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GA-Based PIDA Control Design Optimization
with an Application to AC Motor Speed Control

Sunisa Sornmuang and Sarawut Sujitjorn*

method, a new optimally algebraic design approach based on
Abstract— PIDA controller has been proposed since 1996 as @enetic algorithm (GA), a comparison study between the
extension to the conventional PID controller. The additional tergradient search (GS) method and the proposed one, and
“A” stands for acceleration. With this new term, a closed-loop systegpplication to speed control of a 3-phase motor.
can respond faster with less overshoot. Originally, the design utilizes
the dominant pole concept proceeded in the s-plane. As shown by
simulation, this design approach is not suitable for high-order plants
having delays and complex oscillatory modes. The article proposesTO develop a method of control design, a simplified control
an algebraic design approach which also utilizes the genefigstem represented by the diagram in fig. 1 is considered. The
algorithm (GA) to achieve design optimality. Comparison studig§lants for benchmarking the design methods have been

among the previous method, the gradient-search based method .
the proposed approach are elaborated. Such studies were condu@t%%)osed by Astrom and Hagglund [11] as follows:

Il. PROBLEM FORMULATION

against some benchmark plants defined by Astrom and Hagglund. As Ge(s) Ge(s)
a result, the GA method with heuristically defined solution R(s) B}

- - - PIDA Plant —» C(s)
boundaries provides superior results. The proposed approach has 15— controllel

been successfully applied to the speed control of an AC motor.

Keywords—Genetic algorithm, gradient search, optimization,

PIDA controller, pole placement, speed control of ac motor. Fig. 1 A closed-loop system.

. INTRODUCTION Plant1:g (g - = ——,a=05
. ) (s+D)(as+D)(@s+ D s+ 1)
ID controller has been a worldwide solution for a . 1
QDIant 25 G.(9
b

effective control for many years. Researchers have paid a S, :m
lot of attention to its design as evidenced by a great member _of 3 s+l
published patents and articles. For instance, some recent 'Gp(S)=(S+1)3,a=0-5
literatures include but not exhaustive (i) a collection of PIDA
tuning rules [1], (i) model-free design method based oh@M4: G (s)= ! es7-10
experimental frequency response data [2], (iii) frequency- (Ts+1)
domain sensitivity-based design method [3]-[4], (iv) new autg!@nt5: Gp(s):%e’s,Tzlo
tuning algorithms [5], an adaptive PID control using (Ts+1)
knowledge-based method [6], robust PID design viRlant6 : Go(9) = (s+6)°

evolutionary computation [7], etc. Despite the existing S(s+1)° (s+36)
knowledge, the PIDA controller was introduced in 1996 bp|gnt 7 : G.(9) = @, 1201
Jung and Dorf [8], and claimed to deliver faster and smoother P (54 )8 + Aw,s+ %2)’% =le=0.

response than the PID could. The PIDA controller has been The PIDA controller has a practical form of (1) including

successfully applied to torsional resonance suppression [§le |ow-pass filters. Four parameters of the controller are
and control of an induction motor model [10], respectively.  « «  andk respectively, whilstd e and f are filter
| D A? ! ’

So far, there have not been published works detailing the’

performance studies of the PIDA controller. Design details ygtarameters. An alternative representalioa polynomial form

have not been proposed to achieve system optimality. T sults n the f°”°W'T‘9 par'am'eterg; 3, b, Z d and &
article offers contributions in the following issues: ar{espectwely. The design objective is to achieve a minimum

investigation of the effectiveness of the Jung and Dorf's desi fSPonse error dug_ to a unlt_ step mp_ut. Hence, the following
erformance specifications, i.e. rise-time, percent overshoot,

settling time and steady-state errors, are considered.
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[ll.  DOMINANT POLE BASED DESIGN Plant 4 :e(s) - -0.065° + 7.64° + 23.6+ 16.
The design method in [8] is based on a pair of dominant S
complex poles. Locations of the desired poles are arbitrailant 5 :GC(S):—83-5753— 564.4"— 1608~ 154
Thus, to obtain a satisfactory result is a time consuming task if s
conducted manually. Even though with an aid of a computerpgant 6 Ge(s) = 0.1%5°- 4.9%° - 60.88- 11
few to several trials-and-errors to obtain a satisfactory design s
are inevitable. The readers may refer to [8] for the desighant 7 -GC(S):35.JS3+ 205 + 533.6+ 529.
procedures. The list below indicates the obtained PIDA s

controllers for the plants.
Fig 2 illustrates the simulated step responses of the closed-

