
 

 

 

Abstract - An automatic 3D model retrieval from freehand 

conceptual sketches is a key target for both commercial software 

houses and academic research. Unfortunately, most of the approaches 

are not suitable for properly translating stylistic sketches into 3D 

models. In order to carry out this 3D model conversion, the first task 

to be dealt with is to turn raster data (3D or 2D free-form curves) into 

vectorial ones. Such a task represents a key issue which has been 

addressed by a number of authors but still far to be exhaustively 

worked out. To address this challenge, this work presents a new 

method that allows to fit 2D unordered point cloud data with 

Multiple Incident Splines (MISs). At the heart of the proposed 

approach are two main procedures: the first one is based on 

Euclidean Minimum Spanning Tree (EMST) and Principal 

Component Analysis (PCA) for detecting the main local directions of 

the point cloud and to order its points while preserving original 

topology; the second is meant to fit ordered point clouds with spline 

curves providing a robust intersection and vertex detection. 

The proposed methodology, tested on a number of case studies, 

proves to preserve the original topology more efficiently than 

alternative techniques supplied by commercial vectorization software 

packages. 

 

Keywords— Image Processing, freehand sketches, curve 

reconstruction, unorganized point cloud, styling. 

 

I. INTRODUCTION 

N the last decades design received a major contribution 

from the use of computers, with remarkable impact in terms 

of time, cost and reliability. Computer Aided Design (CAD) 

affords effective solutions for automating the whole product 

development chain process. In most cases, CAD packages may 

be considered a starting point for new product development; 

however,  when concept development and/or stylistic design is 

a primary issue, drawings are executed by stylists mainly using 

freehand sketches that are not intended as a finished work 

(Fig.1). In fact, designers produce a multitude of rough 

sketches early in the design process as a way to explore 

different shapes and styles [1]. These sketches are handed over 

to computer modelers that use it as a visual reference for 

creating 3D models since a key advantage of the conventional 

CAD modelling rely to faster modification of models and to a 

more realistic feeling in understanding object style.   

 
 

 
Fig. 1 – Example of a freehand sketch 

 

 As a consequence, multiple iterations between style 

designers and CAD modelers are necessary in order to achieve 

the desired result [2]. Accordingly, since tridimensional 

representation of a concept sketch is one of the crucial phases 

in product development process, it results to be very time 

consuming and, evidently, characterized by a certain amount 

of subjectivity in the interpretation of concept sketches. 

Moreover, due to the significant effort and expertise required 

for 3D modeling, only a few select candidate concepts will 

typically pass to the next stage, while many others are 

prematurely abandoned.  

Nowadays, conversion from 2D sketches into 3D CAD 

models is a key target both for commercial software houses 

like Dassault Systems
®
 and Autodesk

®
 and for academic 

research [3-13]. Unfortunately, to the best of authors’ 

knowledge, most approaches are applied to mechanical 

drawings described by orthogonal projection views where 

features are, commonly, points, lines, arcs and circumferences. 

Style objects are, indeed, represented by free-form curves 

(splines); as a consequence such approaches cannot be suitable 

for properly translating stylistic sketches into 3D models. In 

order to carry out this 3D model conversion the first task is to 

turn raster data (3D or 2D) representing free-form curves into 

vectorial ones.    

One of the most common problem to be faced when 

vectorizing raster data (e.g. images obtained from blueprints 

scanning) is the fitting of analytical curves to pixel clusters 

representing drawing sketches.  

Fitting vectorial curves to point datasets has been widely 

studied and many techniques, theories and commercial 

software tools have been developed. Depending on input data 

typology, the research approaches proposed in the scientific 
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literature may be divided into two main families:  

1) Ordered point cloud-based approaches; when the order of 

data points is assumed to be known, the fitting curve can be 

easily obtained by minimizing error functions or by means of 

computational geometry methods [14-17]. 

2) Unordered point cloud-based approaches. For many 

practical problems, point cloud data are, usually, unordered 

i.e. the order of data points is unknown. In this case the key 

problem is to transform the unordered point cloud into an 

ordered one. The order, of course, needs to be related to the 

geometry of the point cloud. When the order is known, curve 

reconstruction can be achieved by interpolating or fitting an 

ordered point set with a parametric curve. 

