
 

 
Abstract—The aim of this contribution is to test by simulations 

whether the higher order rational approximation for exponential 
elements in linear time-invariant time-delay systems (LTI-TDS) 
automatically means the better (i.e. more accurate) finite dimensional 
approximating model. The presented approximations are utilized to 
the Laplace transfer function model in the form of fractions of so-
called quasipolynomials and the methods are chosen so that they are 
easy to handle with. Namely, Padé approximation, shift operator 
approximations – Laguerre and Kautz shift - and Fourier analysis 
based method are introduced and benchmarked. The work is 
motivated i.a. by the fact that direct controller design for LTI-TDS 
based on such models is mostly rather intricate and there are no 
theoretical results for internal delays. Moreover, the authors intend to 
use the results for rationalization of so-called anisochronic 
controllers when their discretization. The quality of approximation is 
measured by the well known H2 and H∞ norms instead of exact 
analytic calculations since it is sufficient for practical engineering 
problems. Some simulation examples for anisochronic controllers by 
means of a developed program testing interface in Matlab-Simulink 
environment are presented as well.   
 
 

Keywords— Anisochronic controllers, Fourier analysis, Hardy 
space, LTI-TDS, rational approximation.  

I. INTRODUCTION 
T is a well known fact that a large number of both 
hypothetic and real-life processes and systems in a wide 

spectrum of human activities (e.g. in biology, chemistry, 
economics, mechanics, information technologies, etc.) are 
affected by delay as their generic part. Delay within the 
meaning of a lag or latency has been usually assumed to take 
effect in input-output relations only, and moreover, in a one 
time instant. The Laplace transform then results in a transfer 
function expressed by a serial combination of a delayless term 
and a delay. 
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However, this conception is somewhat restrictive in effort 
to fit and model the real plant dynamics since in many cases 
delay appears in process inner feedback loops (or/and it can 
be of a distributed or nature). 

Anisochronic (or hereditary) TDS models [1] – [3], on the 
other hand, offer a more universal dynamics description 
applying both integrators and delay elements either in lumped 
or distributed form so that delays appear on the left side of a 
differential equation which is no longer ordinary (ODE) but 
rather functional (FDE) - this brings the concept of internal 
(or state) delays. Aftereffect phenomenon is included in many 
processes, see e.g. models in [4] – [8]. Capabilities and 
advantages of this class of models and controllers for 
modeling and process control were broadly discussed in [9]. 
LTI-TDS models can be used not only for description of those 
systems embodying internal delays but they are successfully 
capable to fit the dynamics of high-order systems and 
processes even without apparent delays [10]. 

LTI-TDS input-output models in the simple-input simple 
output (SISO) case can be expressed by the transfer function 
in the form of a fraction of so-called quasipolynomials which 
can be viewed as polynomials in s over the ring of 
exponentials polynomials (or over a ring of linear 
combinations of real numbers and exponential functions in s). 
Alternatively, the concept of pseudopolynomials [11], 
meromorphic functions [12], [13] or a special ring [14], [15] 
instead of quasipolynomials can be used; however, from the 
description point of view all these models are equivalent – 
their significance emerges while controller design. 

Nevertheless, many controller design approaches based on 
quasipolynomial transfer function models are a rather 
complex. Because of this, one may approximate an infinite-
dimensional model by a finite-dimensional one to obtain a 
rational transfer function which can be handled by a control 
approach for undelayed plants. Similarly, one way how to 
implement anisochronic controllers (i.e. those with internal 
delays) in PLC or PC is to find a delayless approximating 
model followed by a discretization. 

In recent decades a huge number of papers and works have 
been focused on model reduction or rational approximation of 
LTI-TDS, see e.g. [16] – [18]. A fair overview of some 
methods and approaches has been published in [19]. An 
overwhelming majority of these methods, however, deals with 
input-output delays only ignoring internal or state delays on 
the left-hand side of differential equations, i.e. those transfer 
functions with exponential terms in the denominator [4], [20]. 