Plant 1 ;GC(S):14.17S3+ 74.9¢ + 1859+ 175 loop systems. It can be noticed that some plants are not well
s stabilized, some are stable but unable to produce good
Plant 2 :g(s) - 302’ + 27696° + 106900+ 1536! responses. This is due to the difficulty to accomplish optimal
s design goals manually. Furthermore, only one pair of dominant
Plant 3 Ge(s) = 1.968° + 8.4%9° + 14.84+ 10.4 poles may not satisfactorily govern these complex plants.
S

Step Response Step Response Step Response

Ampitude
°
> .
Amplitude

o °
S >
Ampltude

o

06 08 1 12 “o 01 02 03 04 05 06 07 08 09 0 01 02 03 04 05 06 0.7 08
Time (sec) Time (sec) Time (sec)

@ o) ©

5
ol
~
°
=

Step Response Step Response Step Response

Ampltude
°
Amplitude

Ampltude

0 1 2 3 4 5 [ 0 02 04 06 08 1 12
Time (sec) Time (sec)

(d) ©®
Fig. 2 Simulated step responses (dominant pole based design)
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IV. OPTIMAL ALGEBRAIC DESIGN A.The gradient search

To reach an optimal pole-placement goal, some algebrdibe gradient search (GS) method is a classic approach for
expressions have been derived. Firstly assume that the plarapgimization problems. The method has been applied for this
described by a proper transfer function particular control problem, and represented by the flow
; - diagram in fig. 3. In the figure, thee, stands for the
G(9=RD AT ras +.15 2) in which the
qs) s"+psT+..+p,

objective function J can be calculated using (8)
, and the closed-loop system possesses the characteristic

equation J :ﬂqzdwp[mln O puretry = PO ) (}T
s"+ Otlsm’l +..ta,= 0 (3) +p |:mm{ trboundary %arch 0}]2
_ 2 (8)
, in which m=n+3(n is the plant order). Closed-loop pole- +p[m'”{ houncary ~ Siaren 0}]

placement is achieved by solving (4). +p[min{(&sso oss ) 0}}
oundary search | *

p 1 0 0 0 & & - - -

p, B 1 0 . a a, X % , whereg(t) is the errors between the input and the output of
P, P, P, a a a, a, % %2 (4) the system, andp is the penalty factor set to 1,000.
: : % Noticeably, it is constructed from the time-domain

a
' ' X =] a, it
P, Py P 8., 8., 8., 4 X: . performance specifications.
0 P P 2, 8, N e
0 0 p 3, a 0 Of aM B. The genetic algorithm
0 0 0 & 0 0 of7" - The genetic algorithm (GA) is one of the efficient evolutionary

algorithms. The algorithm has been applied to search for
, Where[x]™ =(1+ka,)* optimal solution for this control problem. The flow diagram in
[L(d+e) de abzk k(@b z(a+b)) k(a+b+2)) K] (5). fig. 4 represents the work flow of the PIDA control design
. ] ) based on GA attempting to establish a set of optimal controller
In this case, there are n+3 equations with 7 unknownsarameters minimizing the objective function J in (9),
Secondly, the plant is represented by a strictly proper transfgjnstructed under a similar concept to (8).
function

J=||edt -PO tr, —r,
G (S) (S) 315 +azs + +a1 n (6) .ﬂq + boundary 'search)+( boundary search) (9)
q(S) S + pls + + pn (tsmundary _t%arch ) +( &)oundary - e$saarch)
TABLE |

, and the closed-loop characteristic equation is also expressed

by (3). Equation (7) has been derived for the pole-placement SYMBOLS FOR OBJECTIVE FUNCTIONS

design Symbols Meanings
M1 0 0 0 a - i ; ) |:>.o_‘mundary percent overshoot allowance
- o o, —
p 1 0 0 a a|x al ~ pl PO... percent overshoéitom search
p, pb 0 a 4 | : . : @ gnry rise-time allowance
a : '
F.)Z % Z | %) a, - P, tF oaren rise-time from search
Py &, s & %
: Pns. ttling time all
P, P, @ a, a, 0 || x an 1 S ounciary settling time allowance
0 p a, a 0 0|x] an+2 tSeen settling time from search
0 0 a, 0 0 0 LoTms
- - €SS unciry steady-state error allowance
€SSearen steady-state error from search

;where[x]" =[(d+e de abzk k(ab+Za+h) k(a+b+2) k].

