
 

 

  
Abstract—This paper deals with calculation of all stabilizing 

Proportional-Integral (PI) and Proportional-Integral-Derivative (PID) 
controllers. The stability region, representing the area of possible 
placement of the controller parameters which guarantee feedback 
stabilization of a controlled plant, is obtained via plotting the stability 
boundary locus in the P-I plane or the P-I-D space by means of the 
Tan’s method or the Kronecker summation method. These 
approaches are subsequently extended in order to compute robustly 
stabilizing PI controllers for interval plants. Moreover, the 
stabilization techniques are combined with the desired model method 
which is used for final controller design. The applicability of the 
methods is demonstrated on three control examples. 
 

Keywords—Desired model method, Kronecker summation 
method, linear control, PI controllers, PID controllers, stability 
regions, stabilization, robust stabilization, Tan’s method.  

I. INTRODUCTION 
VER 95% of contemporary practical industrial 
applications use PID (or PI as a special case) control 

algorithms [1]–[7] and thus the appropriate PI(D) control 
design is still very topical especially for systems under some 
nonlinearities, perturbations or time-variant behaviour. 
Without any doubts, the absolutely primary and essential 
requirement of all applications is the stability of closed control 
loop. 

There is an array of techniques to computation of 
stabilizing PI(D) controllers in the literature such as 
calculations presented in [8], the Tan’s method from [9], [10] 
or the Kronecker summation method published in [11]. 
Moreover, these techniques have been also extended for 
robust stabilization of interval plants through combination 
with the sixteen plant theorem [12], [13]. However, all those 
tools solve “only” the problem of finding the area of all 
possible stabilizing or robustly stabilizing variations of PI(D) 
controller parameters. For the control design itself, potentially 
with additional safety or performance specifications, another 
method has to be utilized. For the purpose of this paper, the 
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desired model method, formerly known as the inversion 
dynamics method, has been applied [14]. 

This paper is the extended version of the contribution [15] 
and presents the PI and PID controller design using the 
combination of preliminary stability regions computation via 
stability boundary locus approach (the Tan’s method or the 
Kronecker summation method) and consequent suitable 
parameters tuning with the assistance of the desired model 
method. On the top of that, the paper outlines an approach to 
design of robustly stabilizing PI controllers based on the 
combination of the stability boundary locus computation and 
the sixteen plant theorem. The efficiency of the studied 
techniques has been verified through a trio of simulation 
examples where the various models have been successfully 
stabilized or robustly stabilized.  

The work is organized as follows. In Section II, the basic 
ideas and rules for computation of stabilizing regions for PI 
controllers are described. The Section III than follows the 
previous one with the illustrative example. Further, the 
calculation of stability regions for PID controllers is presented 
in Section IV with supplementing example in Section V. 
Subsequently, Section VI provides the basics of robust 
stabilization using PI controllers and, again, Section VII 
contains accompanying example. And finally, Section VIII 
offers some conclusion remarks. 

II. COMPUTATION OF STABILITY REGIONS FOR PI 
CONTROLLERS 

Assume the classical and very well known feedback control 
system shown in Fig. 1, where C(s) is a controller, G(s) 
represents a controlled system, and signals w(t), e(t), u(t) and 
y(t) denote a reference value, tracking (control) error, 
actuating (control) signal and output (controlled) variable, 
respectively. 

 
 w(t) e(t) u(t) y(t) 

-
( )C s ( )G s  

 
Fig. 1 closed-loop control system 

 
The primary and essential step is to determine the parameters 
of a controller which guarantee stabilization of this feedback 
loop containing the plant: 

Calculation of all stabilizing PI and PID 
controllers 
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B sG s
A s

=  (1) 

 
First, the case of PI controller given by transfer function: 

 

( ) I P I
P

k k s kC s k
s s

+= + =  (2) 

  
is considered. 

