIMENTAL RESULTS  

This paper consists primarily of two illustrative case studies 

focused on the detailed visualization of complex networks by 

means of Giant Connected Component.  

The experiment was repeated twenty times for each 

dimension of the network to confirm the robustness and 

efficiency of developed algorithm. For the experiment, desktop 

PC with single-core, 1.81 GHz CPU and 2 GB RAM was used. 

The results of average number of Giant connected 

Component are presented in Table I. Fig. 6 – 8 contains 

detailed graphical analysis of the results presented in Table I. 

Average number of all Giant Connected Components is 

present in Fig. 6, where is clearly visible which components 

are growing and which not. In Fig. 7, there is depicted the 

average numbers of Giant Out-connected Component, Tendrils 

and Disconnected Component in percentage in special graph, 
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due to the very low appearance of theses component in the 

network. Other components (GSCC GIN and GWCC) are 

present in special graph depicted in Fig. 8. 

Examples of two selected networks are shown in Fig. 10 – 

11 and 13 – 14. The first case study was a small network with 

25 vertexes, and the second case study was a large network 

with 75 vertexes. 

 

 

 
Fig. 5 Pseudo-code of developed algorithm. 

 

Table I Numbers of Giant Strongly Connected Component, Giant In-component, Giant Out-component, Tendrils, Disconnected 

Component and Giant weakly connected Component. 
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Fig. 6 Average number of Giant Connect Component in studied network. 

 

 

 
Fig. 7 Average numbers of GOUT, Tendrils and DC in 

percentage.  

 

 
Fig. 8 Average numbers of GSCC, GIN and GOUT in 

percentage. 

 

A. Case study 1 

In this case study, the detailed description and analyze for the 

selected example of the small network with 25 vertexes were 

performed. Histogram of Giant Strongly Connected 

Component distribution is shown in Fig. 9. For the structure of 

the used network, please refer to Fig. 10. 3D model of network 

is present in Fig. 11. These examples represent the graphical 

output of the algorithm described above. In the small growing 

networks there occur more GOUT, TE and DE component, 

than in large networks. Giant Strongly Connect Component 

has on average 41 % of the total vertices in the network. Table 

II shows the average values of all the Giant Connected 

Component. From these results, it is obvious, that typically the 

GSCC and GIN are present in the network, and the percentage 

occurrence of these two components together is 88%. Other 

components appear in the network with a low probability. 

 

 
Fig. 9. Histogram of number of GSCC in the network with 

25 vertexes. 
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Fig. 10 Example of the small network, where Giant Strongly 

Connected Component, Giant In-component, Giant Out-

component, Tendrils and Disconnected Component are 

present. 

 

 
Fig. 11 3D model of example of the small network, where 

Giant Strongly Connected Component, Giant In-component, 

Giant Out-component, Tendrils and Disconnected Component 

are present. 

 

B. Case study 2 

Networks with seventy five vertexes were analyzed in this 

case study. Histogram of Giant Strongly Connected 

Component distribution is shown in Fig. 12. Graphical 

example of the network is in Fig. 13. 3D model of network is 

present in Fig. 14. These examples represent the graphical 

output of the algorithm described above. It is obvious, that 

there are many Giant Strongly Connect Components and Giant 

In-components present in the large network. Together these 

two components represent 97.31% of the network. Other 

components are present in the network with a very low 

probability. Further detailed information is in Table III. 

 

Table II. Average values of the Giant Connected Component 

 
 

 
Fig. 12 Histogram of number of GSCC in the network with 75 

vertexes. 

 

Table III. Average values of the Giant Connected Component 
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Fig. 13 Example of the large network, where all Giant Connected Component are present. 

 
Fig. 14 3D model of example of the large network, where all Giant Connected Component are present. 
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I. CONCLUSION 

This paper deals with the development of the algorithm for 

the visualization of all Giant Connected Components in the 

network. It was explained, how all the GCC can be calculated 

by means of mathematical methods. In this paper the method 

as to how to determine the number of GCC and how to 

graphically illustrate them by means of computer technology 

was described. The experiment was repeated twenty times for 

each dimension of the network to confirm the robustness and 

efficiency of developed algorithm.  

For the experiments a small network with 25 vertexes and a 

large network with 75 vertexes were used. 

As demonstrated, this method is very simple to implement 

and very easy to use. Furthermore, importance of this research 

is growing every day. Complex networks can be found in many 

scientific fields, but also in nature. It is important to 

understand the structure of networks, especially where the 

networks are prone to faults. 

ACKNOWLEDGMENT 

This work was supported by the grants: Internal Grant 

Agency of Tomas Bata University under the project No. 

IGA/40/FAI/11/D, grant of Ministry of Education of the Czech 

Republic MSM 7088352101, grant of Grant Agency of Czech 

Republic GACR 102/09/1680 and by European Regional 

Development Fund under the project CEBIA-Tech No. 

CZ.1.05/2.1.00/03.0089.  

REFERENCES   

[1] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, 

„Complex Networks: Structure and Dynamics―, Physics Reports, Vol. 

424, 2006, pp. 175-308. 

[2] M.E.J. Newman, "The structure and function of complex networks", 

SIAM Review, vol. 45, no. 2, 2003, pp. 167-256. 

[3] S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks, Oxrofd 

University press, 2003 

[4] S. Bornholdt, H. G. Shuster, Handbook of Graphs and Networks, 

WILEY-VCH, 2003. 

[5] P. Erdos, A. Rényi, "On the strength of connectedness of a random 

graph", Acta Mathematica Academiae Scientiarum Hungaricae, vol. 12, 

no. 1-2, 1961, pp. 261-267. 