In this case, there are n+3 equations with 6 unknowns. It is
observed that some numerical approximations are necessary
for solving such over/underdetermined cases. MATLAB has
been used to solve these equations. Derivation of (4) and (7)
appears in the appendix.

Issue 3, Volume 4, 2010 69



INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

START
]! ]!

Initialization: heuristically assign values to a1, t,...,tm (M=+3). | Construct L sets of initial solutions (k, a, b, z, d, ) randomly. |
7 Simulate closed-loop system using MATLAB
Construct characteristic polynomial, and algebraic equations and Control Systems Toolbox.
either (4) or (7) according to either proper or strictly proper &
case, respectively. | Compute objective functions J;, i=1,..,L. |
&4
- {} . J .
Solve the equations to obtain [x], k, a, b, z, d and e. Compute fitness functions F; =<——,i =1,....L
T 2
Simulate closed-loop system using MATLAB
and Control Systems Toolbox (calculate ||V J||). (e=0.1) Yes
Fi<e
e, =0.0001
(e ) No

14

Convert real solutions to binary representations.

Selection of high-quality solutions using
“universal sampling”.

Randomly assign values to 4 sets of oy, 0,...,0m 1T
| Reproduction: crossover and mutation.
Construct 4 characteristic polynomials based on &
the 4 sets of oy, Convert new binary-represented solutions
0 (offsprings) to real number representations.
| Construct 4 algebraic equations. | <

Simulate closed-loop system using MATLAB

and Control Systems Toolbox.

<
| Solve the equations for [x], k, a, b, z, d and e. | Update counter. Update 5
<

counter. Compute objective functions and fitness
Simulate closed-loop systems using MATLAB - functions for offsprings.
and Control Systems Toolbox . &
{} Replace existing solutions with the new ones (offsprings). |
Calculate ||V ]|| for each set of solutions. Retain Ry

Simulate closed-loop system using MATLAB
and Control Systems Toolbox.
<
Compute objective functions and fitness
functions for solutions.

the solution set with minimum gradient, ||V J||.

No

terationN=itrma s

Fig. 3 Flow diagram of the GS method. Fig. 4 Flow diagram of the GA method.
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V.SIMULATION RESULTS

The optimal PIDA controllers resulted from the GS and GA&CUId converge to high-quality solutions more rapidly. Fig.6
based methods are summarized in TabléFi. 5 illustrates illustrates the responses to step inputs and disturbances. Notice
the closed-loop step responses. It can be observed that the B34 the systems with the controllers searched by the GA
based method results in the controllers of better performand&SPOnd better to the input commands, and recover beter from
for all cases in terms of rapid settling, low overshoot arfff® €xternal disturbances. The sensitivig}) functions are
stabilization. The numerical results concerning performancebown in Fig.7. Both approaches provide very similar
shown in Table Il also confirm this. In addition, the resultsensitivity characteristics in terms of rapid tracking response,
obtained from the GS method are used to aid the formationafd effective disturbance rejection, respectively.

solution boundaries for the GA method. In effect, the GA
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Fig. 6 Responses to step inputs and disturbances (GS and GA methods).

(a) Plant 1 (GS method) (b) Plant 1 (GA method) (c) Plant 2 (GS method) (d) Plant 2 (GA method)

(e) Plant 3 (GS method) (f) Plant 3 (GA method) (g) Plant 4 (GS method)

(h) Plant 4 (GA method)
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VI. APPLICATION

R(s) PIDA fiv
—! controller —DI Invener|_>| AC-Motor I—PI Encoder|_> converter——»

€Y

Fig. 8 Closed-loop speed control of a 3-phase motor (a) block diagram, (b) experimental setup.

