

Abstract—In decision analysis, decision trees are commonly

used as a visual support tool for identifying the best strategy that is

most likely to reach a desired goal. A decision tree is a hierarchical

structure normally represented as a tree-like graph model. The tree

consists of decision nodes, splitting paths based on the values of a

decision node, and sink nodes representing final decisions. In data

mining and machine learning, decision tree induction is one of the

most popular classification algorithms. The popularity of decision

tree induction over other data mining techniques are its simple

structure, ease of comprehension, and the ability to handle both

numerical and categorical data. For numerical data with continuous

values, the tree building algorithm simply compares the values to

some constant. If the attribute has value smaller than or equal to the

constant, then proceeds to the left branch; otherwise, takes the right

branch. Tree branching process is much more complex on categorical

data. The algorithm has to calculate the optimal branching decision

based on the proportion of each individual value of categorical

attribute to the target attribute. A categorical attribute with a lot of

distinct values can lead to the overfitting problem. Overfitting occurs

when a model is overly complex from the attempt to describe too

many small samples which are the results categorical attributes with

large quantities. A model that overfits the training data has poor

predictive performance on unseen test data. We thus propose novel

techniques based on data grouping and heuristic-based selection to

deal with overfitting problem on categorical data. Our intuition is on

the basis of appropriate selection of data samples to remove random

error or noise before building the model. Heuristics play their role on

pruning strategy during the model building phase. The

implementation of our proposed method is based on the logic

programming paradigm and some major functions are presented in

the paper. We observe from the experimental results that our

techniques work well on high dimensional categorical data in which

attributes contain distinct values less than ten. For large quantities of

categorical values, discretization technique is necessary.

Keywords— Overfitting problem, Categorical data, Data mining,

Decision tree induction, Prolog language.

Manuscript received June 9, 2011: Revised version received August 1,

2011. This work was supported by grants from the National Research Council

of Thailand (NRCT) and Suranaree University of Technology through the

funding of Data Engineering Research Unit.

N. Kerdprasop is an associate professor and the director of Data

Engineering Research Unit, School of Computer Engineering, Suranaree

University of Technology, 111 University Avenue, Muang District, Nakhon

Ratchasima 30000, Thailand (phone: +66-44-224-432; fax: +66-44-224-602;

e-mail: nittaya@sut.ac.th).

K. Kerdprasop is with the School of Computer Engineering and Data

Engineering Research Unit, Suranaree University of Technology, 111

University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand (e-

mail: KittisakThailand@gmail.com).

I. INTRODUCTION

ECISION tree induction is a popular method for mining

knowledge from data by means of decision tree building

and then representing the end result as a classifier tree.

Popularity of this method is due to the fact that mining result

in a form of decision tree is interpretability, which is more

concern among casual users than a sophisticated method but

lacking of understandability such as support vector machine or

neural network [6], [7], [8], [9], [12], [18], [19].

A decision tree is a hierarchical structure with each internal

node containing a decision attribute, each node branch

corresponding to a distinct attribute value of the decision

node, and the class of decision appears at the leaf node [3].

The goal of building a decision tree is to partition data with

mixing classes down the tree until each leaf node contains

data instances with pure class.

When a decision tree is built, many branches may be overly

expanded due to noise or random error in the training data set.

Noisy data contain incorrect attribute values caused by many

possible reasons, for instance, faulty data collected from

instruments, human errors at data entry, errors in data

transmission [1]. If noise occurs in the training data, it can

lower the performance of the learning algorithm [20]. The

serious effect of noise is that it can confuse the learning

algorithm to produce too specific model because the algorithm

tries to classify all records in the training set including noisy

ones. This situation leads to the overfitting problem [4], [11],

[17].

Even if training data do not contain any noise, but they

instead contain categorical data with excessive number of

distinct values. The tree induction results also lead to the same

problem because with large quantities of categorical values,

the algorithm has to divide data into a lot of small groups. The

extreme example is a group of one data instance. That

introduces a lot of noise into the model.

General solution to this problem is a tree pruning method to

remove the least reliable branches, resulting in a simplified

tree that can perform faster classification and more accurate

prediction about the class of unknown data class labels [4],

[11], [14].

Most decision tree learning algorithms are design with the

awareness of noisy data. The ID3 algorithm [13] uses the pre-

pruning technique to avoid growing a decision tree too deep

down to cover the noisy training data. Some algorithms adopt

The Development of Discrete Decision Tree

Induction for Categorical Data

Nittaya Kerdprasop and Kittisak Kerdprasop

D

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 5, 2011 499

the technique of post-pruning to reduce the complexity of the

learning results. Post-pruning techniques include the cost-

complexity pruning, reduced error pruning, and pessimistic

pruning [10], [15]. Other tree pruning methods also exist in

the literature such as the method based on minimum

descriptive length principle [16], and dynamic programming

based mechanism [2].

A tree pruning operation, either pre-pruning or post-

pruning, involves modifying a tree structure during the model

building phase. Our proposed method is different from most

existing mechanism in that we deal with noisy data prior to the

tree induction phase. Its loosely coupled framework is

intended to save memory space during the tree building phase

and to ease the future extension on dealing with streaming

data.

We present the framework and the detail of our

methodology in Section 2. The prototype of our

implementation based on the logic programming paradigm is

illustrated in Section 3, whereas the Prolog source code of our

prototype is provided in Appendix. Efficiency of our

implementation on categorical data is demonstrated in Section

4. Conclusion and discussion appear as the last section of this

paper.