A number of approaches have been developed for solving 

this issue; for instance, Pottmann [18] maps data points to 

binary images, then fits a curve to the image’s medial axis. 

Clustering the point cloud data is another commonly used 

approach: Yan [19], for instance, presents a fuzzy curve-

tracing algorithm that works by means of several clusters 

identified by fuzzy algorithms. In a more recent work, Liu et 

al. [20] devise a new algorithm based on the idea that a spline 

curve can be made to crawl and stretch along the curve shape 

defined by a point cloud.  

Another typical issue for unordered data sets is the presence 

of noise. Levin [21] provides a Moving Least Squares (MLS) 

approach so as to clean noisy point cloud data. Lee [22] 

improves MLS by means of appropriate neighborhoods for 

regressions; the main weakness of this method is represented 

by the computational cost of iterating MLS. 

A common approach, which can also be found in 

commercial vectorization software packages, is to convert the 

original color or gray scale image into a binary ones and, 

subsequently, to perform a thinning procedure prior to 

vectorization step. Such an approach, though usually quite 

effective, is unsuitable in case image gray levels convey 

relevant geometrical information. Unfortunately, when point 

clouds present intersections or vertexes, most approaches tend 

to fail providing the correct topology. Actually, the problem 

with thinning algorithms is how to deal with junctions [23]; 

this aspect is confronted in Hough Transform (HT), 

Orthogonal Zig-Zag (OZZ), Sparse Pixel Vectorization (SPV) 

and Mesh based methods [24-28]. The quality of lines detected 

by means of HT-based implementations is far less precise for 

slanted lines. Moreover, the HT-based methods can yield bars 

only, and cannot generate polylines. OZZ is able to recovery 

cross junctions and edges but, like in HT based methods, is 

affected by poor quality of line geometry. Mesh based 

approach is also appropriate for junction analysis but results to 

be a non-trivial challenge when noisy drawings are processed. 

SPV method and its implementation seem to be the most 

suitable making use of a series of iterative steps and 

continuation conditions.  

As a consequence alternative approaches for fitting 2D point 

clouds taking into account intersections and vertexes are still 

advisable, especially in the outlook of extending 2D 

reconstruction method to 3D one.   

The main idea of the present paper is to provide an 

algorithm able to fit unordered point cloud data with a set of 

weighted B-spline curves. The provided method is capable of 

1) computing B-spline weights  on the basis of raster data gray 

levels, 2) identifying and reconstructing vertexes and cross 

junctions by fitting point clouds with multiple incident splines 

and 3) strongly limiting  topological errors in B-spline fitting 

by using Euclidean Minimum Spanning Tree (EMST) 

technique.  

The provided method has been carried out, by means of a 

series of Matlab
®
 routines, according to the following tasks: 

 

-   Image processing 

- EMST + PCA – based polyline extraction  

- Gray-level weighted B-spline curves fitting 

- Multiple Incident Splines (MISs) algorithm 

 

In order to deeply benchmark the performance of the 

proposed method, a number of tests have been carried out 

confronting the devised method with two commercial 

vectorization software packages.  Due to their vectorization 

techniques, that make use of 2D thinning processes as 

necessary preprocessing tasks, the obtained vector entities are 

affected by common thinning problems as spurious branches 

or topology alterations. These limitations are overcome by 

using MISs algorithm described in this work. 

II. IMAGE PROCESSING 

Let J be a digital raster image obtained, for instance, by 

scanning a sketch or a blueprint (Fig. 1). Generally speaking, 

the image is treated as a grid of discrete elements (pixels), 

ordered from top to bottom and left to right.  

Sketch contours are represented by a sequence of pixels jm,n 

characterized by discrete couples of coordinates referred to an 

orthogonal coordinate system centered on the top left corner of 

the image. Each pixel is, on its side, described by a triplet of 

values in the RGB color space [29] or, possibly, by a single 

brightness value. In the first case, a simple transformation from 

RGB to gray scale image is required (Fig. 2).  

 

 
 

Fig. 2 – Example of a gray scale image. Some details are highlighted. 

 

An adaptive thresholding method [30] is applied according 

to [31] to determine the pixels composing the sketch contour. 

The result of this thresholding is a binary image B where the 

sketch contour is represented by white pixels (i.e. bm,n = 0) 
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while the background is represented by black pixels (i.e. bm,n = 

1).   