Does the higher order mean the better internal 
delay rational approximation? 
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Contrariwise, the presented contribution focuses transfer 
function rational approximations for systems with internal 
(state) delays since there are no theoretical analytic results 
about approximations convergence and accuracy for such 
models, and one can thus expect interesting numerical 
comparative results. The appropriate methods are chosen so 
that they are easy to deal with and anyone can use them 
effortlessly. The common principle of all approaches consists 
in substitution of exponential terms in the transfer function of 
LTI-TDS with a rational fraction in the Laplace complex 
variable s. 

There are no attempts to deal with analytic mathematical 
proofs in this paper. The efficiency and accuracy of the 
selected approaches is measured via norms in the Hardy 
space, namely, H∞ and H2 norms [21], the definitions of which 
and some calculation tricks are presented here as well. 

A Matlab-Simulink user-interface application has been 
programmed to make a benchmark of approximations easier 
which enables to enter an approximated (nominal) plant 
transfer function, to select methods to be compared and the 
choice of norms by which the accuracy of approximation is 
calculated. It is also possible to specify an order of the 
approximation for each selected approximation approach. As 
the outputs, a table of calculated norms and the gain Bode plot 
(that is relevant to the norms) are displayed. 

As mentioned above, the authors’ intention is to utilize the 
obtained results while computer digital implementation of so 
called anisochronic controller received, specifically, by 
algebraic controller design in the ring of retarded-
quasipolynomial meromophic functions (RMS) [12], [21] – 
[24]. Several study cases on approximations of anisochronic 
controllers’ derived by this algebraic method are introduced 
and compared in this contribution. 

II. TRANSFER FUNCTIONS OF LTI-TDS 
Since the authors’ interest lies in single-input single-output 

(SISO) LTI-TDS and their input-output models, the state-
space description and general multivariable case are omitted, 
the reader is referred e.g. to [4]. Namely, transfer functions in 
the form of quasipolynomial fractions are taken as initial 
models to be approximated. 

Even if there are distributed delays in the system, this 
formulation can be governed by the transfer function obtained 
directly from the Laplace transform of a state space model 
(considering zero initial conditions) as follows 

 

( ) ( )
( )sa
sbsG =  (1) 

 
where ,  are quasipolynomials of the general form ( )sb ( )sa
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where n is the order of a quasipolynomial, are real numbers 
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III. SELECTED TRANSFER FUNCTION RATIONAL 
APPROXIMATIONS 

Selected easy-handling transfer function rational 
approximation methods are described in this section. The 
emphasis was put on the engineering usability of the methods. 
They are all based on the substitution of exponential elements 
by a rational function. 

A. Padé approximation 
In the second half of the 19th century, a French 

mathematician Henry Padé devised a simple and, nowadays, 
one of the most used and favorite rational approximations 
which is based on the comparison of derivatives of the 
approximating and approximated functions in zero. More 
precisely, let ( )sF  with be analytic in the 
neighborhood of zero. Then, the n-n Padé approximation is 
the function 

( ) 00 ≠F

( ) ( ) (sDsNs nn / )=Φ  where ( )sNn , ( )sDn  are 
polynomials of the nth order with  and it holds that ( ) 10 =nD

( )( ) ( )( ) niF ii 2,...,1,00 =Φ= . 
For this contribution, Padé approximation of 
( ) ( )sTsF −= exp , is given by the following relation [19] 0≥T
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where n is the order of the approximation. 

Sometimes a method called diagonal Padé approximation is 
distinguished, see [4], [18], which can be expressed as 
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However, it is easy to verify, that (3) and (4) represents the 

same approximations. In fact, 
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and ( )!2/! nn  is the common factor of both, the numerator and 
denominator, hence, the fraction is the same. 

B. Shift operator approximations 
These methods are based on the fact that a delay term 
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( sT−exp )  can be perceived as a shift operator and it can be 
subjected to Maclaurin series expansion. Moreover, the 
variable s can be vied as a derivative operator. 

Indeed 
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ree the most important shift 
operator approaches follows. 

 

n for this shift operator approximant is 
gi n by the formula 
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t the Laguerre shift 
can be successfully used in robust control. 

 

s presented in [16], the nth order Kautz shift reads 
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is asymptotically twice more accurate than the 
aguerre one. 

