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Abstract—This paper is divided into the two main parts. The first 

part deals with a planning algorithm being used in tactical decision 

support systems, which has been developed at the University of 

Defence in Brno. In the first part, there is presented improved 

versions of the original algorithm which are demonstrated while 

searching for an optimal path for a ground autonomous robot in a 

general environment. The article shows two different approaches for 

the algorithm improvement, along with their basic principles. The 

possibilities of the improvement are analyzed on two particular 

examples and the results of the new versions are compared with the 

original algorithm. In the second part, the article presents the issue of 

tactical decision support systems. The state of development of these 

systems is presented here, along with an example of their utilization. 
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I. INTRODUCTION 

ACTICAL decision support systems have started being 

trends in combat management recently; all modern armies 

are interested in these new possibilities. Especially the US 

Army has been dealing with this issue deeply within its 

program Deep Green; it is a system for decision support 

intended for commanders of the US Army [1]. 

The purpose of those systems is to use computer technology 

for effective and accurate predictions of possible situation 

scenarios and to facilitate evaluation of potential results of 

commanders’ decisions. Predictions are based on thorough 

analysis of a present situation considering huge amount of 

input parameters. The systems are characteristic by their 

advanced prediction capabilities. 

The University of Defence in Brno also deals with these 

issues within its research program. Presently, there are several 

projects on using autonomous vehicles for increasing the 

efficiency of commanders in operations. One of the key 

projects is the development of a ground autonomous vehicle 

for reconnaissance and combat purposes. Within the project, 

we developed an experimental autonomous robot to 

demonstrate and verify algorithms and principles of 

autonomous motion in a general environment [2], [3], [4]. 
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The article considers an improvement of the optimal path-

finding algorithm which the robot uses during its movement 

from its current position to the target position (the algorithm is 

used also for other tasks of tactical decision support – see 

chapter VII). There are presented two different variants of the 

improvement in the article, along with deeper analysis and 

evaluation. 

II. ORIGINAL OPTIMAL PATH-FINDING ALGORITHM 

While moving, the robot uses the algorithm based on Floyd-

Warshall principle with essential structural and optimization 

modifications which makes the algorithm computationally 

usable for vast data structures with more than 10
6
 nodes. The 

algorithm is designed for parallel processing and is 

implemented on a graphical processor in CUDA integrated 

development environment [5]. 

The basic prerequisite for the algorithm is evaluation of all 

graph edges by non-negative integers (costs). An example of 

the algorithm function in the real terrain is shown in Fig. 1. 

Costs were set according to influence of several factors:  

 terrain relief,  

 vegetation, 

 waters, 

 roads, 

 visibility of the threatening element. 

 

 

Fig. 1 Example of the optimal path-finding algorithm function 
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Fig. 1 presents the path found from the initial position to the 

target position. In Fig. 2, there is shown the cost map for the 

graph edges from Fig. 1. Values are coded in gray shades. 

 

 

Fig. 2 Cost map for the environment from Fig. 1 

The algorithm belongs among discrete methods; the 

environment is sampled by the Sukharev grid [6]. Adjacent 

nodes in the grid create graph edges on which the algorithm is 

applied. Every node has 8 edges to adjacent nodes according 

to Fig. 3. 

 

Fig. 3 Graph edges for each node in the grid 

The algorithm is able to find all variants of the shortest 

paths when there are more of them. For illustration, Fig. 4 

presents three variants of the shortest path from the initial 

point to the target point. All three paths are evaluated by the 

same cost. It is apparent that the Euclidean distance of the 

middle path is lesser than the distance of the remaining two. 

The main problem is the fact that the algorithm is not able to 

recognize the Euclidean shortest path what is a quite important 

criterion for optimal autonomous motion of unmanned 

vehicles. 

 

Fig. 4 Three variants of the shortest path 

There are designed two new versions of the algorithms in 

the following text dealing with the presented issue. 

III. VERSION WITH 16 EDGES FROM EACH NODE 

The version in this chapter is very easy to implement since 

the only change in comparison with the original version is 

extending the number of edges from each node of the grid 

from 8 to 16. The principle is shown in Fig. 5 on the left. 

Fig. 5 on the right presents integer costs which are based on 

the Euclidean distances of individual edges. 

      

Fig. 5 Graph edges from each node in the grid and their costs 

The principle of extending the number of edges does not 

solve the problem completely. It is only way how to reduce the 

problem slightly. Moreover, the double amount of edges 

results in the significant increase of the running time of the 

algorithm. Deeper evaluation of the method is presented in the 

following text. 