According to [31], it is possible to assign a weight to each 

contour pixel on the basis of its brightness by means of the 

Hadamard product of the 1-complement B’ of B and the 

inverse of the original image J . The result is a new image W 

(Fig. 3) whose non-zero elements wm,n are the weight values of 

the contour pixels. 

 
 

Fig. 3 – Image W. Non zero values represents the weight values of 

the contour pixels to be used for weighted B-spline reconstruction. 

III. EMST+PCA BASED POLYLINE EXTRACTION 

In order to extract the local geometric features of the point 

cloud, a combination of EMST and Principal Component 

Analysis (PCA) has been used with the aim of overcoming the 

limitations provided in [31].  

By definition, point cloud consists of the only pixels of image 

B’ satisfying the condition bm,n = 1. Obviously, the number of 

points composing the cloud is: 

 

 ji jib
, ,                       (1) 

  

The method described in [31] first defines a variable sized 

cluster C centered in a ―seed point‖ bh,k randomly extracted 

from the point cloud. Successively, the cluster centroid χ is 

determined as the weighted mean values of all the points inside 

the cluster C. Expressing the coordinates of the pixels 

belonging to the cluster C in a new coordinate system whose 

origin coincides with χ and whose axis are parallel to the 

original ones it is possible to define a matrix ψ of the new 

pixel coordinates. Such a matrix can be processed by means of 

PCA in order to evaluate its eigenvalues and eigenvectors (i.e. 

the principal inertia axes of the cluster).  

If the ratio between the smallest and the greatest eigenvalue 

tends to 1 (e.g. is greater than 0.9), the cluster is considered to 

have no ―preferred‖ orientation; thus the cluster radius has to 

be increased. Otherwise the cluster radius is considered to be 

―correct‖ and, according to the method provided in [32] it is 

possible to determine the Main Local Direction (MLD) vector 

of the cluster itself. With this approach it is possible to define 

a Size Variable Cluster (SVC) whose MLD is determined (Fig. 

4).  

The two intersection points between the MLD and the 

circumference with radius r define the geometric centers of 

two new SVCs (Cp1 and Cf1) to be processed as shown in Fig 5. 

Analogously to the first cluster, the two centroids χf1 and χp1 

of clusters Cp1 and Cf1 are determined. The segments from χp1 

to χ and from χ to χf1 define a portion of a starting polyline.  

 

 
Fig. 4 – First step of the polyline construction procedure applied to a 

cluster centered in the ―seed point‖ bh,k. 

   

 
Fig. 5 – Second step of the polyline construction procedure. 

 

Starting from χf1 the procedure is iteratively carried out until 

all the points of the cloud are used. The final result is a 

polyline to be fitted by means of weighted B-splines.  

Such a method may fail when a cluster encloses sets of 

points belonging to different topological entities (Fig. 6).  

 

 
Fig. 6 – Generic cluster C enclosing set of points belonging to two 

different topological entities. 

 

This is due to the fact that the MLD may be wrongly 

evaluated as depicted in Fig. 7. 
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Fig. 7 – Wrong evaluation of the MLD resulting into a wrong 

polyline construction. 

 

In this eventuality, the new cluster jump from a topological 

entity to another thus resulting in a wrong polyline 

reconstruction for the whole point cloud (Fig. 8).   

 

 
 

Fig. 8 – Wrong polyline construction. 

 

In order to overcome the limitations of the described 

method, the EMST technique is applied to the point cloud.   

As widely known, given an undirected graph (i.e. not 

ordered pairs bm,n of vertices belonging, for instance, to a point 

cloud), a spanning tree of that graph is a sub-graph connecting 

all the vertices together. A weight to each edge can be 

assigned in order to represent how unfavorable it is, and a 

weight to a spanning tree can be also computed as the sum of 

the weights of the edges in it. The minimum spanning tree 

(MST) is the spanning tree with minimum weights with respect 

to any others. If the weight of the edge between each pair of 

points is the Euclidean distance between those two points the 

MST becomes the EMST. The result of the EMST application 

to a point cloud is a set of connected  points (using lines) such 

that the total length of all the lines is minimized and any point 

can be reached from any other by following the lines (see Fig 

9). Mathematically speaking, the EMST provides: 

-  a  x  Adjacency Matrix [33] ( AM ) where the generic 

non-diagonal element ijam  is equal to 1 if and only if  

the i
th

 and the j
th

 points are directly connected in the 

EMST graph; 

- a   x  weight matrix   whose generic element ij  of 

each edge i.e. the Euclidean distance between each pair 

of points (i, j) directly connected. 

