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Abstract— Before blow-up occurs, under certain
conditions, we establish a unique blow-up solu-
tion for a degenerate semilinear parabolic problem:
ut − (a(x)ux)x = f(u) in (0, 1) × (0,∞) where f
is a specified function and a(0) = 0, a(x) > 0 on
(0, 1] together with the Dirichlet boundary condition
and the suitable initial condition. The blow-up set of
such a blow-up solution u is given. Furthermore, the
sufficient condition to guarantee the occurrence for
blow-up in finite time is shown.
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I. INTRODUCTION
The subject of blow-up was posed in the 1940’s

and 50’s in the context of Semenov’s chain reaction
theory, adiabatic explosion and combustion theory.
There has been a tremendous amount of recent activ-
ities due to the subjects of solutions to various partial
differential equations blowing up in finite time. Finite
time blow-up occurs in situations in mechanics and
other areas of applied mathematics. Studies of these
phenomena have very recently been gaining momen-
tum. In the following, we give examples of blow-up
problems in the way of blow-up mathematical theory.
In 1985, C.E. Mueller and F. B. Weissler [7] studied
the semilinear heat equation:

ut = △u− λu+ f(u), (x, t) ∈ Ω× (0,∞),
u(x, t) = 0, x ∈ ∂Ω× (0,∞),
u(x, 0) = u0(x), x ∈ Ω,


(1)

where Ω is Rn or Ω is a smooth bounded subset
of Rn, ∂Ω denotes the smooth boundary of Ω,
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△ =
n∑

i=1
∂2i , λ ≥ 0 and f and u0 are specified

functions. Under suitable assumptions, they showed
that the solution of (1) blows up in finite time and the
blow-up set of blow-up solution consists of only one
point. Further, in 2009, J. P. Pinasco [8] established
the blow-up positive solutions of problems (2) with
reaction terms of local and nonlocal type involving
a variable exponent,

ut = △u+ f(u), (x, t) ∈ Ω× (0,∞),
u(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞),

u(x, 0) = u0(x), x ∈ Ω,

 (2)

where Ω is a smooth bounded subset of Rn

with smooth boundary ∂Ω and the source term
is of the form f(u) = a(x)up(x) or f(u) =
a(x)

∫
Ω

uq(y)(y, t)dy where a, p and q are given

functions. For blow-up problems of the degenerate
semilinear parabolic type, in 1999, C.Y. Chan and
W. Y. Chan [3] studied the existence of a blow-
up solution of the degenerate semilinear parabolic
initial-boundary value problem

xqut − uxx = f(u), (x, t) ∈ Ω× (0,∞),
u(0, t = 0 = u(1, t), t > 0,
u(x, 0) = u0(x), x ∈ [0, 1],

 (3)

where q ≥ 0, f and u0 are given functions. They
proved existence and uniqueness of a blow-up so-
lution of problem (3) by transforming problem (3)
into the equivalent integral equation in terms of its
associated Green’s function. Furthermore, in 2006,
C. Y. Chan and W.Y. Chan [4] showed that under
certain condition on functions f and u0, a solution u
of problem (3) blows up at every point in [0, 1]. After
paper [3] published, in 2004, Y.P. Chen and C.H. Xie
[6] considered the degenerate parabolic problem with
the nonlocal term : for any (x, t) ∈ (0, 1)× (0,∞),

ut − (xαux)x =
1∫
0

f(u)dx,

u(0, t) = 0 = u(1, t), t > 0,
u(x, 0) = u0(x), x ∈ [0, 1],

 (4)

with α ∈ [0, 1) and f and u0 are given functions.
They proved the local existence and uniqueness of
a classical solution. Under appropriate hypotheses,
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they obtained the sufficient conditions for the global
existence and for blow-up of a positive solution of
problem (4). Additionally, in 2004, Y.P. Chen, Q. Liu
and C.H. Xie [5] studied the degenerate nonlinear
reaction-diffusion equation with nonlocal source: for
any (x, t) ∈ (0, 1)× (0,∞),

xqut − (xαux)x =
1∫
0

updx,

u(0, t) = 0 = u(1, t), t > 0,
u(x, 0) = u0(x), x ∈ [0, 1],

 (5)