II. A METHOD FOR BUILDING DECISION TREE TO HANDLE

CATEGORICAL DATA

Our proposed system has been named discrete-tree

induction to enunciate our intention to design a decision tree

induction method to handle categorical data containing

numerous discrete values. The framework as shown in

Figure1 is composed of the discrete-tree component, which is

the main decision tree induction part, and the testing

component responsible for evaluating the accuracy of the

decision tree model as well as reporting some statistics such as

tree size and running time.

Categorical value handling of our discrete-tree induction

method can be achieved through the selection of the

representative data, instead of learning from each and every

training data. These selected data are used further in the tree

building phase. Training data are first clustered by clustering

module to find the mean point of each data group. The data

selection module then uses these mean points as a criterion to

select the training data representatives. It is a set of data

representatives that to be used as input of the tree induction

phase.

Heuristics have to be applied as a threshold in the selection

step and as a stopping criterion in the tree building phase. The

algorithms of a main module as well as the clustering, data

selection, and tree induction modules are presented in Figures

2-5, respectively.

Fig. 1 a decision tree induction framework

Input: Data D with class label

Output: A tree model M

Steps:

1. Read D and extract class label to check distinctive

values K

2. Cluster D to group data into K groups

3. In each group

 3.1 Get mean attribute values

 3.2. Compute similarity of each member compared to

its mean

 3.3 Compute average similarity and variance

 3.4 Set threshold T = 2*Variance

 3.5 Select only data with similarity > T

4. Set stopping criteria S for tree building as

 S = K – log [(number of removed data + K) / |D|]

5. Send selected data and criteria S into tree-induction

module

6. Return a tree model

Fig. 2 discrete-tree induction main algorithm

User

Training data

Test data

Discrete-tree induction

Main module

Clustering module

Data selection module

Tree induction module

Testing module

Tree model

Accuracy report

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 5, 2011 500

Steps:

1. Initialize K means /* Create temporary mean

points for all K clusters. */

2. Call find_clusters(K, Instances, Means) /* assign

each data to the closest cluster; reference point

is the mean of cluster */

3. Call find_means(K, Instances, NewMeans) /*

compute new mean of each cluster; this

computation is based on current members of

each cluster */

4. If Means NewMeans Then repeat step 2

5. Output mean values and instances in each clusters

Fig. 3 categorical data clustering algorithm

Steps:

1. For each data cluster

2. Compute similarity of each member compared to

cluster mean

3. Computer average similarity score of a cluster

4. Computer variance on similarity of a cluster

5. Threshold = 2* variance

6. Remove member with

 similarity score < Threshold

7. Return K clusters with selected data

Fig. 4 data selection algorithm

Steps:

1. If data set is empty

2. Then Assert(node(leaf,[Class/0], ParentNode)

3. Exit

/* insert a leaf node in a database, then exit */

4. If number of data instances < MinInstances

5. Then Compute distribution of each class

6. Assert(node(leaf, ClassDistribution,

ParentNode)

7. If all data instances have the same class label

8. Then Assert(node(leaf, ClassDistribution,

ParentNode)

9. If data > MinInstances and data have mixing class

labels

10. Then BuildSubtree

11. If data attributes conflict with the existing attribute

values of a tree

12. Then stop growing and create a leaf node with

mixing class labels

13. Return a decision tree

Fig. 5 tree building algorithm

III. A LOGIC-BASED IMPLEMENTATION

We implement the discrete-tree induction method based on

the logic programming paradigm using SWI-Prolog

(www.swi-prolog.org). Program and data set are in the same

format, that is Horn clauses. Example of data set is shown in

Figure 6.

 % attribute detail

 attribute(size, [small, large]).

 attribute(color, [red, blue]).

 attribute(shape, [circle, triangle]).

 attribute(class, [positive, negative]).

 % data

 instance(1, class=positive, [size=small, color=red,

shape=circle]).

 instance(2, class=positive, [size=large, color=red,

shape=circle]).

 instance(3, class=negative, [size=small, color=red,

shape=triangle]).

 instance(4, class=negative, [size=large, color=blue,

shape=circle]).

Fig. 6 sample data set in a Horn clause format

Discrete-tree induction program provides two schemes of

tree building: 0 and 1. Scheme 0 corresponds to ordinary ID3

style [9] without additional noise handling mechanism.

Scheme 1 is a tree induction with a heuristic-based mechanism

to deal with noisy and categorical data. Prolog coding of both

schemes are as follows.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 5, 2011 501

Program running on sample data set start with a command

„dt‟ as shown in Figure 7. Users have two choices of tree

induction method: conventional decision tree induction

(response with 0), and a discrete-tree induction with facilities

to handle categorical data (response with 1).

Fig. 7 a screenshot of running a discrete-tree program on sample data

set of four instances

IV. EXPERIMENTATION AND RESULTS

To test the accuracy of the proposed discrete-tree induction

system, we use the standard UCI data repository [5] including

the Wisconsin breast cancer, SPECT heart, DNA splice-

junction, and audiology data sets. Each data set is composed

of two separate subsets of training and test data. We then run

the discrete-tree program and observe the results comparing to

other learning algorithms, namely C4.5, Naive Bayes, k-

Nearest Neighbor, and support vector machine. The

comparison results are graphically shown in Figure 8.

