
 

 

  

Abstract— PIDA controller has been proposed since 1996 as an 
extension to the conventional PID controller. The additional term 
“A” stands for acceleration. With this new term, a closed-loop system 
can respond faster with less overshoot. Originally, the design utilizes 
the dominant pole concept proceeded in the s-plane. As shown by 
simulation, this design approach is not suitable for high-order plants 
having delays and complex oscillatory modes. The article proposes 
an algebraic design approach which also utilizes the genetic 
algorithm (GA) to achieve design optimality. Comparison studies 
among the previous method, the gradient-search based method and 
the proposed approach are elaborated. Such studies were conducted 
against some benchmark plants defined by Astrom and Hagglund. As 
a result, the GA method with heuristically defined solution 
boundaries provides superior results. The proposed approach has 
been successfully applied to the speed control of an AC motor. 
 

Keywords—Genetic algorithm, gradient search, optimization, 
PIDA controller, pole placement, speed control of ac motor.  

I. INTRODUCTION 

ID controller has been a worldwide solution for an 
effective control for many years. Researchers have paid a 

lot of attention to its design as evidenced by a great member of 
published patents and articles. For instance, some recent 
literatures include but not exhaustive (i) a collection of PIDA 
tuning rules [1], (ii) model-free design method based on 
experimental frequency response data [2], (iii) frequency-
domain sensitivity-based design method [3]-[4], (iv) new auto 
tuning algorithms [5], an adaptive PID control using 
knowledge-based method [6], robust PID design via 
evolutionary computation [7], etc. Despite the existing 
knowledge, the PIDA controller was introduced in 1996 by 
Jung and Dorf [8], and claimed to deliver faster and smoother 
response than the PID could. The PIDA controller has been 
successfully applied to torsional resonance suppression [9], 
and control of an induction motor model [10], respectively.      

So far, there have not been published works detailing the 
performance studies of the PIDA controller. Design details yet 
have not been proposed to achieve system optimality. This 
article offers contributions in the following issues: an 
investigation of the effectiveness of the Jung and Dorf’s design 
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method, a new optimally algebraic design approach based on 
genetic algorithm (GA), a comparison study between the 
gradient search (GS) method and the proposed one, and 
application to speed control of a 3-phase motor. 

II.  PROBLEM FORMULATION 

To develop a method of control design, a simplified control 
system represented by the diagram in fig. 1 is considered. The 
plants for benchmarking the design methods have been 
proposed by Astrom and Hagglund [11] as follows:  
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Fig. 1 A closed-loop system. 
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The PIDA controller has a practical form of (1) including 
the low-pass filters. Four parameters of the controller are 

P I DK K K  and
AK , respectively, whilst ,d e  and f  are filter 

parameters. An alternative representation in a polynomial form 
results in the following parameters: k, a, b, z, d and e, 
respectively. The design objective is to achieve a minimum 
response error due to a unit step input. Hence, the following 
performance specifications, i.e. rise-time, percent overshoot, 
settling time and steady-state errors, are considered.    
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III.  DOMINANT POLE BASED DESIGN 

The design method in [8] is based on a pair of dominant 
complex poles. Locations of the desired poles are arbitrary. 
Thus, to obtain a satisfactory result is a time consuming task if 
conducted manually. Even though with an aid of a computer, a 
few to several trials-and-errors to obtain a satisfactory design 
are inevitable. The readers may refer to [8] for the design 
procedures. The list below indicates the obtained PIDA 
controllers for the plants. 
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Fig 2 illustrates the simulated step responses of the closed-

loop systems. It can be noticed that some plants are not well 
stabilized, some are stable but unable to produce good 
responses. This is due to the difficulty to accomplish optimal 
design goals manually. Furthermore, only one pair of dominant 
poles may not satisfactorily govern these complex plants. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Simulated step responses (dominant pole based design) 
(a) Plant 1 (b) Plant 2  (c) Plant 3 
(d) Plant 4 (e) Plant 5    (f) Plant 6 
(g) Plant 7  
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IV. OPTIMAL ALGEBRAIC DESIGN 