The GA-based optimal design has been applied to cont®flthe form (1), in whichk , =25.22/K, = 79.6K, = 456.8'

the speed of a 3-phase indugtion motor (a Panasonic MASO&;:zom_g,d = 4254 and e= 42549, respectively. Driving
90Y, 90W, 4P). A step-transient test was conducted for tli]ﬁ motor requires a PWM inverter and the controller

identification of the motor model at the 600 rpm Operatinﬁnplemented. The inverter used is a Toshiba VFS11-2002PM.

Ipdomiif. T?e |Ejrent||tl;|cat|on ::sm_g M%‘LI)'L&AB almdt Sys(‘.jtelm Implementation of the controller uses op-amp RC networks to
entification - 100fbox TesUILs N -a “<order plant Model o ,q 0 reg)-time operation. The circuit diagram in Fig. 9

expressed by (10). The GA search provides the controller depicts the PIDA controller realizing the mentioned

parameters.
G(9) = 359%+ 240000 (10).
P s°+548.3% + 778768+ 2419C
10 kQ
AAAA
wy
JL
12.56k02 p— 0ka
wy '\ AAA
L AAAL
10 kQ 10 kQ
O—ig
Vin 4.57TMQ 1 “
42.55kQ °® Vou
3 10 kQ
100pF | D MW 10 kQ
10 kQ
4.55MQ
42,55k 4.55MQ kg 210Kk
—\W 42.55kQ
0.1yF — MWW 10 kQ
0.1uF
10 kQ
10 kQ
10 kQ

Fig. 9 Analog implementation of the controller.

It is necessary to realistically investigate the closed-loghe PSIM simulation diagram in which the motor is
system though simulation using PSIM in which the op-amgpresented by (10).

saturation limits can be taken in to account. Fig. 10 illustrates
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Fig. 10 Simulation diagram for PSIM.

The PSIM results appear in Fig. 11 including the realistihie open-loop motor (a) and the PIDA controlled motor (b),
control signal (a) and the motor speed (b). The rise-time anespectively. Noticeably, the actual speed with the PIDA
settling time of the simulated speed are about 0.1 and 0.4%antroller agree very well with the simulated result in Fig.
respectively. Fig. 12 illustrates the measured speed curves of1(b).

Amplitude (V)
Amplitude (V)

0 005 01 015 02 02 02 035 04 045 05
Time (sec) Time (sec)

@) (b)

Fig. 11 PSIM results (a) control signal, (b) motor speed.
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Fig. 12 Experimental speed responses of the motor. (a) without controller, (b) with controller

VII. CONCLUSION viewed as optimal pole placement with an aid of the gradient
This paper has briefly reviewed the conventional design of tfgarch (GS) and the genetic algorithm (GA). The algorithms
PIDA controller based on the dominant pole concept. &€ reviewed in the paper. Simulation results indicate that the
provides the design results tested against some difficult to §é-based method provide controllers with better closed-loop
controlled plants proposed by Astrom and Hagglund frerformances in comparison with the Gs-based method. The
benchmarking. It is evident that the conventional desig?Per also elaborates the control system implementation for an
approach fails in most cases due to the use of only one paiféf motor speed control. An analog controller has been used to
dominant polesThis does not mean that the root-locus baseg'Sure real-time operation. To obtain realistic simulation
method would fail. The authors believe that the method can SUlts. the closed-loop speed control of a 90 W-3ph induction
successfully applied if more complicated pole and zefgotor |.s smulatepl on PSIM. Experimental results Wlth. a
assignments are considered with an aid of computing. Th¥YM inverter drive show a very good agreement with
paper offers contributions to optimal design of the p|DAimulations, and indicate that the controlled motor responds
controller using search methods. The proposed method can BBOUt 2.4 times faster than the open-loop motor does.
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APPENDIX

Derivations of (4) and (7).
Case | — Proper planta, = 0)

Gu(9) p(s) _ aons” +ali”l’1+...+an
g(s) Ss'+ps"+..+p,

(a.1)

Characteristic equation of the closed-loop system is

Sn{p1+d+e+(li+k2:2)kao+ka1}snl
[ (p,+(d+€)p, +de+ (ab+ z(b+a))ka,
{+(a+b+ 2)ka, +ka, } 2
1+ka,