It can be noticed from the results that the discrete-tree

induction method shows considerably accurate prediction on

SPECT heart data set. On Wisconsin breast cancer and DNA

splice-junction data sets, our algorithm is as good as the other

learning algorithms. But the discrete-tree induction performs

poorly on audiology dataset. The poor performance may be

due to the fact that such data set contains a single value on

many attributes causing our data selection scheme making a

poor set of samples.

For a SPECT heart data set, we provide tree model obtained

from our algorithm to compare against the model obtained

from the C4.5 algorithm. The two models are presented in

Figure 9.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 5, 2011 502

(a) Wisconsin breast cancer

(b) SPECT heart

(c) DNA splice-junction

(d) Audiology

Fig. 8 comparison results of prediction accuracy

C4.5 model:

F18 = 0

| F21 = 0: 0 (59.0/12.0)

| F21 = 1

| | F9 = 0

| | | OVERALL_DIAGNOSIS = 0: 0 (3.0/1.0)

| | | OVERALL_DIAGNOSIS = 1: 1 (7.0/1.0)

| | F9 = 1: 0 (5.0/1.0)

 F18 = 1: 1 (6.0)

Discrete-tree model:

f13=0

 f2=0

 f1=0 => [(class=0)/12, (class=1)/2]

 f1=1 => [(class=1)/0]

 f2=1 => [(class=1)/0]

 f4=1 => [(class=0)/1]

 f6=1 => [(class=0)/1]

 f22=1 => [(class=0)/3, (class=1)/1]

 f5=1 => [(class=0)/4]

 f19=1 => [(class=0)/1, (class=1)/1]

 f20=1 => [(class=0)/2, (class=1)/1]

 f8=1 => [(class=0)/2]

 f9=1 => [(class=0)/3]

 f7=1 => [(class=0)/3, (class=1)/2]

 f16=1 => [(class=1)/2]

 f11=1

 f16=0

 f19=0 => [(class=0)/2, (class=1)/3]

 f19=1 => [(class=1)/5]

 f16=1 => [(class=0)/1]

f13=1

 f16=0

 f8=0

 f10=0 => [(class=0)/4, (class=1)/1]

 f10=1 => [(class=1)/2]

 f8=1

 f21=0 => [(class=1)/5]

 f21=1 => [(class=0)/1, (class=1)/4]

 f16=1 => [(class=1)/11]

Fig. 9 a tree model of C4.5 comparing to a tree model of discrete-tree

induction algorithm on a SPECT heart data set

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 5, 2011 503

V. CONCLUSION

Categorical data can cause serious problem to many tree

learning algorithms in terms of distorted results and the

decrease in predicting performance of the learning results. In

this paper, we propose a methodology to deal with categorical

values in a decision tree induction algorithm. Our intuitive

idea is to select only potential representatives, rather than

applying the whole training data that some values are highly

dispersed, to the tree induction algorithm.

Data selection process starts with clustering in order to

obtain the mean point of each data group. For each data group,

the heuristic T = 2 * Variance-of-cluster-similarity will be

used as a threshold to select only data around mean point

within this T distance. Data that lie far away from the mean

point are considered prone to noise and outliers; we thus

remove them.

The removed data still play their role as one factor of a tree

building stopping criterion, which can be formulated as S = K

– log[(number of removed data instances + K) / |D|], where K

is the number of clusters, which has been set to be equal to the

number of class labels, and D is the number of training data.

From experimental results, it turns out that our heuristic-

based decision tree induction method produces a good

predictive model on categorical data set. It also produces a

compact tree model. With such promising results, we thus

plan to improve our methodology to be incremental such that

it can learn model from steaming data.

APPENDIX

A source code of discrete decision tree, implemented with

Prolog programming language.

%% Program Discrete-Tree Induction

%%

%% by Nittaya Kerdprasop

%% date 1 August 2011

%%

%% A decision tree induction program that can handle

%% categorical and noisy data.

%% The effect of noise is to be decreased by clustering

%% and data around means are selected for further

%% classification by decision-tree induction.

%%

%% Data format:

%%

%% attribute(size, [small, large]).

%% attribute(color, [red, blue]).

%% attribute(shape, [circle, triangle]).

%% attribute(class, [positive, negative]).

%

%% instance(1, class=positive, [size=small, color=red,

%% shape=circle]).

%% instance(2, class=positive, [size=large, color=red,

%% shape=circle]).

%% instance(3, class=negative, [size=small, color=red,

%% shape=triangle]).

%% instance(4, class=negative, [size=large, color=blue,

%% shape=circle]).

%

%% Node format: node(NodeID, NodeLabel, ParentNode)

%% where

%% NodeID = 1, 2, 3, ..., root, leaf

%% NodeLabel = "attribute=value / number_of_instances"

%% ParentNode = 1, 2, 3, ..., root

%% e.g.

%% node(1, shape=triangle, root).

%% node(2, shape=circle, root).

%% node(3, color=blue, 2).

%% node(4, color=red, 2).

%% node(leaf, [(class=negative/1)], 1).

%% node(leaf, [(class=negative/1)], 3).

%% node(leaf, [(class=positive/2)], 4).

%

%% Start program with the query

%% ?- dt. % for discrete-tree induction

%%

%% then specify parameter:

%% 0 = no addition of pruning technique; traditional ID3

%% 1 = extract data around centroids as representatives for

%% tree building

%% (number of clusters = number of classes,

%% clustering technique is K-medoids)

%%

%% Input data with the following format:

%% data-sample.

%%

%% To test model accuracy, call ?-test.

%% Then input test data, e.g.,

%% data-sample-test.