 

d it is also called Padé-
. It can be formulated e.g. as follows 

 

 
It has been analytically proved for input-output delays in 

the source referenced above that the Kautz shift 
approximation 
L

3) Padé shift 
This type of shift approximation is based on the second 

order Padé approximation [17], [18] an
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C. Fourier analysis based approximation method approach  
This type of approximation was derived from the analysis 

of the delay-in-feedback step response or, generally, the 
response to the input of the form . It has been 
found that the feedback system response is a superposition of 
a periodic and an aperiodic signal. The Fourier series 
expansion of the periodic part of the response gives the 
resulting approximation. To demonstrate the initial idea more 
precisely, consider a delay term in the negative feedback. 
Then the whole feedback transfer function 

( ) 0,, ≥= ktttu k

( )sW  reads 
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Hence 
 
( ) ( ) ( )TtuTtyty −+−=  (11) 

 
and  the output ( )ty  is assumed to be a superposition of a 
polynomial ( )tq  and a periodic part  ( )tp
 

( ) ( ) ( )tptqty +=  (12) 
 
Inserting (12) into (11) yields 
 

( ) ( ) =−− tyTty constant (13) 
 

If we, furthermore, subject  to the Fourier series 
expansion and make some other nontrivial calculations, it can 
be obtained the final relation 
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The exponential term can be then approximated by the 

inverse of (10), i.e. 
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 For more details, the reader is referred to [18] 

IV. APPROXIMATION QUALITY MEASUREMENT 

 (9) 

Rigorous analytic proofs are usually used for evaluation of 
the accuracy (quality) of rational approximation methods. 
However, these results have been obtained for delays in input-
output relation only, ignoring the effect of internal delays, 
which is the main gap here. 

Transfer function norms in the Hardy space known from 
robust control for unstructured uncertainty measurement 
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instead of any complex analytic method for the comparison of 
approximation accuracy are used in this paper since this 
conception is sufficient for particular cases and for 
engineering practice. 

First of all, define the objective to be minimized in various 
meanings. The difference between the nominal G  and 

approximated  transfer functions is taken as a measured 
expression , i.e. 

Ĝ
MG

 
GGGM
ˆ−=   (16) 

 
We chose two the most used norms in the Hardy space, 

namely, H2 and H∞ norms, which are capable to express the 
“proximity” of transfer functions in the frequency domain. 

A. H2 norm 
The H2 norm (also called quadratic norm) of a stable strictly 

proper transfer function is defined as 
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The norm is finite for strictly proper stable systems having 

no pole on the imaginary axis, and the meaning of H2 is 
energy of G . Note that for LTI-TDS with distributed delays, 
there can exist a denominator root of which is not the 
system pole. 

G

In computer (discrete data) practice, the improper integral 
in (17) is calculated as a sum within a finite range of 
nonnegative frequencies, [ max,0 ]ωω ∈ . The value of maxω  can 
be chosen so that the frequency gain is small enough. Residual 
expansion can be used when analytic (and continuous) 
calculation of 

2
G  [25]. 

B. H∞ norm 
This norm is defined as 
 

( )ω
ω

jsup GG =
∞

 (18) 

 
i.e. it expresses the supreme of the amplitude (gain) frequency 
characteristics of . If the system is asymptotically stable and 
provides a finite H

G
∞ norm, it is said that it is H∞ stable and lies 

in the space ∞ (Â + ) of functions analytic and bounded in 
the right-half complex plan

H
e. 

) )
The norm is also called L2 gain, That is, the H∞ stable 

system has finite  to  gain where ( ∞,02L ( ∞,02L ( )∞,02L  
norm of an input or output signal  is defined as ( )th
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The frequency characteristics supreme can be easily found 
by standard analytic means, or, by mapping the values of 

( )ωjG  when using digital computers. 
Note, for instance, that a transfer function having no pole 

on the imaginary axis but a sequence of poles with real part 
converging to zero has an infinite H∞ norm due to an 
unbounded gain [26]. 

V. USER-INTERFACE TESTING APPLICATION 
A user-friendly interface in Matlab-Simulink environment 

has been developed by the authors in order to provide testing 
and comparison of approximation approaches introduced 
above. 