  

 
Fig. 9 – Result of the EMST method application. 

 

According to the results described above, it is possible to 

define into cluster C a sub-cluster C’ as the locus of points 

c’m,n  centered in c0  satisfying the two following conditions: 

 
222 )()( rnkmh                       (2) 

 


nmcc ,0 ,                          (3) 

 

Where: 

 

- (m,n) are the coordinates of c’m,n;  

- (h,k) are the coordinates of c0; 

- r is the cluster radius; 

- 
nmcc ,0 , is the shortest path between c0 and cm,n evaluated 

by means of the Adjacency Matrix AM  and the weight 

matrix  ; 

-   is a user defined tolerance. In the present work the 

value of such tolerance is set equal to 3r. 

 

Respecting Eq. 2 and Eq. 3, each new cluster C’ is defined 

by set of points that belong to the same topological entity 

(since the path from two points belonging to two different    

topological entities is greater than the defined tolerance). In 

other words, points belonging to original cluster C that are 

topologically ―unconnected‖ with the set of points comprising 

the ―seed point‖ bh,k, are discarded in evaluating the cluster 

centroid. Accordingly the new cluster centroid χ’pi (see Fig. 

10) is a vector whose elements are the weighted mean values 

of all the points c’m,n belonging to C’: 

 

],[' nmpi                          (4) 
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Fig. 10 – Cluster C’. By discarding points belonging to the second 

topological object the MLD is correctly evaluated. 

 

Analogously to what described in [31], starting from the 

new first cluster centered in a ―seed point‖ randomly extracted 

from the point cloud, the devised procedure carries on by 

determining the MLD vector of the cluster and by defining two 

new centroids χ’f1 and χ’p1. Starting from χ’f1, the procedure is 

iteratively carried out until, at the i
th

 iteration, one of the 

following conditions occurs:  

1. the cluster at the i
th

 iteration C’i contains no point that 

are not contained in C’i-1 (i.e. an endpoint of the point cloud 

has been reached);  in this case the iterative process has to be 

continued starting from χ’p1. 

2. the C’i region crosses one or more polylines different 

from the one in process (i.e. point cloud junction has been 

reached); in this case two additional conditions have to be 

considered: 

2.1. the C’i region contains one or more vertexes 

belonging to one of the intercepted polylines; the 

vertex whose distance from the cluster center is the 

minimum allowable defines the interruption point of 

the intercepted polyline (Fig. 11a). Such a polyline is 

then divided into two new polylines by removing the 

shortest segment linked to the interruption point (Fig. 

11b). As a consequence, points defining the removed 

segment are discarded when the spline is built;        

2.2. the C’i region contains one or more segments 

belonging to one of the intercepted polylines (i.e. any 

vertex of such polylines is enclosed in the cluster but 

the polyline is crossed by cluster boundaries) as 

depicted in Fig. 12a. The intercepted polyline is then 

divided into two new polylines by removing the 

intercepted segment (Fig. 12b). As a consequence, 

points defining the removed segment are discarded 

when the spline is built;         

If the point cloud is composed by a single topological entity 

(i.e. no junctions or vertexes exist), the above conditions 

assure to trace the only possible polyline since all the points   

(in the point cloud) have been processed. Vice versa, when 

more than one topological entity exists, once traced the first 

polyline, a new seed has to be randomly extracted from the 

remaining points and a new polyline is evaluated. The 

procedure goes on until all the points are processed.  

 

 

 

  
(a) (b) 

Fig. 11 – Polyline vertex interception. 

  

  
(a) (b) 

 Fig. 12 – Polyline edge interception. 

 

Referring to the case of Fig. 6, no jump occurs and the 

topology of the point cloud is preserved (Fig. 13). 

 

 
Fig. 13 – Topologically correct polyline 

IV. GRAY-LEVEL WEIGHTED B-SPLINE CURVES FITTING 

The final result of the previous task is to obtain a single 

polyline for each topological entity describing the point cloud.  