%

% ===================================

%% Program source code start here:

%%

%% Note that each module will be explained with the following

%% format:

%% an input argument is prefixed with a plus sign (+),

%% the output argument is prefixed with a minus sign (-).

%% Main module: dt

%% ==========

 dt :-

 writeln('Discrete tree induction for categorical classification:'),nl,

 writeln(' There are two choices of tree induction methods'),

 writeln(' 0 = simply ID3 style without pruning'),

 writeln(' 1 = grouping data then select representatives to

 build tree'),

 nl,

 write(' Please specify your choice (and end command with

 a period): '),

 read(L),

 write(' Training-data file name (e.g. data-sample.) ==> '),

 read(D), % get data file

 consult(D), % data is also a prolog program

 get_time(StartTime),

 % clear all nodes and node-ID counter in the DB

 % node and counter are two global values of this program

 retractall(node(_, _, _)),

 retractall(counter(_)),

 % make list Attr of all attribute names except attribute class

 findall(A, (attribute(A, _), A \= class), Attr),

 dtree(L, Attr),

 get_time(FinishTime),

 Time is FinishTime-StartTime,

 nl,write('DISCRETE-TREE:: tree building method '),

 write(L),write(', '),

 write('Model building time = '),

 write(Time), writeln(' sec.').

% --------------------------------------

% start traditional tree-induction with ID3 algorithm

 dtree(0, Attr) :- !,

 % make a list Ins = [1,2,...,n] of all instance ID

 findall(N, instance(N, _, _), Ins),

 % create decision tree, start with the root node

 % set MinInstance in leaf nodes = 1

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 5, 2011 504

 % then show model as decision tree once finish

 % building phase

 induce_tree(root, Ins, Attr, 1),

 print_tree_model.

%---

% start clustering before induce tree

 dtree(1, Attr) :- !,

 attribute(class, ClassList),

 length(ClassList, K),

 findall(N, instance(N,_,_),Ins),

 clustering(Ins, K, Clusters, Means),

 select_DataSample(Clusters,K,Means,[],Sample),

 removed_Data(Sample, Ins, Removed),

 length(Removed, R),

 length(Ins, I),

 MinInstance is K-log((R+K)/I), % a heuristic to prune tree

 induce_tree(root,Sample,Attr,MinInstance),

 print_tree_model,

 write('Min instances in each branch = '), writeln(MinInstance),

 nl,write('Initial Data = '),write(I),writeln(' instances'),

 write('Removed Data = '), writeln(Removed),

 write(' removed = '),write(R), writeln(' instances'),nl .

%% --

%% Module induce_tree(+ParentNode, +InstanceIDlist,

%% =============== +AttributeList, +MinInstance)

%%

%% This module induces each node of decision tree.

%% There are four possible cases of tree induction based on

%% current data characteristics.

%%

%% Special case: empty data set, do nothing

 induce_tree(ParentNode,[],_,_) :-

 instance(_,Class,_),

 assertz(node(leaf,[Class/0],ParentNode)), !.

%% Case 1: Number of instances =< the specified MinInstance.

%% Thus, create a leaf node labelled with class distribution.

 induce_tree(ParentNode, InstanceIDlist, _, MinInstance) :-

 length(InstanceIDlist, NumInstances),

 % a constraint to satisfy case1

 NumInstances =< MinInstance,

 % count distinctive classes of current InstanceIDlist

 % e.g. Dist = [class=negative/1, class=positive/2]

 classDistribution(InstanceIDlist, Dist),

 % insert a leaf node into the DB, don't try other cases

 assertz(node(leaf, Dist, ParentNode)), !.

%% Case 2: Number of instances > the specified MinInstance,

%% but all instances are in the same class.

%% Therefore, create a leaf node labelled with a class

%% distribution.

 induce_tree(ParentNode, InstanceIDlist, _, _) :-

 classDistribution(InstanceIDlist, Dist),

 length(Dist, 1),

 % a constraint to assert the case of single class

 assertz(node(leaf, Dist, ParentNode)), !.

%% Case 3: Number of instances > the specified MinInstance.

%% Data contain a mixture of several classes, then grow tree.

 induce_tree(ParentNode, InstanceIDlist, AttrList, MinInstance) :-

 choose_attribute(InstanceIDlist, AttrList, A, Values, RestAttr),

 % choose the best attribute A from the AttrList

 % then build a subtree with A as a root node

 build_subtree(Values, A, InstanceIDlist, ParentNode,

 RestAttr, MinInstance),

 !.

%% Case 4: Cannot inducing tree due to inconsistent data

%% thus, stop growing tree and create a leaf node with

%% heterogenous classes, e.g., [(class=positive/2),

%% (class=negative/1)]

 induce_tree(ParentNode, InstanceIDlist, _, _) :-

 node(ParentNode, TestAttribute, _),

 % locate the error point

 write(' Inconsistent data: '), write(InstanceIDlist),

 write(' Cannot split at node: '), writeln(TestAttribute),

 classDistribution(InstanceIDlist, Dist),

 assertz(node(leaf, Dist, ParentNode)), !.

 % insert a leaf node into the DB

%% --

%% Module classDistribution(+InstanceIDlist, -ClassDistribution)

%% ===================

%% e.g. InstanceIDlist = [1,2,3,4]

%% ClassDistribution = [class=positive/2, class=negative=2]

 classDistribution(InstanceIDlist, ClassDistribution) :-

 setof(Class, I^AttrList^(member(I, InstanceIDlist),

 instance(I, Class, AttrList)), C),

 % make a set C of distinctive classes from InstanceIDlist

 % e.g. C = [class=positive, class=negative]

 countClassMember(C, InstanceIDlist, ClassDistribution).