To reach an optimal pole-placement goal, some algebraic 
expressions have been derived. Firstly assume that the plant is 
described by a proper transfer function 
 

1
0 1

1
1

...( )
( )

( ) ...

n n
n

P n n
n

a s a s ap s
G s

q s s p s p

−

−

+ + +
= =

+ + +
                         (2) 

 
, and the closed-loop system possesses the characteristic 
equation  
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, in which 3m n= + (n is the plant order). Closed-loop pole-
placement is achieved by solving (4). 
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In this case, there are n+3 equations with 7 unknowns. 
Secondly, the plant is represented by a strictly proper transfer 
function 
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, and the closed-loop characteristic equation is also expressed 
by (3). Equation (7) has been derived for the pole-placement 
design 
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,where [ ][ ] ( ) ( ( )) ( )) .= + + + + +T d e de abzk k ab z a b k a b z kx  

In this case, there are n+3 equations with 6 unknowns. It is 
observed that some numerical approximations are necessary 
for solving such over/underdetermined cases. MATLAB has 
been used to solve these equations. Derivation of (4) and (7) 
appears in the appendix. 

A. The gradient search  

The gradient search (GS) method is a classic approach for 
optimization problems. The method has been applied for this 
particular control problem, and represented by the flow 

diagram in fig. 3. In the figure, the the
 
stands for the 

acceptable threshold of the gradientJ∇ , in which the 

objective function J can be calculated using (8)  
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, where ( )e t  is the errors between the input and the output of 

the system, and ρ  is the penalty factor set to 1,000. 

Noticeably, it is constructed from the time-domain 
performance specifications. 
 

B. The genetic algorithm 

The genetic algorithm (GA) is one of the efficient evolutionary 
algorithms. The algorithm has been applied to search for 
optimal solution for this control problem. The flow diagram in 
fig. 4 represents the work flow of the PIDA control design 
based on GA attempting to establish a set of optimal controller 
parameters minimizing the objective function J in (9), 
constructed under a similar concept to (8).  
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TABLE I 

SYMBOLS FOR OBJECTIVE FUNCTIONS 

  
Symbols                    Meanings 
 

. .boundaryP O    percent overshoot allowance 
 

. .searchP O    percent overshoot from search 
 

boundarytr     rise-time allowance  
 

searchtr     rise-time from search    
 

boundaryts     settling time allowance    
   

searchts     settling time from search 
 

boundaryess    steady-state error allowance  
 

searchess     steady-state error from search 
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START

Solve the equations to obtain [x], k, a, b, z, d and e.

No

Randomly assign values to 4 sets of α1, α2,…,αm

Calculate ||∇J|| for each set of solutions. Retain 

the solution set with minimum gradient, ||∇J||k. 

(itrmax=5,000)

Yes

STOP

Yes

No

Yes

Initialization: heuristically assign values to α1, α2,…,αm (m=n+3).

Construct characteristic polynomial, and algebraic equations 

either (4) or (7) according to either proper or strictly proper 

case, respectively.  

Construct 4 algebraic equations. 

Construct 4 characteristic polynomials based on 

the 4 sets of αm. 

Solve the equations for [x], k, a, b, z, d and e.

||∇J||k < eth

Iteration=itrmax

Update counter.

(eth =0.0001)

||∇J|| < eth

No

Simulate closed-loop system using MATLAB 

and Control Systems Toolbox (calculate ||∇J||).

Simulate closed-loop systems using MATLAB 

and Control Systems Toolbox .

 
 

Fig. 3 Flow diagram of the GS method. 
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Fig. 4 Flow diagram of the GA method. 
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V. SIMULATION RESULTS 

The optimal PIDA controllers resulted from the GS and GA 
based methods are summarized in Table II. Fig. 5 illustrates 
the closed-loop step responses. It can be observed that the GA 
based method results in the controllers of better performances 
for all cases in terms of rapid settling, low overshoot and 
stabilization. The numerical results concerning performances 
shown in Table II also confirm this. In addition, the results 
obtained from the GS method are used to aid the formation of 
solution boundaries for the GA method. In effect, the GA  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
could converge to high-quality solutions more rapidly. Fig.6 
illustrates the responses to step inputs and disturbances. Notice 
that, the systems with the controllers searched by the GA 
respond better to the input commands, and recover better from 
the external disturbances. The sensitivity ( )T