They established the local existence and unique-
ness of a classical solution of problem (5). Un-
der appropriate hypotheses, they gave the sufficient
conditions for a global existence and for blow-up
of a positive solution. Furthermore, under certain
conditions, they proved that the blow-up set of such
a solution of problem (5) is the whole domain. In
2010, P. Sawangtong and W. Jumpen[10] showed,
under certain condition, the existence of a blow-up
solution of the degenerate parabolic problem: for any
(x, t) ∈ (0, 1)× (0,∞),

xqut − (xαux)x = xqf(u),
u(0, t) = 0 = u(1, t), t > 0,
u(x, 0) = u0(x), x ∈ [0, 1],

 (6)

where q ≥ 0, α ∈ [0, 1) and f and u0 are suitable
functions. Furthermore the sufficient condition to
blow-up in finite time and the blow-up of such a
solution of problem (6) are shown. Furthermore, in
2010, P. Sawangtong and W. Jumpen [11] extended
problem (6) to more general form: for any (x, t) ∈
(0, 1)× (0,∞),

k(x)ut − (a(x)ux)x = k(x)f(u),
u(0, t) = 0 = u(1, t), t > 0,
u(x, 0) = u0(x), x ∈ [0, 1],

 (7)

where k(0) = 0 = a(0), k, a > 0 on (0, 1] and f and
u0 are given functions. They showed the existence
and uniqueness of a blow-up solution of problem (7)
by classical method, i.e., Greens’function method.
As shown in [11], there are many conditions on
functions k and a to obtain the existence of corre-
sponding eigenvalues and eigenfunctions to problem
(7) to use their properties in the part of existence
of solution of problem (7). In 2010, P. Sawangtong
and W. Jumpen [13] still study the same problem
as in [11] by replacing the term k(x)f(u) by the
term k(x)f(u(x0, t)) where x0 is a fixed point in
(0, 1). By method of Green’s function, we obtain the
existence and uniqueness of such a problem.

In this paper, we study the following degenerate
semilinear parabolic problem closed to problem (7)

via semigroup theory:

ut − (a(x)ux)x = f(u), (x, t) ∈ (0, 1)× (0,∞),
u(0, t) = 0 = u(1, t), t > 0,
u(x, 0) = u0(x), x ∈ [0, 1],


(8)

where a, f and u0 are given functions.
The objective of this article is to show the exis-

tence of a unique blow-up solution of the problem (8)
before blow-up occurs by semigroup theory and the
blow-up set of such a blow-up solution. Furthermore,
the sufficient condition to guarantee the occurrence
of blow-up in finite time is given.

II. SETTING OUT A DEGENERATE PROBLEM
We next give the definition of blow-up in finite

time.
Definition 1: A solution u of the problem (8) is

said to blow-up at the point b in finite time Tb if
there exists a sequence {(xn, tn)} with (xn, tn) ∈
(0, 1) × (0, T ) and (xn, tn) → (b, Tb) as n → ∞
and lim

n→∞
u(xn, tn) = +∞. The point b is called the

blow-up point . The set consisting of all blow-up
points of such a blow-up solution u is called the
blow-up set. Furthermore, if u blows up at every
point x in [0, 1], then the complete blow-up occurs.

Because of the function a which expresses the
degeneracy we need to introduce a variant of the
classical Sobolev space H1(0, 1), namely H1,a(0, 1).
Throughout this paper, we make the following as-
sumptions on a:

(A) a ∈ C0[0, 1]∩C1(0, 1], a > 0 in (0, 1] and
a(0) = 0;

(B) ∃K ∈ [0, 1) such that xa′(x) ≤ Ka(x) for
all x ∈ [0, 1].