IV. VERSION WITH ADDITIONAL ANALYSIS OF THE PATH 

The second approach for the problem solution uses 

additional analysis of the path found by the original algorithm. 

When there are more paths (e.g. as in Fig. 4), then it is 

possible to use whichever one. 

The principle consists in sequential processing of particular 

path sections and checking if the sections are possible to be 

shortened by lines with the shortest Euclidean distance. The 

algorithm is presented in Fig. 6 in pseudocode. The function 

FindPath (path[], size, A, B) searches for the 

shortest path from points A to B by the original algorithm. 

Points of this path are stored in array path; total number of 

points is in variable size. 

1.  FindPath (path[], size, A, B) 

3.  start = 0 

4.  newsize = 0 

5.  while ( start <= size )  do 

6.    for ( i = start to size ) do 

7.      if (TestPath(path[],start,i) == FALSE) do 

8.        newsize += AddPath(newpath[],start,i–1) 

9.        start = i 

10.       break for 

11. Store newpath, newsize 

Fig. 6 The algorithm with additional analysis of the path found 
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In the algorithm, there are two functions TestPath and 

AddPath. The function TestPath (path[], start, i) 

examines the path section stored in array path between points 

with indexes start and i. The function returns TRUE if cost 

of the path section is the same as cost of the path given by a 

line between both points, or FALSE otherwise. The principle 

is demonstrated in Fig. 4 where the middle path is given by a 

line between two points and it has the same cost as both 

adjacent paths. 

The function AddPath (newpath[], start, i–1) 

stores a new path section given by a line between points of the 

original path with indexes start and i–1.  It returns the 

number of points added to the new path. 

As a result of the algorithm, we have a new path with the 

same cost but with lesser (or the same at worst) Euclidean 

distance. The big advantage of the principle is its linear 

running time O (size) where size is the number of points of the 

path found by the original algorithm. 

V. EVALUATION AND COMPARISON OF NEW VERSIONS 

This chapter evaluates and compares the original algorithms 

with the new versions. Evaluation was taken place in our 

simulator of the experimental autonomous vehicle [7]. Fig. 7 

shows the environment configuration where the analysis was 

conducted. The area is of size about 12 × 12 meters. Black 

squares represent obstacles in the area. 

 

 

Fig. 7 Environment configuration for analysis 

Fig. 8, 9, and 10 present paths of the autonomous vehicle 

acquired from the simulator. Green color shows the path from 

the initial to the target position; costs of individual graph 

nodes are coded in gray shades. The path computed by the 

original algorithm is in Fig. 8; Fig. 9 presents the path from the 

algorithms with 16 edges and Fig. 10 presents the path from 

the version with additional analysis. We can see progressive 

improvement of the results in figures. 

 

Fig. 8 Optimal path computed by the original algorithm 

 

Fig. 9 Optimal path computed by the algorithm 

with 16 edges from each node 

Target position 

Initial position 
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Fig. 10 Optimal path computed by the algorithm 

with additional analysis 

Table I shows several parameters obtained from the 

experiments. It is apparent that the algorithm with 16 edges 

provided better results than the original algorithm; 

nevertheless the average running time was more than twice 

longer which was caused by the double number of edges. The 

total distance covered was about 2.5 % shorter. Number of 

algorithm launches was smaller as the algorithm was able to 

move by two points in one direction (see Fig. 5). 

 

 
The algorithm with additional analysis of the path found 

seems to be the best option. The average running time was 

affected only insignificantly (about 0.6 ms); it is caused by the 

linear running time of additional analysis. The total distance 

covered was about 3.4 % shorter. Fig. 10 shows that there is 

the path with the Euclidean shortest distance. 

The second experiment is more complicated and it is based 

on the real environment configuration shown in Fig. 11. There 

we can see 24 rectangular obstacles in the area of size about 

17 × 29 meters, along with the positions of the initial and the 

target points. 

 
Fig. 11 The second example 

of environment configuration for analysis 

This environment configuration was used for one of many 

real tests of our autonomous motion principle. We have 

implemented this principle on our experimental autonomous 

ground vehicle. The principles of autonomous motion are 

composed of several key processes [2]: 

 Localization process – is a summary of activities, which 

provide an estimate of current vehicle location in an area 

where there is no GPS signal. 

 Environment reconstruction process – by means of 

laser scanner the maps of surrounding environment are 

obtained in particular steps that are consequently 

incorporated into the overall environment map. 

 Optimal path searching process - based upon the data 

analysis from the reconstructed maps, each point has its 

cost which serves as an input for our algorithm of the 

optimal path finding. 