S

[ [ py+(d+€)p,+dep, + abzka,
+(ab+ z(b+a))ka, + (a+b+ 2)ka, + ka, o
1+ka,

p,+(d+e)p,, +dep, ,+abzka, ,
+(ab+ z(b+a))ka, , + (a+b+ 2)ka, , +Kka,
1+Kka,

SS

[(d+e) p, +dep, , +abzka, ,
+(ab+ z(b+a))ka, , +(a+b+ 2)ka, &
1+ka,

| dep, + abzka, , +(ab+ z(b+a))ka, o B | (a.2)
1+ka, 1+ka,

Equate (a.2) withs” + ¢,s™* +...+ a,, = 0 (M=n+3), one can
obtain (a.3)-(a.9)

p1+(d+e)+(a+b+z)kao+ka1_a
1+ka, -

(a.3)

p, +(d +€)p, +de+(ab+ z(b+ a))ka,
{+(a+b+ 2)ka, +ka, }
1+ka,

(a.4)

:az

Issue 3, Volume 4, 2010 79

{p3+(d+e)p2+dep1+abzkaO

+(ab+ z(b+a))ka, + (a+b+ 2)ka, + kag} s

3

1+ka,

P+ (d+€)p,,+dep, , +(ab+z(b+a)ka, ,
+abzka, .+ (a+b+2)ka, , +ka,

1+ka,

(d+€)p, +dep, , +abzka, ,
+(ab+z(b+a))ka, , +(a+b+2)ka, y

1+ ka0 n+1
dep, +abzka, _, + (ab+ z(b+a))ka, o
1+ kao - n+2
abzka, _
1+ka, "

, and hence the following equation is obtained

(p, 1 0 0 0 a al - - -

x| [ e
p, B 1 0 a, a a, %, o
r:>3 F:’z p 3 & 6}2 6}3 . z
A
Ph Poa Ph2 &5 &, &, &

XS aml
0 pn pn—l anfz anfl an 0 X(; a
0 0 p a, 3 0 0 "
o 0o o a o0 o ot/ L%l

, Which is (4),
where[x]™ =(1+ka,)*
[1 (d+e) de abzk k(ab+z(a+b)) k(@a+b+2)) k]

Case Il — Strictly proper planta, = 0)

Gu(9) = p(s) _ alns' +a2i;1+...+q
qs) s'+ps T +..+p,

Characteristic equation of the closed-loop system is

S"+(p,+d+e+ka)s"
+(p,+(d+e€)p +de+(a+b+2)ka, +ka,)s"?

p;+(d+e)p, +dep, +(ab+z(b+a)ka |  ,
+[+(a+b+z)ka2+ka3 }S

:an

(a.5)

(a.6)

@.7)

(a.8)

(a.9)

(a.10)

(a.11)
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+ pn + (d + e) pn—l + depn—z + a‘bj(a‘n—S 3
+(ab+z(b+a))ka, , +(a+b+2)ka, , +ka,

(d+e)p,+dep, , +abzka, ,+(ab+z(b+a))ka, , 2
+(a+b+ 2)ka,

+(dep, + abzka, , + (ab+ z(b+a))ka, ) s+ abzka, =0

(1

(2]

(a.12)
(3]

Equate (a.12) withs" + ,S™* +...+ @, = 0 (M=n+3), one can

obtain (a.13)-(a.19) (4]

(d+e)+ka, =a, - p, (a.13}5

(d+e)p, +de+(a+b+2)ka, +ka, =a,-p, (a.14) -

(d+e)p, +dep, + (ab+ z(b+a))ka, + (a+ b+ 2)ka, (a.15)

+kag = a3 — P, 7]
(8]

(d+e)p,, +dep, ,+abzka, ,+(ab+z(b+a))ka, , (.16) [9]

+(a+b+2ka, , +ka, =a, - p,

(d+e)p, +dep, , +abzka, , +(@+zb+aka,,  (m17)

b =
+(a+ + Z)kan Oy (11
dep, +abzka, , +(ab+z(b+a))ka, = ., (a.18)

abZkan = an+3

, and hence the following equation is obtained

1 0 0 0 a o
pb 1 0 0 a a |[x] P
om0 a a x| | (a.20)
p, & & Poag|x o p—
Pn-s a, A & X «
P P Poan & 0ix| | ™
0 p a, a 0 0|x] "
o 0 a 0 o of -%sl
, Which is (7).

where[x]" =[(d+¢ de abzk k(ab+Za+h) k(a+b+2) k]
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