[6] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, "Random graphs with 

arbitrary degree distributions and their applications", Physical Review E 

- Statistical, Nonlinear, and Soft Matter Physics, vol. 64, no. 2 II, 2001, 

pp. 261181-261187. 

[7] M.Molloy, B. Reed,‖A Critical Point for Random Graphs with a Given 

Degree Sequence‖. Random Structures and Algorithms vol. 6, 1995, 

pp.161-180. 

[8] M. Molloy, B. Reed, ―The Size of the Largest Component of a Random 

Graph on a Fixed Degree Sequence‖. Combinatorics, Probability and 

Computing, vol. 7, 1998, pp. 295-306. 

[9] N. Ikeda, ―Control of Network Structure by an External Field on 

Random Walkers‖, 6th WSEAS International Conference on Non-

Linear Analysis, 2007. 

[10] J. Mendes, A. Samukhin, S. Dorogovtsev, ―Anomalous Percolating 

Properties of Growing Networks‖, Phys. Rev. E 64, 066110, 2001. 

[11] P. Bialas, & A. K. Oleś, "Correlations in connected random graphs", 

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 

vol. 77, no. 3, 2008. 

[12] P.L. Krapivsky,  G.J. Rodgers, & S.Redner, , "Degree distributions of 

growing networks", Physical Review Letters, vol. 86, no. 23, 2001, pp. 

5401-5404. 

[13] P.L. Krapivsky, & S. Redner, "Organization of growing random 

networks", Physical Review E - Statistical, Nonlinear, and Soft Matter 

Physics, vol. 63, no. 6 II, 2001, pp. 066123/1-066123/14. 

[14] P. Adesso, A. Gravetti, M. Lohgo, F. Postiglione, ―The Influence of 

Network Topological Models on the Prediction of  End-to-End Loss 

Probabilities‖, 5th WSEAS Int. Conf. on Multimedia, 2005 

[15] A. Barabási, & R. Albert, "Emergence of scaling in random networks", 

Science, vol. 286, no. 5439, 1999, pp. 509-512. 

[16] R. Albert, H. Jeong, & A. Barabási,  "Error and attack tolerance of 

complex networks", Nature, vol. 406, no. 6794, 2000, pp. 378-382. 

[17] R. Albert, H. Jeong, A.-L. Barabási, ―Diameter of the world wide web ― 

Nature vol. 401, 1999, pp. 130-131. 

[18] S. Mocanu, S. Taralunga, ―Immunization Strategis for Networks with 

Scale-Free Topology‖, 5th WSEAS Int. Conf. on Non-Linear Analysis, 

2006. 

[19] R. Dobrescu, ―Modeling complex biological systems using Scale Free 

Networks‖, 5th WSEAS Int. Conf. on Non-Linear Analysis, 2006. 

[20] S.N. Dorogovtsev, & J.F.F. Mendes, "Scaling properties of scale-free 

evolving networks: Continuous approach", Physical Review E - 

Statistical, Nonlinear, and Soft Matter Physics, vol. 63, no. 5 II, 2001, 

pp. 561251-5612519. 

[21] D. J. Watts, S. H. Strogatz, ―Collective Dynamics of 'Small-world' 

Networks‖, Nature, vol. 393 Jun. 1998, pp. 440-442. 

[22] S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, ―Giant strongly 

connected component of directed networks‖, Physical Review E, 

Vol.64, No.2, 2001, pp. 25101-25104. 

[23] C. Cooper, A. Frieze, "The size of the largest strongly connected 

component of a random digraph with a given degree sequence", 

Combinatorics Probability and Computing, vol. 13, no. 3, 2004, pp. 

319-337. 

[24] I. Zelinka, D. Davendra, V. Snasel, R. Jasek, R. Senkerik, Z. Oplatkova, 

―Preliminary Investigation on Relations Between Complex Networks 

and Evolutionary Algorithms Dynamics‖, proceedings of CISIM 2010, 

Poland, Cracow, October 8 – 10, 2010. 

[25] G. Ergün, & G.J. Rodgers, "Growing random networks with fitness", 

Physica A: Statistical Mechanics and its Applications, vol. 303, no. 1-2, 

2002, pp. 261-272. 

 

 E. Klimkova was born in Czech Republic, and went to the 

Tomas Bata University in Zlin in Czech Republic, where 

she studied telecommunication systems and obtained her 

MSc. degree in 2010.  

She is a Ph.D. student at the same university. Her research 

is concerned in evolution dynamic of complex network. Her 

e-mail address is: klimkova@fai.utb.cz 

 

R. Senkerik was born in the Czech Republic, and went to 

the Tomas Bata University in Zlin, where he studied 

Technical Cybernetics and obtained his MSc degree in 

2004 and Ph.D. degree in Technical Cybernetics in 2008. 

He is now a lecturer at the same university (Applied 

Informatics, Cryptology, Artificial Intelligence, 

Mathematical Informatics). His email address is: 

senkerik@fai.utb.cz 

 

I. Zelinka was born in the Czech Republic, and went to the 

Technical University of Brno, where he studied Technical 

Cybernetics and obtained his degree in 1995. He obtained 

Ph.D. degree in Technical Cybernetics in 2001 at Tomas 

Bata University in Zlin.  

He is now a Professor at the Technical University in Ostrava, 

Czech Republic. His specialization is artificial intelligence.  

Email address: ivan.zelinka@vsb.cz . 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 5, 2011 437

http://www.cs.toronto.edu/~molloy/webpapers/size.ps
http://www.cs.toronto.edu/~molloy/webpapers/size.ps
http://www.barabasilab.com/pubs/CCNR-ALB_Publications/199909-09_Nature-DiameterWWW/199909-09_Nature-DiameterWWW.pdf
mailto:senkerik@ft.utb.cz