For each polyline, a B-Spline called ―ordering curve‖ (OC), 

interpolating only the polyline points, is traced (Fig. 14). 

The purpose of such B-Splines consists of sorting the point 

cloud points, according to the order of their projection on the 

OC. 

The point projection problem is to find the closest point on 

the curve to a given point. In this work this problem has been 

solved by a numerical, approximated approach as follows:  

1. given a cluster Cu selected among the ones defined in 

section III, the clusters Cu-1 and Cu+1 are considered along 

with their centroids χu-1 and χu+1. 

2. the OC, which by definition interpolates all the centroids 

χi, is uniformly sampled in the interval delimited by χu-1 

and χu+1. The number of OC samples is set equal to three 

times the global numerosity of the above considered 

clusters. 
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3. the projection of each point p belonging to Cu on the OC 

is the point ps’ that is its nearest among the OC sample 

points ps: 

 

 sss ppppp  min: ''              (6) 

 

4. the procedure carries on iteratively for each cluster. 

Obviously, the points belonging to previously processed 

clusters are not further considered. 

The final result of this procedure is a set of implicit ordered 

point clouds (one for each polyline).  

 

 
Fig. 14 – Ordering curves  

 

In order to obtain a set of explicit ordered point clouds, a 

normalized curvilinear coordinate s for each of the OCs has to 

be defined. Using one of the OC endpoints as the coordinate 

origin, it is possible to assign a value s for each point 

projection. 

Given an ordered set of points (one for each OC), it is 

straightforward to fit an approximating B-Spline curve called 

Fitting Curve (FC). The B-Spline which is used to fit the 

original points is built so that:  

- its parameter t varies between 1 and a with unitary step, 

where a is the total number of the points belonging to 

the original point cloud;  

- for each integer value ti of t, the spline point of parameter 

ti is biunivocally correspondent to the i
th

 point of the 

ordered cloud. Thanks to this correspondence, it is 

immediate to evaluate the Maximum Fitting Error 

(MFE) as: 

 

  ttt
at

ptFCppWMFE 


)(,max 2,1,
1

         (7) 

The fitting task starts with the generation of a two-knot first 

approximation FC; the initial knots, which have a multiplicity 

of 4, are coincident with the two OC endpoints. 

This FC, along with the ones subsequently computed, is 

generated according to Weighted Least Squares (WLS) 

technique [34] where the weighting coefficient for each point 

of coordinates (m,n) is wm,n (see section II). 

By means of an iterative procedure, FC is updated by 

adding new knots with the aim of obtaining the necessary 

degree of approximation; in order to guarantee the desired 

accuracy, a user defined tolerance value (tol) is required. The 

final result of the procedure is a set of FCs, shown in Fig. 15. 

 

 
 

Fig. 15 – Fitting curves  

V. MULTIPLE INCIDENT SPLINES (MISS) ALGORITHM 

Once the set of FCs is determined, a junction procedure 

needs to be used in order to join the respective endpoints 

which are ―sufficiently close‖ one to the other. A preliminary 

selection of the endpoints to be joined is also necessary. 

The selection-joining procedure can be described as 

follows: 

1. the set E of all the endpoints is defined; 

2. until set E is not empty, a random endpoint ei belonging 

to E is selected; 

a. a threshold value t is defined so that t=5r, where r 

is the mean point cloud thickness; 

b. additional endpoints with distance from ei lower 

or equal to t are sought, in other words points 

belonging to   ),(),(|2 teItexdxI iiei
 ; in 

case new endpoints (for instance ej, ek) are found: 

i. a ―union set‖ US is defined so that US={ei, 

ej, ek}; 

ii. for the newly found endpoints ej and ek a new 

search is performed in 
jeI and 

keI  for 

possible endpoints not yet belonging to US, 

in case new endpoints are found, they are 

added to US; this step is repeated until none 

of the endpoints belonging to US contains in 

its t radius neighborhood new elements of E 

which do not already belong to US; 

iii. All the endpoints belonging to US are joined 

according to the procedure described later; 

iv. the endpoints in US are deleted from set E 

and the procedure is repeated from step 2; 

c.  if no endpoints are found in 
ieI , ei is deleted from 

set E and the procedure is repeated from step 2. 