One of the possible approaches to computation of 
stabilizing PI controllers, the Tan’s method, has been 
published in [9], [10]. It is based on plotting the stability 
boundary locus. The substitution s jω=  in the function (1) 
and subsequent decomposition of the numerator and 
denominator into their even and odd parts lead to: 

 
2 2

2 2

( ) ( )( )
( ) ( )

E O

E O

B j BG j
A j A

ω ω ωω
ω ω ω

− + −=
− + −

 (3) 

 
Then, the expression of closed-loop characteristic polynomial 
and equaling the real and imaginary parts to zero result in the 
relations for proportional and integral gains: 

 
5 4 6 2

1 4 2 3

6 1 5 3

1 4 2 3

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

P

I

P P P Pk
P P P P
P P P Pk
P P P P

ω ω ω ωω
ω ω ω ω
ω ω ω ωω
ω ω ω ω

−=
−
−=
−

 (4) 

 
where 
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 (5) 

 
Simultaneous solution of equations (4) and plotting the 
obtained values into the ( ),P Ik k  plane define the stability 
boundary locus. The obtained curve together with the line 

0Ik =  split the ( ),P Ik k  plane into the stable and unstable 
regions. The decision if the respective region represents 
stabilizing or unstabilizing area can be done using a test point 
within each region. Nevertheless, the appropriate frequency 
gridding is a potential problem. Thus, the Nyquist plot based 
technique from [8] can be used for improvement of the 
method. In this embellishment, the frequency can be separated 
into several intervals within which the stability or instability 
can not change. The borders of such intervals are defined by 
the real values of ω  which fulfill the equation: 

 
 

[ ]Im ( ) 0G s =  (6) 
 
Certainly, obtained intervals are very helpful for the proper 
frequency scaling. 

As it has been already indicated, the Tan’s approach from 
[9], [10] is not the only possible. For example, an alternative 
way, known as the Kronecker summation method, has been 
published in [11]. It is based on interesting properties of the 
Kronecker sum operation. 

The work [11] has proved that each couple ( ),P Ik k  
satisfying: 

 
( )det 0M M⊕ =  (7) 

 
determines the boundary of stability. The symbol ⊕  stands 
for Kronecker summation [16] and M is a square matrix: 

 

0 1 2 1

0 1 0 0 0
0 0 1 0 0

0 0 1
0

0 0 0 0 1
( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

P I P I P I n P I

n P I n P I n P I n P I

M

f k k f k k f k k f k k
f k k f k k f k k f k k

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − −⎢ ⎥
⎣ ⎦

 (8) 

 
where the coefficients in the last row follow from the 
characteristic polynomial of the closed-loop connection from 
Fig. 1: 

 
( )
1 0

( ) ( ) ( )

( , ) ( , ) ( , )
CL P I

n
n P I P I P I

P s A s s B s k s k

f k k s f k k s f k k

= + + =

= + + +
 (9) 

 
Analogically to the Tan’s method, the determination of the 
stabilizing areas can be done using a test point within each 
region. 

The computation process is going to be illustrated in the 
following example. 

III. EXAMPLE I – STABILIZING PI CONTROL 

A. Calculation of all stabilizing PI controllers 
Consider a third order controlled system from [17] given by 

transfer function: 
 

3 2
5( )

2 3 4
G s

s s s
=

+ + +
 (10) 

 
The aim is to compute all stabilizing PI controllers. First, the 
Tan’s method has been applied. The even and odd parts in 
plant (3) are: 
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The relations (4) take the form: 

 
2

4 2

( ) 0.4 0.8

( ) 0.2 0.6
P

I

k

k

ω ω
ω ω ω

= −

= − +
 (12) 

 
and the suitable frequency interval for plotting the stability 
boundary locus can be pre-calculated according to (6) with 
outcome: 

 
( )0; 1.7321ω ∈  (13) 

 
Simultaneous solving the equations (12) and plotting the 
results into the ( ),P Ik k  plane leads to the stability region from 
Fig. 2. 
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Fig. 2 stability region for system (10) 

 
The fact that the inner space represents the area of stability 

can be simply verified using an arbitrary pair ( ),P Ik k  from 
this region, calculating the corresponding closed-loop 
characteristic polynomial and testing its stability. The 
instability region then resides in the outer part which can be 
verified by the same procedure. 