TABLE I 

RESULTS OF THE ALGORITHM FROM THE PRESENTED EXPERIMENT 

Parameter 
Original 

algorithm 

Algorithm 

with 16 edges 

Algorithm 

with additional 

analysis 

Number of graph 

edges 
1,280,000 2,560,000 1,280,000 

Number of 

algorithm launches 
455 349 455 

Average running 

time 
57.6 ms 134.1 ms 58.2 ms 

Total running time 26.2 s 46.8 s 26.5 s 

Total distance 

covered by vehicle 
15.70 m 15.31 m 15.17 m 

Total distance in % 100 % 97.5 % 96.6 % 

 

Initial position 

Target position 
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 Motion control process – in the last step the vehicle 

motion itself is carried out along a route found according 

to the vehicle mathematical motion model. 

 

Fig. 12 presents the path along with the vehicle moved in 

the real test with the above mentioned principle implemented. 

 

 

Fig. 12 Motion of the experimental vehicle 

in the real environment 

The major problem in the real environment is the 

localization of the robot, especially the precise determination 

of its orientation; any small inaccuracy in determining the 

angle of orientation is substantially reflected in the 

reconstruction of the obstacles. This problem can be noticed in 

the experiment in Fig. 12. 

Small errors in determining the orientation were caused by 

an incorrect synchronization of the time of position and 

orientation calculation of the vehicle by means of model and 

time of environment mapping by the laser scanner. 

Nevertheless, as the results show, this error does not have a 

significant impact on the overall function of the autonomous 

motion. 

 

Fig. 13 shows a solution of the same task conducted in our 

simulator by the original version of the shortest-path 

algorithm. Both maps of the environment (that from the real 

space and that from the simulator) are very similar to each 

other, suggesting the correct implementation of principles of 

autonomous motion. 

 

 

Fig. 12 Solution of the task computed 

by the original algorithm in the simulator 

Fig. 14 presents a graph showing the mutual dependence of 

the distances run by the vehicle in real application, and in 

simulation tasks. The total distance of the path in the real 

experiment was 31.06 meters, whereas in the simulation 30.73 

meters. 

When conducting the experiment, we had only the original 

version of the algorithm, therefore we cannot show the same 

task computed by the new versions in the real environment. 

Nevertheless, we tried both new version of the algorithm in 

our simulator. Fig. 15 shows the path computed by the version 

with 16 edges from each node of the graph. 
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Fig. 14 Relationship between distance 

in real experiment and simulation 

 

 

Fig. 15 Optimal path computed by the algorithm 

with 16 edges from each node 

Fig. 16 shows the path computed by the version of the 

algorithm with additional analysis. 

 

 

Fig. 16 Optimal path computed by the algorithm 

with additional analysis 

 
 

TABLE II 

RESULTS OF THE ALGORITHM FROM THE SECOND EXPERIMENT 

Parameter 
Original 

algorithm 

Algorithm 

with 16 edges 

Algorithm 

with additional 

analysis 

Number of graph 

edges 
5,693,512 11,387,024 5,693,512 

Number of 

algorithm launches 
295 219 295 

Average running 

time 
224.3 ms 540.9 ms 238.3 ms 

Total running time 66.2 s 118.5 s 70.0 s 

Total distance 

covered by vehicle 
30.73 m 29.87 m 29.69 m 

Total distance in % 100 % 97.2 % 96.6 % 
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Table II presents parameters for the second experiment. 

There were more than 5 million nodes in the original algorithm 

and in the version with additional analysis. The average 

running time was longer than 200 ms per one launch. The 

additional analysis took only about 14 ms on an average.  

The algorithm with 16 edges in each node had more than 11 

million nodes in the graph. The average running time was 

more than 0.5 sec per one launch. The total distance covered 

by the vehicle was about 2.8 % shorter in case of the algorithm 

with 16 edges and 3.4 % in case of the algorithm with 

additional analysis. These values are very similar to the values 

in the previous experiment. 

VI. TACTICAL DECISION SUPPORT SYSTEMS 

The next part of this article deals with the issue of tactical 

decision support systems and its utilization in modern armies. 

As already mentioned, these state-of-the-art systems have 

started being trends in combat management recently. As an 

example can be mentioned the Deep Green concept (see Fig. 

17), still in process of development by the US Army (DARPA 

since 2008), partly inspired by the honored predecessor Deep 

Blue (the software running on the supercomputer developed by 

IBM that addresses a chess game). 

 

 

Fig. 17 The Deep Green concept [1] 

US Army is committed to the application of artificial 

intelligence methods for processes of command and control, i.e. 

specially keeping sustainable support for the decision-making 

processes of the commanders, where the optimal reaction of the 

commander is constantly recalculated and then submitted as a 

proposal, which could be intuitively further developed. 