The application allows entering a nominal plant transfer 
function, selecting approximation methods to be compared 
and the choice of norms by which the accuracy of 
approximation is calculated. It is also possible to specify an 
order of the approximation for each selected method. The 
programme returns a table of calculated norms, a graphical 
comparison of all chosen amplitude frequency responses, and, 
in the text form, we can obtain approximated transfer 
functions, see Fig.1. 

 

 
 
Fig. 1 User program interface in Matlab – Simulink 

VI. EXAMPLES 
The following section some simulation examples are 

presented to verify whether the introduced methods provides a 
sufficient rational approximation, and if the higher order of an 
approximation gives the more accurate estimation. 

As mentioned above, results of the benchmark ought to be 
used by the authors for the rational approximation of 
controllers with internal delays (also called anisochronic) as a 
first step of controllers’ discretization via the z-transform, for 
the computer implementation. 

Now we present three examples. The first two give results 
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for anisochronic controllers design for control of a simple 
LTI-TDS with stepwise and linearwise reference, respectively. 
The third one presents the approximation of an anisochronic 
controller for an attractive unstable system of a skater on a 
swaying bow. 

A. Stable controlled LTI-TDS 
Consider the well-known simple feedback control loop 

(Fig. 2) and a stable first order plant with internal and input-
output delays governed by the transfer function 

 

( ) ( )
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τ b
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Fig. 2 Simple feedback control loop 

 
Model (20) is able to fit the dynamics of a high order 

undelayed system; for instance, a tenth order system 
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can be estimated by (20) with 

== ba ,3.15,105.6 2 =⋅ − τ 7.6=ϑ , see [27], [28] for details. 
 

1) Stepwise reference 
If step reference tracking is required, one can derive a 

controller give by 
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see details in e.g. [21], where  is a selectable tuning 
parameter and let  .  

00 >m
05.00 =m

Let , where n is the order of the 
approximation method, and test the accuracies for all methods 
introduced above. The best results for each of them measured 
by H

{ 5,4,3,2,1∈n }

∞ and H2 norms with the corresponding order are 
displayed in Table 1. 
 
TABLE 1. COMPARISON OF RATIONAL APPROXIMATIONS OF (22) MEASURED BY 

H∞ AND H2 NORMS 
 

Method H∞ n H2 n 
Padé approx. 0.243 1 0.237 1 
Laguerre shift 0.243 1 0.237 1 

Kautz shift 0.408 5 0.299 3 
Padé shift 0.277 1 0.29 1 
Fourier analysis 0.38 1 0.354 5 

 
Obviously, the best result for H∞ is given alongside by the 

Padé approximation and Laguerre shift of the first order, 
whereas, amazingly, higher orders make results worse. The 
Fourier analysis based methods yields almost the same score 
for all studied orders. 

The benchmark results for the H2 norm with 15max =ω  
displayed in Table 1 are almost identical with those for H∞, 
i.e. the Padé approximation and Laguerre shift of the first 
order are the best and the Fourier analysis based methods 
gives almost the same results for all orders. 

The corresponding gain frequency responses for the 
approximations of orders as in the last column in Table 1 are 
displayed in Fig. 2, and the approximating transfer function by 
Padé approximation and Laguerre shift of n = 1 is given by 
(23), which is a conventional PID controller. 

 

 
Fig. 2 Bode magnitude plots of the nominal and approximating 
systems for (22) 
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2) Linearwise reference 

The requirement of linearwise reference tracking and a 
stepwise load disturbance yields a rather more complex 
controller [23], [24] with the transfer function 
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where 
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and m0 = m1 = 0.05. 

he best results for the approximations 
m

TABLE 2. COMPARISON OF RATIONAL APPROXIMATIONS OF (24) MEASURED BY 

Method H∞ n H2 n 

Table 2 displays t
easured using H∞ and H2 norms. 
 

H∞ AND H2 NORMS 
 

Padé approx. 9 213.62 3 1.24 5 
Laguerre shift 3.676 4 1.306 1 
Kautz shift 3.4791 2 1.2463 5 
Padé shift 3.629 3 1.0952 4 
Fourier analysis  3.6291 5 1.968 5 

 
he expected finding that the higher order approximation 

yi

agnitude plots for the best orders for H2 (the last 
co

T
elds the better rational estimation is evident here only in 

some cases.  The Kautz shift gives the best result for H∞ for 
the second order approximation. Padé shift, on the other hand, 
provides the best result for the H2 norm with the fourth order. 
Note that values for the Fourier analysis based method 
converges very slowly with the order, and, what is interesting, 
Padé approximation gives a very good result also for n = 1 (H2 
= 1.306). 