 % count number of instances in each class and return

 % a class distribution, e.g., [class=positive/2,

 % class=negative/2]

 countClassMember([], _, []) :- !.

 countClassMember([C|L], I, [C/N | T]) :-

 findall(X, (member(X, I), instance(X, C, _)), W),

 % make a list W of instanceID in each class

 % e.g. W = [1,2] for class positive

 length(W, N),

 % output N = number of instances in class C

 countClassMember(L, I, T). % count remaining classes

%% ---

%% Module choose_attribute(+InstanceIDlist, +AttrList, -A, -Values,

-RestAttr)

%% ===================

%% e.g., InstanceIDlist = [1,2,3,4], AttrList = [size, color, shape]

%% A = shape, Values = [triangle, circle], RestAttr = [size, color]

 choose_attribute(InstanceIDlist, AttrList, A, Values, RestAttr) :-

 length(InstanceIDlist, InsLen),

 compute_info(InstanceIDlist, InsLen, I), !,

 % I is expected number of information needed

 % to encode class of the given InstanceIDlist

 findall(A/Gain, % find gain value of each attribute

 % with the following pattern of computation

 (member(A, AttrList), attribute(A, Values),

 split_instances(Values, InstanceIDlist, A, InsSubset),

 subset_info(InsSubset, InsLen, R),

 Gain is I - R),

 % extract attribute name A from AttrList one at a time,

 % and get all possible values of attribute A

 % then split instances based on the value of A

 % compute info of data subset

 % then compute gain value of A

 AttributeGainList),

 % output is a list of attribute/gain

 % e.g. [size/0, color/0.311278, shape/0.311278]

 maximum(AttributeGainList, A/_),

 % find attribute A with the maximum gain

 attribute(A, Values),

 % extract valuelist of this attribute

 % and return the list of remaining attributes

 remainAttr(A, AttrList, RestAttr), !.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 5, 2011 505

%% supporting module to compute info I of given instances

% e.g., info([positive/2, negative/1]

% = -2/3 log 2/3 - 1/3 log 1/3 = 0.918

compute_info(InstanceIDlist, InsLen, I) :-

 attribute(class, CList), % get a list of class values

 sum_info(CList, InstanceIDlist, InsLen, I).

sum_info(_,_,0,0) :- !. % zero instance has info = 0

sum_info([], _, _, 0) :- !. % an empty class has info = 0

sum_info([C | Cs], InsIDlist, InsLen, Info) :-

 findall(Ins, (member(Ins, InsIDlist),

 instance(Ins, class=C, _)), ClassInstance),

 % create a list to contain instances of each class

 length(ClassInstance, N),

 % then count the instance number

 sum_info(Cs, InsIDlist, InsLen, I),

 % do the same with other classes

 InsLen > 0,

 P is N / InsLen,

 % if (N/InsLen) = 0,

 % set Info = 0 to avoid calculate log(0)

 (P=0, Info = 0;

 Info is I - (P) * (log(P) / log(2))).

% supporting module

% split_instances(+Values,+InstanceIDlist, +A, - InsSubset)

% e.g.,Values=[large, small],

% InstanceIDlist=[1,2,3,4], A=size

% the module will return InsSubset = [[2,4], [1,3]]

 split_instances([], _, _, []) :- !.

 split_instances([V | Vs], InstanceIDlist, A, [InsIDlist | Rest]) :-

 findall(InsID, (member(InsID, InstanceIDlist),

 instance(InsID, _, L),

 member(A=V, L)), InsIDlist),

 % split instances into subset InsIDlist based on

 % the attribute value V

 % then, do the same for other attribute values Vs

 split_instances(Vs, InstanceIDlist, A, Rest).

%% supporting module subset_info

%%

subset_info([], _, 0) :- !.

subset_info([InsGroup | OtherGroups], Len, Res) :-

 length(InsGroup, LenInsGroup),

 compute_info(InsGroup, LenInsGroup, I), !,

 subset_info(OtherGroups, Len, R),

 Len > 0,

 Res is R + I * LenInsGroup / Len.

%% supporting module maximum to search for attribute with

%% maximum gain

%%

maximum([A], A) :- !. % base case: list of one attribute

maximum([A/GainA | Rest], Attribute/Gain) :-

 % recursively shorten the list

 maximum(Rest, Att/G),

 (GainA > G, Attribute/Gain = A/GainA ;

 Attribute/Gain = Att/G), !.

%% supporting module remainAttr

%%

 remainAttr(A, [A | T], T) :- !.

 remainAttr(A, [X | T], [X | Rest]) :- remainAttr(A, T, Rest).

%% ---

%% Module build_subtree(+AttrValues, +A, +InstanceIDlist,

%% ================ +ParentNode, +RestAttr,+MinInstance)

%% This module recursively create subtree start from the

%% chosen attribute A.

%% Branches of A are stored in a list AttrValues.

%% e.g., A= shape, AttrValues = [triangle, circle],

%% InstanceIDlist = [1,2,3,4],

%% ParentNode = root

%% the module builds subtree extended from the root node

%% with two branceses:

%% shape = triangle and shape = circle

%% The build_subtree process continues until

%% the stopping criteria MinInstance has been reached.