It is not an effort to replace the role of the commander by 

computer, but there is the intention to automate most of 

"routine and rough" analytical work and thus prepare the 

design concept for new custom variants of solutions (COA-

course of action).  

On the basis of fundamental similarities of the chess game 

and tactical tasks, there are carried out experiments to solve 

operational and tactical tasks in a manner based on a similar 

approach. Despite the fact the complexity of the conditions in 

the real environment cannot be compared with the exact rules 

of the desk games, from a philosophical point of view there 

exists a close similarity and this similarity may be based on 

fundamental concepts and strategies solving operational and 

tactical tasks. 

Because of the appropriate approximation degree of 

mathematical model so many of the tactical tasks is now 

solvable in a real time. That was unable in the past, because of 

the computer systems performance. The method of solution 

converges not only to purely static operational and tactical 

tasks, but it moves to the context of the dynamic development 

alternatives, which are relevant at the time of the tactical 

situation changes. 

VII. EXAMPLE OF THE TACTICAL TASK 

This chapter deals with an example of utilization of our 

algorithm in a frequent task to be solved in tactical decision 

support systems. It is a search for optimal location selection 

for an implementation of an ambush. 

To solve this task you need to start from a particular math 

model of the environment, which in our case may be a 3D 

array, or a set of multiple 2D arrays, where each layer defines 

a particular characteristic. In our model, we consider the types 

of objects as follows: 

 Vegetation, 

 Altitude model, 

 Water obstacles, 

 Communication. 

 

Furthermore, we expect that the impact will be made 

approximately on the same strong opponent and consider for 

the time being only two custom tactical elements, one 

conducting the attack and the second performing security 

tasks. This is the problem of multi-criterion objective, where it 

is necessary to lay down or implement the default priorities, 

continuity and facts in a solution, namely: 

 The key is the location of the strike element and security 

element reacts to the position of the strike element and 

enemy object. 

 The set of solutions is applied only to a set of expected 

positions of enemy object. 

 Calculations and analysis are based on data that are 

currently available and which was quantified and 

described in the model; if some of the important aspects 

are not integrated into the model, the resulting solution 

may not correspond to the reality. 

 Criteria and priorities from the perspective of the 

parameters of the solutions are chosen by the commander 

and their settings have a decisive influence on the 

applicability of the solution. 

 

A system that resolves this job, works on the principle of the 

probability and the results of a solution calculation creates 
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conditions leading to the highest probability to complete the 

task, therefore, this system will not ensure domination, but 

only suggests, where is the optimal location of an element and 

what would be its optimal behavior. The solution consists of 

several layers of conditional integration, as shown in Fig. 18. 

 

 

Fig. 18 Sequence of individual processes for the task of finding the 

optimal solution for the implementation of an ambush 

Setting the input criteria of solution (decision) is conceived 

in the part of the integration model of quantification of input 

characteristics, whose description would significantly exceed 

the framework of this article. However, in the general 

overview it is a set of models of the multi-dimension functions, 

and their task is to incorporate the influence of external 

conditions and characteristics to the numeric form of the set of 

pragmatic coefficients, which are then applied with 

mathematical methods and transformations leading to the final 

model construction, in which to find the optimal solution is 

already trivial.  

Fig. 19 presents the result of the task solution in a real 

terrain. The yellow circle is the initial position of our unit. The 

upper blue area in the red circle is the best position to attack 

the enemy; the bottom red circle represents the position 

designed to secure our units. 

 

 

Fig. 19 Result of a task solution in a real terrain 

VIII. CONCLUSION 

This paper deals with issues of improving the shortest path-

finding algorithm in discrete state space. We designed two 

improving variants; both were analyzed and compared on the 

two particular examples in our simulator of the experimental 

autonomous vehicle. 

The obtained results are valid only for the selected 

examples. Results can differ in other situations. Nonetheless, 

the both versions of the algorithm ensure the same or shorter 

path in comparison with the original algorithm. The best 

results are provided by the algorithm with additional analysis 

of the path. 

An advantage of the algorithm with 16 edges from each 

node is its easy implementation. On the other hand the running 

time is more than double. The additional analysis affects the 

total running time negligibly as the running time of the 

analysis is linear O (n). 

In the second part of the article, there are introduced the 

possibilities and importance of tactical decision support 

systems. Optimization of tactical activities, although it is not 

apparent at the first sight, is subjected to the algorithmic 

schema and, therefore there is wide possibility of their 

automation as shown in the presented example. 
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