Alternatively, the very same result can be obtained via the 
Kronecker summation method. The closed-loop characteristic 
polynomial (9) takes the form: 

 
( )4 3 2( ) 2 3 5 4 5CL P IP s s s s k s k= + + + + +  (14) 

 
Thus, the matrix constructed on the basis of (8) is: 

 

0 1 0 0
0 0 1 0
0 0 0 1
5 5 4 3 2I P

M

k k

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥− − − − −⎣ ⎦

 (15) 

 
Next, one has to calculate the pairs ( ),P Ik k  which fulfill 

the equality (7). They define the curve splitting the plane into 
the stable and unstable regions. Anyway, the final result is 
exactly the same as it has been already plotted in Fig. 2. 

B. Controller design 
Now, the natural question follows. How to choose the 

controller with desired performance from the pre-calculated 
stabilizing pool? In fact, the paper does not attempt to bring 
any novel control design method, but utilizes an existing one 
and combines it with the previous stabilizing approach. From 
the number of available techniques, the desired model method 
(formerly known as inversion dynamics method) [14] was 
applied. 

First of all, the appropriate mathematical model of the 
controlled plant is requested in order to obtain PI controller. 
For that reason, the third order transfer function (10) can be 
simply approximated by the first order one as: 

 

3 2

1.25 5 5( )
0.75 1 3 4 2 3 4NG s

s s s s s
= = ≈

+ + + + +
 (16) 

 
which corresponds with the one of desired transfer function 
forms: 

 

( )
1

dT s
N

KG s e
Ts

−=
+

 (17) 

 
where: 

 
[ ]
[ ]

[ ]

1.25

0.75 sec

0 secd

K

T

T

= −

=

=

 (18) 

 
The controller tuning is handled through the choice of 

closed control loop time constant Tw. Here, it was adjusted to: 
 

[ ]10 secwT =  (19) 
 

The parameters of the controller: 
 

1( ) 1P
I

C s K
T s

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (20) 

 
can be calculated according to [14]: 
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Thus, the final parameters of the controller in the form (2) are: 

 
0.06

0.08

P P

P
I

I

k K
Kk
T

= =

= =
 (22) 

 
The Fig. 3 shows the position of PI controller with 
coefficients (22) in ( ),P Ik k  plane. Thanks to the fact that this 
variation of parameters lies inside the stability region depicted 
in Fig. 2, the obtained PID controller stabilizes the plant (10). 
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Fig. 3 position of the controller (22) in ( ),P Ik k  plane 

 
The actual control behaviour can be found in fig. 4. 
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Fig. 4 control of plant (10) using PI controller (22) 

 

IV. COMPUTATION OF STABILITY REGIONS FOR PID 
CONTROLLERS 

Now, the problem of closed-loop stabilization is going to be 
solved once more but for the PID controller case. All principal 
assumptions remain the same as in the Section II, only the 
feedback compensator in Fig. 1 now takes the form of ideal 
PID controller: 

 
2

( ) I P I D
P D

k k s k k sC s k k s
s s

+ += + + =  (23) 

  
The analogical procedure presented in the Section II can be 

used for obtaining the stability boundary locus in the ( ),P Ik k  
plane for a fixed value of kD. It leads to a bit modified 
equations for proportional and integral gains: 
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where 
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Under new circumstances, the last two terms in (25) and thus 
also the parameters kP and kI (24) depend on derivative 
constant kD, which is practically considered to be chosen and 
fixed for one set of calculations. In other words, kD is preset 
and corresponding set of boundary parameters kP, kI is 
subsequently computed. The final stability region(s) are then 
successively plotted via the “ ( ),P Ik k  sections” in the 

( ), ,P I Dk k k  space. 
Another possibility consists in computing the stability 

boundary locus in the ( ),P Dk k  plane for a fixed value of kI. 
This scenario changes the relations (24) and (25), respectively, 
to: 

 
5 4 6 2

1 4 2 3

6 1 5 3

1 4 2 3
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 (26) 

 
and 
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Obviously, the final stability region(s) are given by the 
“ ( ),P Dk k  sections” in the ( ), ,P I Dk k k  space. 