%%

 build_subtree([], _, _, _, _, _) :- !.

 % base case: there is no more attribute left

 % to create subtree

 build_subtree([V|Vs], A, InsIDlist, ParentNode,

 RestAttr, MinInstance) :-

 % create root of subtree

 % get subset of instances with attribute A=V

 findall(InsID, (member(InsID, InsIDlist), instance(InsID, _, L),

 member(A=V, L)), Inslist),

 getNodeID(NodeID),

 assertz(node(NodeID, A=V, ParentNode)),

 % recursively build left subtree

 induce_tree(NodeID, Inslist, RestAttr, MinInstance), !,

 % build right subtree based on Vs

 build_subtree(Vs, A, InsIDlist, ParentNode,

 RestAttr, MinInstance).

%% supporting module getNodeID(-NodeID)

%%

getNodeID(M) :-

 retract(counter(N)), % check current counter N

 M is N + 1, % increment N by 1

 assert(counter(M)), !. % then record the new counter

 getNodeID(1) :- assert(counter(1)).

 % if counter does not exist, then create one

%% ---

%% Module print_tree_model:

%% =============

 print_tree_model :-

 print_tree_model(root, 0),

 % start from root node at position zero

 nl, nl, write('Size of tree: '),

 retract(counter(N)), write(N), write(' internal nodes and '),

 findall(Node, node(leaf, _,Node), NL),

 length(NL, M),

 write(M), writeln(' leaf nodes.').

 print_tree_model(ParentNode, _) :-

 % the case for printing leaf node

 node(leaf, Class, ParentNode), !,

 write(' => '), write(Class).

 print_tree_model(ParentNode, Position) :-

 findall(Son, node(Son, _, ParentNode), L),

 Position1 is Position+2,

 childList(L, Position1), !.

 childList([], _) :- !.

 childList([N|Child], Pos) :-

 node(N, NodeLabel, _),

 nl, tab(Pos), write(NodeLabel),

 print_tree_model(N, Pos),

 childList(Child, Pos).

%=============END BUILD DISCRETE-TREE==========

%

%==== Test Tree Accuracy =========

%

test :-

 write('Test-data file name (e.g. data-sample-test.) ==> '),

 read(D), consult(D),

 get_time(Start),

 % get all instance ID of test data

 findall(TestIns, instance(TestIns, _, _), TestInsList),

 length(TestInsList, NumTestCase),

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 5, 2011 506

 % send all test cases to test_accuracy module

 % with initial correct case = 0

 test_accuracy(TestInsList, 0, Totalcorrect), !,

 Accuracy is Totalcorrect / NumTestCase,

 nl,write('Predicting correctly: '), write(Totalcorrect),

 write(' from '), write(NumTestCase), write(' cases ==> '),

 write('Accuracy = '), writeln(Accuracy),

 get_time(Finish),

 Time is Finish- Start,

 nl, tab(5),write('Model Test Time = '),write(Time),writeln(' sec.').

 %% Module test_accuracy

 %% get all test cases, and

 %% start evaluating correctness of prediction one case at a time,

 %% stop when the lest of test cases is empty,

 %% then report the total number of cases predicted correctly

test_accuracy([], C, C) :- !.

test_accuracy([Case| Rest], Correct, NextCorrect) :-

 instance(Case, Trueclass, AttList), % get current test case

 % search tree for predicted class start from root node

 search_decision(root, AttList, Prediction),

 % compare Trueclass and PredictedClass

 % and count correct prediction

 evaluate(Case, Trueclass, Prediction, Correct, NewCorrect),

 % recursively do the same for other cases

 test_accuracy(Rest, NewCorrect, NextCorrect).

search_decision(StartNode, _, Prediction) :-

 node(leaf, Prediction, StartNode), !.

 % return Prediction once leaf node has been found

search_decision(StartNode, AttList, Prediction) :-

 node(NextNode, TestAtt, StartNode),

 member(TestAtt, AttList), !,

 search_decision(NextNode, AttList, Prediction).

evaluate(_, Trueclass, Prediction, Correct, NewCorrect) :-

 % Prediction might be a mixture such as

 % [(class=positive)/2, (class=negative)/1]

 % thus, PredictedClass should be the majority class

 maximum(Prediction, PredictedClass/_),

 (Trueclass == PredictedClass, NewCorrect is Correct +1;

 NewCorrect = Correct).

%% ======== END Test-Tree======================

%%

%% Module Clustering

%% ==============

clustering(Ins, K, Clusters, Means) :-

 length(Ins, N),

 initialized_means(N, K, [], MeanPoints),

 % e.g. MeanPoints = [2/1, 3/2]

 % get attributes of initial MeansPoints

 findall(MeanAttr/Cluster, (member(P/Cluster, MeanPoints),

 instance(P, _, MeanAttr)), MeansAttrList),

 % e.g. [(size=small,color=red,shape=circle)/1,

 % (size=large,color=blue,shape=circle)/2]

 assign_clusters(MeansAttrList, Ins, K, Clusters,Means).

assign_clusters(MeansAttr, Ins, K, Clusters,Means) :-

 find_clusters(MeansAttr, Ins, [], InsClusterList),

 find_means(InsClusterList, K, [], TempMeans),

 getRepresentatives(TempMeans,Ins,[],RepList),

 getMeans(RepList,[],NewMeans),

 find_clusters(NewMeans, Ins, [], NewInsClusterList),

 entropy(InsClusterList, K, PreEntropy),

 entropy(NewInsClusterList, K, PostEntropy),

 average(PreEntropy, PreEn),

 average(PostEntropy, PostEn),

 (PostEn >= PreEn, Clusters = InsClusterList,

 Means = NewMeans, ! ;

 assign_clusters(NewMeans, Ins, K, Clusters,Means),!).