Gs  functions are 

shown in Fig.7. Both approaches provide very similar 
sensitivity characteristics in terms of rapid tracking response, 
and effective disturbance rejection, respectively.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

                      (a)                                                                 (b)                                                 (c) 

                         (d)                                                   (e)                                                    (f) 

Fig. 5 Simulation results (GS and GA methods). 
(a) Plant 1 (b) Plant 2  (c) Plant 3 
(d) Plant 4 (e) Plant 5    (f) Plant 6 
(g) Plant 7  
      

        (g) 
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(h) 

                                Fig. 6 Responses to step inputs and disturbances (GS and GA methods). 
                                      (a) Plant 1 (GS method) (b) Plant 1 (GA method)   (c) Plant 2 (GS method) (d) Plant 2 (GA method) 
                                      (e) Plant 3 (GS method) (f) Plant 3 (GA method)   (g) Plant 4 (GS method)     (h) Plant 4 (GA method) 
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                               Fig. 6 (Cont.) 
                                         (i) Plant 5 (GS method)     (j) Plant 5 (GA method)   
                                         (k) Plant 6 (GS method)     (l) Plant 6(GA method) 
                                         (m) Plant 7 (GS method) (n) Plant 7 (GA method)   
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Fig. 7 Sensitivity functions ( )T
Gs .  

(a) Plant 1 (b) Plant 2  (c) Plant 3 
(d) Plant 4 (e) Plant 5    (f) Plant 6 
(g) Plant 7  
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VI.  APPLICATION 

 
 
 
 
 
 
  

(a) 
 
 

 
The GA-based optimal design has been applied to control 

the speed of a 3-phase induction motor (a Panasonic MAS04-
90Y, 90W, 4P). A step-transient test was conducted for the 
identification of the motor model at the 600 rpm operating 
point. The identification using MATLAB and System 
Identification Toolbox results in a 3rd-order plant model 
expressed by (10). The GA search provides the controller 

 

3 2

3599 240000
( )

548.3 77870 241900P

s
G s

s s s

+
=

+ + +
                   (10). 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is necessary to realistically investigate the closed-loop 
system though simulation using PSIM in which the op-amp 
saturation limits can be taken in to account.  Fig. 10 illustrates 

 
 
 
 
 
 
 
 
 

 
 (b) 

 
 
 
of the form (1), in which 25.22, 79.62, 456.89,= = =P I DK K K  

2070.9, 42549= =AK d  and 42549,=e  respectively. Driving 

the motor requires a PWM inverter and the controller 
implemented. The inverter used is a Toshiba VFS11-2002PM. 
Implementation of the controller uses op-amp RC networks to 
ensure real-time operation. The circuit diagram in Fig. 9 
depicts the PIDA controller realizing the mentioned 
parameters. 
  
 

 
 
 
 
 
 
 
 
 
 
   
 
   
 
 
 

 
 
 
 

 
 

 
 
 
 
 
 
the PSIM simulation diagram in which the motor is 
represented by (10).  
 

Fig. 8 Closed-loop speed control of a 3-phase motor  (a) block diagram, (b) experimental setup. 
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Fig. 9 Analog implementation of the controller. 
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The PSIM results appear in Fig. 11 including the realistic 
control signal (a) and the motor speed (b). The rise-time and 
settling time of the simulated speed are about 0.1 and 0.45 s, 
respectively. Fig. 12 illustrates the measured speed curves of  
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the open-loop motor (a) and the PIDA controlled motor (b), 
respectively. Noticeably, the actual speed with the PIDA 
controller agree very well with the simulated result in Fig. 
11(b). 
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Fig. 10 Simulation diagram for PSIM. 
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Fig. 11 PSIM results (a) control signal, (b) motor speed. 
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VII.  CONCLUSION 