However, the third option of obtaining the stability 
boundary – in the ( ),I Dk k  plane for a fixed value of kP – is 
not so straightforward, because then: 

 
1 4 2 3( ) ( ) ( ) ( ) 0P P P Pω ω ω ω− =  (28) 
 

Nevertheless, the stability region in the ( ),I Dk k  plane for a 
fixed kP can be obtained using the stability region in the 
( ),P Ik k  plane and ( ),P Dk k  plane together as it has been 
presented in [10]. In accordance with a linear programming 
based approach from [18], the stability region in the ( ),I Dk k  
plane under fixed kP is a convex polygon. 

Apart from the Tan’s method, the stabilizing variations of 
, ,P I Dk k k  parameters can be calculated also with the 

assistance of the Kronecker summation method which has 
been already outlined in the Section II. 

The specific example of calculation is given in the 
following part. 

V. EXAMPLE II – STABILIZING PID CONTROL 

A. Calculation of all stabilizing PI controllers 
The electronic laboratory model has been considered as a 

controlled system. Its transfer function adopted from [19], 
[20] can be written as: 

 

3 2

2.925( )
175.5 137.5 22 1

G s
s s s

=
+ + +

 (29) 

 
It means that the even and odd parts from the transfer function 
(3) are: 
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 (30) 

 
In the first instance, the derivative gain kD was fixed to 1 

and then the relations (25) and (24) were computed for a 
suitable range of nonnegative frequencies. The corresponding  
 
 

pairs of ( ),P Ik k  are plotted in Fig. 5. The stabilizing area lies 
inside the depicted shape as can be easily verified using an 
arbitrary ( ),P Ik k  from this region and testing the closed-loop 
characteristic polynomial stability. 
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Fig. 5 stability region for system (29) and for 1Dk =  

 
Afterward, the stability regions were computed and visualized 
for 11 equally spaced kD from 0 to 10. The result is shown in 
Fig. 6. 
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Thus, all the variations of PID controller parameters which are 
located inside the shape defined by stability regions from Fig. 
6 ensure the feedback stabilization of the plant (29). 

An alternative approach based on cutting the sections in 
( ),P Dk k  plane for a fixed value of kI is shown in Fig. 7, where 
11 equally spaced kI from 0 to 1 were assumed. As can be 
seen, the final 3-D stability regions from Figs. 6 and 7 cover 
the same areas. 
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Fig. 7 stability regions for system (29) and for 0,1Ik ∈  

 

B. Controller design 
The final selection of the controller from the stability region 

in Figs. 6 and 7 has been done by means of the desired model 
method [14], as in the previous example in Section III. 

In order to design an ideal continuous-time PID controller, 
the requested mathematical model of the controlled plant can 
be obtained via simple approximation: 

 

2 3 2
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s s s s s
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 (31) 

 
which concurs with desired transfer function: 
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where: 
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Now, the controller is tuned through the selection of closed 

control loop time constant: 
 

[ ]20 secwT =  (34) 
 

The coefficients of the PID controller: 
 

1( ) 1P D
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C s K T s
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⎛ ⎞
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 (35) 

 
have been computed as [14]: 
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Consequently, the parameters of the controller applicable to 
the transfer function (23) are: 
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As such variation of parameters is located inside the stability 
region from Figs. 6 and 7, the corresponding PID controller 
must stabilize the system (29). The Fig. 3 shows the control 
results. 
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Fig. 8 control of plant (6) using PID controller (14) 

 