initialized_means(_, 0, Means, Means) :- !.

initialized_means(N, K, Means, NewMeans) :-

 MeanIns is random(N-1)+1,

 NewK is K-1,

 initialized_means(N, NewK, [MeanIns/K|Means], NewMeans).

find_clusters(_, [], List, List) :- !.

find_clusters(MeanAttrList, [Ins|Rest], CurrentList, NewList) :-

 findall(Cluster/Score, (instance(Ins,_, InsAtt),

 member(MAtt/Cluster, MeanAttrList),

 similarity(MAtt, InsAtt, 0, Score)),

 ClusterScoreList),

 maximum(ClusterScoreList, Cluster/_),

 find_clusters(MeanAttrList, Rest, [Ins/Cluster|CurrentList],

 NewList).

similarity([],[],S,S) :- !.

similarity([A | RestA1], [A | RestA2], Score, NewS) :-

 NewScore is Score + 1, !,

 similarity(RestA1, RestA2, NewScore, NewS).

similarity([A1| RestA1], [A2|RestA2], Score, NewS) :-

 A1 \= A2,

 similarity(RestA1, RestA2, Score, NewS).

minimum([ClusterScore], ClusterScore) :- !.

minimum([C/S | Rest], Cluster/Score) :-

 minimum(Rest, Clus/Sc),

 (Sc > S, Cluster/Score = C/S ;

 Cluster/Score = Clus/Sc), !.

find_means(_, 0, List, List) :- !.

find_means(InsClusterList, K, CurrentList, NewList) :-

 findall(Ins, member(Ins/K, InsClusterList), InsList),

 findall(Name=Vlist, (attribute(Name,Values),

 Name \= class,

 findall(V/0, member(V,Values), Vlist)),

 AttValueList),

 common_attributes(InsList, AttValueList, AttrList),

 NewK is K - 1,

 find_means(InsClusterList, NewK, [AttrList/K | CurrentList],

 NewList).

common_attributes([], AttValueList, AttList) :- !,

 findall(A=V, (member(A=VList, AttValueList),

 maximum(VList, V/_)), AttList).

common_attributes([Ins|Rest], AttValueList, AttList) :-

 instance(Ins,_, AttValue),

 count_value(AttValue, AttValueList, NewAttValueList),

 common_attributes(Rest, NewAttValueList, AttList).

count_value([], AVList, AVList) :- !.

count_value([A=V|Rest], AttValueList, NewAttValueList) :-

 member(A=VList, AttValueList),

 delete(AttValueList, A=VList, TempAttValueList),

 member(V/Count, VList),

 delete(VList, V/Count, TempVList),

 NewCount is Count + 1,

 append([V/NewCount], TempVList, NewVList),

 append([A=NewVList], TempAttValueList, NewAVList),

 count_value(Rest, NewAVList, NewAttValueList).

entropy(_, 0, []) :- !.

entropy(InsCluster, K, Entropy) :-

 K>0,

 findall(Ins, member(Ins/K, InsCluster), InsList),

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 5, 2011 507

 length(InsList, InsLen),

 (InsLen >0,

 compute_info(InsList, InsLen, Info),

 Entropy = [K/Info | RestEntropy];

 Entropy = [K/1 | RestEntropy]),

 NewK is K-1,

 entropy(InsCluster, NewK, RestEntropy).

sum_list([], 0) :- !.

sum_list([H|T], Value) :-

 sum_list(T, NewValue),

 Value is H + NewValue.

getRepresentatives([],_, List, List) :- !.

getRepresentatives([Mean/Cluster | Rest], InsList, Current,

 NewList) :-

 findall(Ins/Score, (member(Ins, InsList),

 instance(Ins,_,InsAtt),

 similarity(InsAtt, Mean, 0, Score)),

 InsScoreList),

 maximum(InsScoreList, Instance/_),

 delete(InsList, Instance, NewIns),

 getRepresentatives(Rest,NewIns,

 [Instance/Cluster | Current], NewList).

getMeans([], List, List) :- !.

getMeans([Ins/Cluster | Rest], Current, NewMeans) :-

 instance(Ins,_, InsAtt),

 getMeans(Rest, [InsAtt/Cluster | Current], NewMeans).

removed_Data(DataSample, InstList ,RemovedData) :-

 findall(D, (member(D, InstList),

 not(member(D, DataSample))),

 RemovedData).

select_DataSample(_, 0, _, DataSample, DataSample) :- !.

select_DataSample(Clusters, K, Means, TempData, DataSample) :-

 findall(Ins, member(Ins/K, Clusters), InsKList),

 length(InsKList, Len), Len > 0,

 findall(I/Score, (member(I, InsKList),

 instance(I, _, InsAtt), member(MAtt/K, Means),

 similarity(InsAtt, MAtt, 0,Score)),

 IScoreList),

 average(IScoreList, Average),

 variance(IScoreList, Average,Variance),

 Threshold is (2 * Variance),

 findall(Inst, (member(Inst/Sc, IScoreList),

 Sc >= Threshold),

 InstList),

 append(InstList, TempData, NewData),

 NewK is K-1,

 select_DataSample(Clusters, NewK, Means,

 NewData, DataSample).

 average(ValueList, E) :-

 findall(S, member(_/S, ValueList), SList),

 sum_list(SList, SValue),

 length(SList, Len),

 (Len=0, E = 0; E is SValue / Len).

variance(ValueList, Avg, Var) :-

 findall(Diff, (member(_/S, ValueList),

 Diff is abs(S-Avg)),

 DiffList),

 sum_list(DiffList, DValue),

 length(DiffList, DLen),

 D is DLen-1,

 (D=0, Var = 0; Var is DValue / D).