This paper has briefly reviewed the conventional design of the 
PIDA controller based on the dominant pole concept. It 
provides the design results tested against some difficult to be 
controlled plants proposed by Astrom and Hagglund for 
benchmarking. It is evident that the conventional design 
approach fails in most cases due to the use of only one pair of 
dominant poles. This does not mean that the root-locus based 
method would fail. The authors believe that the method  can be 
successfully applied if  more complicated pole and zero 
assignments are considered with an aid of computing. The 
paper offers contributions to optimal design of the PIDA 
controller using search methods. The proposed method can be 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
viewed as optimal pole placement with an aid of the gradient 
search (GS) and the genetic algorithm (GA). The algorithms 
are reviewed in the paper. Simulation results indicate that the 
GA-based method provide controllers with better closed-loop 
performances in comparison with the GS-based method. The  
paper also elaborates the control system implementation for an 
AC motor speed control. An analog controller has been used to 
ensure real-time operation. To obtain realistic simulation 
results, the closed-loop speed control of a 90 W-3ph induction 
motor is simulated on PSIM. Experimental results with a 
PWM inverter drive show a very good agreement with 
simulations, and indicate that the controlled motor responds 
about 2.4 times faster than the open-loop motor does. 
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 encoder signals 
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(a) 
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Fig. 12 Experimental speed responses of the motor. (a) without controller, (b) with controller 
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APPENDIX 

Derivations of (4) and (7). 
Case I – Proper plant 
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Characteristic equation of the closed-loop system is 
 

11 0 1

0

( )

1
n np d e a b z ka ka

s s
ka

− + + + + + +
+  + 

 

2 1 0

1 2 2

0

3 2 1 0

1 2 3 3

0

( ) ( ( ))

( )

1

( )

( ( )) ( )

1

−

−

 + + + + + + 
  

+ + + +  +
 +
 
  

 + + + +  
  

+ + + + + + +  +
 +
 
  

n

n

p d e p de ab z b a ka

a b z ka ka
s

ka

p d e p dep abzka

ab z b a ka a b z ka ka
s

ka

 

     .

.

.

              .

.

.

         .

.

.

            .

.

.

 

1 2 3

2 1 3

0

1 2

1 2

0

( )

( ( )) ( )

1

( )

( ( )) ( )

1

− − −

− −

− −

−

 + + + +  
  + + + + + + +  +

 +
 
  

 + + +  
  + + + + + +  +

 +
 
  

n n n n

n n n

n n n

n n

p d e p dep abzka

ab z b a ka a b z ka ka
s

ka

d e p dep abzka

ab z b a ka a b z ka
s

ka

1

0 0

( ( ))
0

1 1
n n n ndep abzka ab z b a ka abzka

s
ka ka

−   + + + +
+ + =   + +   

 (a.2) 

 
Equate (a.2) with 1

1 ... 0m m
ms sα α−+ + + =  (m=n+3), one can 

obtain (a.3)-(a.9) 
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, and hence the following equation is obtained 
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Case II – Strictly proper plant 
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Characteristic equation of the closed-loop system is 
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Equate (a.12) with 1

1 ... 0m m
ms sα α−+ + + =  (m=n+3), one can 

obtain (a.13)-(a.19) 
 

1 1 1( )d e ka pα+ + = −                                                        (a.13) 

 

1 1 2 2 2( ) ( )d e p de a b z ka ka pα+ + + + + + = −                   (a.14) 

 

2 1 1 2

3 3 3

( ) ( ( )) ( )

α

+ + + + + + + +

+ = −

d e p dep ab z b a ka a b z ka

ka p
       (a.15) 

.

.

.

 

1 2 3 2

1

( ) ( ( ))

( ) α
− − − −

−

+ + + + + +

+ + + + = −
n n n n

n n n n

d e p dep abzka ab z b a ka

a b z ka ka p
       (a.16) 

 

1 2 1

1

( ) ( ( ))

( ) α
− − −

+

+ + + + + +

+ + + =
n n n n

n n

d e p dep abzka ab z b a ka

a b z ka
         (a.17) 

 

1 2( ( ))n n n ndep abzka ab z b a ka α− ++ + + + =                       (a.18) 

 

3n nabzka α +=                                                                     (a.19) 
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, which is (7). 
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