VI. ROBUST STABILIZATION USING PI CONTROLLER 
So far, the stabilization of systems with fixed parameters 

has been the object of interest. Nevertheless, the works [9], 
[10], [11] have embellished an arbitrary feedback stabilization 
technique also for systems whose coefficients can vary within 
given intervals, i.e. for interval plants, simply by using its 
combination with the sixteen plant theorem [12], [13], [21]. 
Thus, this improvement leads to a tool for possible robust 
stabilization of the whole family given by interval plant using 
the single fixed PI controller. The sixteen plant theorem says 
that a first order controller robustly stabilizes an interval plant: 
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where , , ,i i i ib b a a− + − +  represent lower and upper bounds for 
parameters of numerator and denominator, if and only if it 
stabilizes its 16 Kharitonov plants, defined as: 
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=  (39) 

 
where { }, 1,2,3,4i j ∈ ; and 1( )B s  to 4 ( )B s  and 1( )A s  to 4 ( )A s  
are the Kharitonov polynomials for the numerator and 
denominator of the interval plant (38). 

Remind that the construction of Kharitonov polynomials 
e.g. for the numerator interval polynomial: 

 

0
( , ) ;

m
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is based on use of the lower and upper bounds of interval 
parameters in compliance with the principle [22]: 
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Consequently, the robust stabilization of an interval plant 

directly follows from the simultaneous stabilization of all 16 
fixed Kharitonov plants. Thus, the final area of stability for 
original interval plant is given by the intersection of all 16 
related partial areas obtained individually using the techniques 
from the Section II. All this process is going to be elucidated 
in the following example. 

VII. EXAMPLE III – ROBUSTLY STABILIZING PI CONTROL 

A. Calculation of all robustly stabilizing PI controllers 
Suppose the controlled process described by third order 

transfer function with interval parameters, which is adopted 
from [12], [20]: 
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Assembling the 16 Kharitonov plants according to (39), 

e.g.: 
 

1,1 3 2

0.75 0.75( )
3.25 8.75 0.75

sG s
s s s

+=
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 (43) 

 
and computing/plotting all 16 corresponding stability regions 
lead to the final stability region determined by their 
intersection. The result is visualized in Fig. 9, where the open 
highlighted area represents the suitable variations of PI 
controller parameters which robustly stabilize the interval 
plant (42). 

-15 -10 -5 0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

k
P

k I

Stability Region

 
Fig. 9 stability region for the interval plant (42) 

 

B. Controller design 
Again, the desired model method [14] has been utilized for 

final controller tuning. Computing the average values of 
interval parameters in transfer function (42) and subsequent 
approximation by the first order system results in the nominal 
system, which similarly to the example in Section III fits one 
of the desired models: 

 
1 0.2( )

9 5 1.8 1 1N
KG s

s s Ts
= = =

+ + +
 (44) 

 
The closed control loop time constant has been selected: 

 
[ ]1 secwT =  (45) 

 
which influences the parameters of the controller (20): 

 
1.8

9
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I
P

w

T T
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= =
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Actually: 

 
9

5

P P

P
I

I

k K
Kk
T

= =

= =
 (47) 

 
Such parameters reside in the stability region from Fig. 9 

and thus the closed loop system with the PI controller (47) and 
interval plant (42) is robustly stable. The control results from 
Fig. 10 visually confirm the robust stability. It shows the 
control responses of the loop with the controller (47) and 1024 
“representative” systems from the interval family (42). Each 
interval parameter has been divided into 3 subintervals and 
thus these 4 values and 5 parameters result in 54 1024=  
systems for simulation. Moreover, the red curve represents the 
output variable for the nominal system (44). 
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Fig. 10 output signals of 1024 “representative” plants and 1 nominal 
system 

 
Such control result should be appropriate for most of common 
industrial applications. 

VIII. CONCLUSION 
The paper has dealt with computation of stability regions 

for PI and PID controllers. The combination of pre-computing 
the stabilizing areas and designing the PI(D) controller which 
lies inside it represents relatively easy but effective way of 
obtaining the stabilizing PID controller with acceptable 
performance. Furthermore, the stabilization techniques were 
extended by means of robust stabilization of interval plants 
using PI controllers. 
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