% ===== End Clustering =============

REFERENCES

[1] D. Angluin and P. Laird, “Learning from noisy examples,”

Machine Learning, vol. 2, 1988, pp. 343–370.

[2] M. Bohanec and I. Bratko, “Trading accuracy for simplicity in

decision trees,” Machine Learning, vol. 15, 1994, pp.223–250.

[3] L. Breiman, J. Freidman, R. Olshen, and C. Stone,

Classification and Regression Trees, Wadsworth, 1984.

[4] F. Esposito, D. Malerba, and G. Semeraro, “A comparative

analysis of methods for pruning decision trees,” IEEE

Transactions on Pattern Analysis and Machine Intelligence,

vol.19, no.5, 1997, pp. 476–491.

[5] A. Frank and A. Asuncion, UCI Machine Learning Repository

[http://archive.ics.uci.edu/ ml], Irvine, University of California,

School of Information and Computer Science, 2010.

[6] J. Han and H. Kamber, Data Mining: Concepts and Techniques,

2nd ed., Morgan Kaufmann, 2006.

[7] C. S. Huang, Y.J. Lin, and C.C. Lin, “Implementation of

classifiers for choosing insurance policy using decision trees: a

case study,” WSEAS Transactions on Computers, vol. 7, issue

10, 2008, pp. 1679-1689.

[8] D. Kaur and H. Pulugurta, “Comparative analysis of fuzzy

decision tree and logistic regression methods for pavement

treatment prediction,” WSEAS Transactions on Information

Science & Applications, vol. 5, issue 6, 2008, pp. 979–990.

[9] N. Kerdprasop and K. Kerdprasop, “Knowledge induction from

medical databases with higher-order programming,” WSEAS

Transactions on Information Science & Applications, vol. 6,

issue 10, 2009, pp. 1719–1728.

[10] H. Kim and G. J. Koehler, “An investigation on the conditions

of pruning an induced decision tree,” European Journal of

Operational Research, vol. 77, no. 1, August 1994, p. 82.

[11] J. Mingers, “An empirical comparison of pruning methods for

decision tree induction,” Machine Learning, vol. 4, no. 2, 1989,

pp. 227–243.

[12] V. Podgorelec, “Improving mining of software complexity data

on evolutionary filtered training sets,” WSEAS Transactions on

Information Science & Applications, vol. 6, issue 11, 2009, pp.

1751–1760.

[13] J. R. Quinlan, “Induction of decision tree,” Machine Learning,

vol. 1, 1986, pp. 81–106.

[14] J. R. Quinlan, “Simplifying decision tree,” in Knowledge

Acquisition for Knowledge Based Systems, vol. 1, B. Gaines and

J. Boose, Eds., Academic Press, 1989.

[15] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan

Kaufmann, 1992.

[16] J. R. Quinlan and R. Rivest, “Inferring decision trees using the

minimum description length principle,” Information and

Computation, vol. 80, no. 3, March 1989, pp. 227–248.

[17] C. Schaffer, “Overfitting avoidance bias,” Machine Learning,

vol. 10, 1993, pp. 153–178.

[18] H. Sug, “An effective sampling method for decision trees

considering comprehensibility and accuracy,” WSEAS

Transactions on Computers, vol. 8, issue 4, 2009, pp. 631-640.

[19] H. Sug, “Towards more accurate classification of instances in

minor classes,” International Journal of Mathematical Models

and Methods in Applied Sciences, vol. 5, issue 4, 2011, pp. 797-

804.

[20] J. L. Talmon and P. McNair, “The effect of noise and biases on

the performance of machine learning algorithms,” International

Journal of Bio-Medical Computing, vol. 31, no. 1, July 1992,

pp. 45–57.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 5, 2011 508

Nittaya Kerdprasop is an associate professor and the director of

Data Engineering research unit, school of computer engineering,

Suranaree University of Technology, Thailand. She received her B.S.

in radiation techniques from Mahidol University, Thailand, in 1985,

M.S. in computer science from the Prince of Songkla University,

Thailand, in 1991 and Ph.D. in computer science from Nova

Southeastern University, U.S.A., in 1999. She is a member of

IAENG, ACM, and IEEE Computer Society. Her research of interest

includes Knowledge Discovery in Databases, Data Mining, Artificial

Intelligence, Logic and Constraint Programming, Deductive and

Active Databases.

Kittisak Kerdprasop is an associate professor at the school of

computer engineering and one of the principal researchers of Data

Engineering research unit, Suranaree University of Technology,

Thailand. He received his bachelor degree in Mathematics from

Srinakarinwirot University, Thailand, in 1986, master degree in

computer science from the Prince of Songkla University, Thailand, in

1991 and doctoral degree in computer science from Nova

Southeastern University, USA, in 1999. His current research includes

Data mining, Machine Learning, Artificial Intelligence, Logic and

Functional Programming, Probabilistic Databases and Knowledge

Bases.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 5, 2011 509