 

In order to devise an effective joining procedure it is 

necessary to emphasize that, generally speaking, FCs geometry 

in the neighborhood of endpoints is often perturbed (Fig. 16). 

This is due to the presence of points falling in the clusters of a 
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FC branch but which, in fact, belong to different branches. As 

a consequence, the joining procedure has been devised so as 

not to be ―confused‖ by such perturbed regions.  

Endpoint joining is performed as follows (see Figs. 16 and 

17): 

1. the barycentre B1 of the group of endpoints to be joined 

(points belonging to US) is computed; 

2. the endpoint em belonging to US with maximum 

distance (dm) from B1 is identified; 

3. ),( 11 rBI  with r1=α·dm is defined (α=1.2 was selected, 

but different values can be assumed according to point 

cloud characteristics); 

4. The barycentre B2 of the point cloud points inside 

),( 11 rBI  is computed; 

5. ),( 22 rBI  with ds is the maximum distance of endpoints 

in US from B2 and r2=β·ds (β =1.2 was selected, but 

different values can be assumed according to point 

cloud characteristics);  

6. the knots inside ),( 22 rBI  are deleted from the knot 

sequence of the FCs whose endpoints belong to US; 

note that, according to this step, the deleted knots are: 

the first one (or the last one) in the sequence and 

possible additional knots adjacent to it. 

7. each FC identified in step 6 (e.g. FCi), is extended by 

using an additional spline segment so that it starts in 

correspondence of the first undeleted knot of FCi, is 

tangent to FCi in such a knot and ends on B2. 

The FCs resulting from this procedure is the final set of 

Multiple Incident Splines (MISs) fitting the original point 

cloud.  

 
Fig. 16 – FCs endpoints detection 

 
Fig. 17 – FCs endpoints junction procedure 

 

VI. RESULTS 

In Figure 18 the result of the proposed method on a case 

study image is compared against two alternative B-spline 

fitting techniques provided by two different commercial 

vectorization software packages, hereafter named SwA and 

SwB. 

Both SwA and SwB make use of a preprocessing phase in 

which an automatic thresholding is performed. The result of 

this phase is to provide a binary image loosing the capability 

of weighting single pixel on the basis of its brightness. 

Successively a thinning process is performed and a B-spline 

(or a set of B-splines) is, then, fitted to the thinned image 

according to a least square method. 

As a consequence the algorithms used by SwA and SwB 

often bring in a set of pathological cases typical of thinning 

processes (e.g. spurious segments, topological errors, etc.).  

The fitting curve (MISs) obtained by means of the solution 

proposed in this paper proves to be the most effective in 

preserving the original shape. As shown in case B of Fig. 18, 

SwB fails in vectorizing intersections and a topological error 

occurs since two vertexes are built instead of the actual one. 

Moreover, the proposed MISs algorithm is particularly 

suitable for fitting free-form curves. In fact, it is more reliable 

than the others in detecting the right path when curvature 

variations happen without false vertex introduction (as shown 

in case A of Fig. 18).  As a consequence the proposed method, 

dealing with a fundamental task for translating 2D sketches 

into 3D CAD models, proves to be mainly effective in 3D 

reconstruction of freehand conceptual sketches (stylistic 

sketches). 
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Fig. 18 – Comparison between the proposed method (MISs, green 

curves) and two different commercial software packages (SwA, blue 

curves and SwB, red curves). 

 

CONCLUSIONS 

In the present work an approach to fit 2D unordered point 

cloud data with Multiple Incident Splines (MISs), whose 

weights are computed on the basis of raster data gray levels, is 

presented.  

The provided method has been developed by means of a 

series of Matlab
®
 routines. In particular, in order to obtain 

ordered point clouds starting from unordered ones, a novel 

approach, based on Euclidean Minimum Spanning Tree 

(EMST) and Principal Component Analysis (PCA), has been 

devised and tested on a number of case studies. Moreover a 

novel robust method for fitting ordered point clouds with 

spline curves has been provided and validated. Such a method 

is particularly suitable for fitting free-form curves; in fact, it is 

capable of a more reliable intersection and vertex detection 

with respect to different approaches also implemented in 

commercial vectorization software packages. 

Future work will be addressed to a 3D generalization of the 

proposed method in order to reconstruct 3D models starting 

from 2D freehand sketches provided by stylists. 
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