Bode m
lumn in Table 2) are figured in Fig. 3. 
 

 
Fig. 3 Bode magnitude plots of the nominal and approximating

he approximating controller’s model using the 4th order 
Pa

 
systems for (24) 

 
 
T
dé shift is represented by the transfer function 
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It is clear that the higher order approximation brings the 

more complex model. Because of this, it is better to use a 
lower order yet with a satisfactory norm values. 

 

B. Unstable controlled LTI-TDS 
Consider an unstable system describing roller skater on a 

swaying bow [29] given by the transfer function 
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see Fig. 4, where ( )ty is the skater’s deviation from the 
desired position, ( )tu  expresses the slope angle of a bow 
caused by force P, delays ϑτ ,  means the skater’s and servo 
latencies and b, a are real parameters. Skater controls the 
servo driving by remote signals into servo electronics. 
 

 
Fig. 4. The roller skater on a swaying bow 
 

Let b = 0.2, a = 1, 3.0=τ s, 1.0=ϑ s, as in the literature, 
and design the controller structure according to the algebraic 
approach described e.g. in [21-24]. Consider the reference and 
load disturbance in the form of a step-wise function. The final 
controller has the following transfer function 
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where p2, p1, p0, q3, q2, q1, q0∈Ñ are free parameters, see 
details in [30]. Using a quasi-optimal tuning algorithm, the 
parameters were set as 
 

4.6164,529.0,4636.0
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and e.g. . 50 =m
The comparison of the best controller rational 

approximations can be found in Table 3. 
 

TABLE 3. COMPARISON OF RATIONAL APPROXIMATIONS OF (28) MEASURED BY 
H∞ AND H2 NORMS 

 
Method H∞ n H2 n 
Padé approx. 5.6674 1 8.577 1 
Laguerre shift 5.6674 1 8.577 1 
Kautz shift 6.0847 5 9.7446 5 
Padé shift 6.0668 1 9.674 1 
Fourier analysis 5.6674 1 7.8114 5 

 
Again, the method based on the Fourier series expansion is 

very slowly approaching the limit value of the H2 norm 
( ) with the increasing n. The only method evincing the 
better asymptotical results with the higher order 
approximation is the Kautz shift. Again, the Padé and 
Laguerre approximations of the first order give very good 
results with the approximating controller transfer function 
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Fig. 4 displays Bode magnitude plots for the best orders for 
H2 (the last column in Table 3), which verifies a very good 
performance of all the approaches.  

 

 
Fig. 4 Bode magnitude plots of the nominal and approximating 
systems for (28) 

To conclude study cases above, it is startling that the best 
approximations measured by H2 and H∞ norms are mostly 
given by the well known and widely used Padé approximation 
of the first order which is identical with the first order 
Laguerre shift. By simulations, the higher order of an 

approximation does not generally yields the more accuracy 
finite dimensional model, which is in the contradiction with a 
general expectation and analytic results for rational 
approximations for input-outputs delays. 

 

VII. CONCLUSION 
A simulation analysis of transfer function rational 

approximations for systems with internal (state) delays has 
been the aim of this paper. Since there are no rigorous analytic 
results about the approximation efficiency and accuracy in the 
literature, the authors have decided to perform benchmark 
numerical tests in Matlab-Simulink on selected anisochronic 
controllers which are planned to be discretized after 
rationalization. Two norms in the Hardy space, namely, H2 
and H∞ norms have been used as a measure for the accuracy 
and efficiency of the selected easy-handling approaches. 
Approximation methods have been selected so that they are 
serviceable also for people with basic mathematical 
background knowledge. 

Numerical results have been very interesting and startling 
because the habitual Padé approximation has been the best 
one and, moreover, with the first or second order of the 
approximation. This means that the higher order 
approximation does not automatically mean the better result 
for the systems with internal delays. 
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