We note that
1) an example of functions satisfies the conditions

(A) and (B) is xα with α ∈ [0, 1),

2) the condition (B) implies that
1∫
0

1
a(x)dx is finite

which is a sufficient condition to obtain that
the space H1,a(0, 1) is compactly embedded
in L2(0, 1).

If ux denote the derivative in the sense of
distribution of the distribution u in D′(0, 1), then

H1,a(0, 1) =
{
u ∈ L2(0, 1) possessing an absolu-

tely continuous representative on [0,1]
and

√
aux ∈ L2(0, 1)

}
.

It is known that equipped with the following inner
product and norm

⟨u, v⟩H1,a(0,1) =

1∫
0

[u(x)v(x) + a(x)ux(x)vx(x)] dx
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and
∥u∥H1,a(0,1) = ⟨u, u⟩1/2H1,a(0,1) .

respectively. The space H1,a(0, 1) is a Hilbert space.

By due account of the fact that
1∫
0

1
a(x)dx is finite,

H1,a
0 (0, 1) =

{
u ∈ H1,a(0, 1) s.t. u(0) = 0 = u(1)

}
,

is a closed subspace of H1,a(0, 1) with equivalent
norm

∥u∥H1,a
0 (0,1) =

∥∥√aux∥∥L2(0,1)
,

and the injection of H1,a(0, 1) and C0[0, 1] is con-
tinuous. Eventually we will consider

H2,a(0, 1) =
{
u ∈ H1,a(0, 1) s.t. aux ∈ H1,a(0, 1)

}
with its norm:

∥u∥2H2,a(0,1) = ∥u∥2H1,a(0,1) + ∥(aux)x∥2L2(0,1) .

In order to obtain the existence of a blow-
up solution u of problem (8), we also make some
hypothesis on functions u0 and f :

(C) u0 ∈ H2,a(0, 1) ∩ H1,a
0 (0, 1), u0 ≥ 0 on

[0, 1], u0(0) = 0 = u0(1) and u0 satisfies
d

dx

(
a(x)

du0(x)

dx

)
+ f(u0(x)) ≥ 0

for x ∈ (0, 1).
(D) f ∈ C2[0,∞) is convex with f(0) = 0,

f(s) > 0 for s > 0.
We note that by [7], condition (D) implies that

f is increasing and f is locally Lipschitz on [0,∞),
that is, ∀M > 0,∃CM such that |f(a)− f(b)| ≤
CM |a− b| ∀a, b with |a| , |b| ≤M.

To apply a useful result in the semigroup theory
[15], we transform problem (8) into the equivalent
semilinear evolution problem:

ut −Au(t) = F (u), t > 0,
u(0) = u0,

}
(9)

where A is an operator mapping from D(A), the
domain of A, into L2(0, 1) with

D(A)

=
{
u ∈ H1,a

0 (0, 1) s.t. ∃!w ∈ L2(0, 1) satisfies

1∫
0

w(x)φ(x)dx = −
1∫

0

a(x)ux(x)φx(x)dx,

for all φ ∈ H1,a
0 (0, 1)} (10)

and

Au = (aux)x = w for all u ∈ D(A) (11)

and where F is an operator mapping from D(A) into
L2(0, 1) defined by

F (u) = f(u) for all u ∈ D(A). (12)

III. THE MAIN RESULTS
Here, we prove that problem (8) has a unique

blow-up solution in the sense of semigroup theory.
Theorem 2: There exists a positive constant

T such that the equivalent evolution problem (9)
has a unique solution u ∈ C([0, T ], D(A)) ∩
C1([0, T ], L2(0, 1)) defined by

u(t) = S(t)u0 +

1∫
0

S(t− τ)F (u(τ))dτ

where S(t) is an analytic semigroup generated by
the operator A.

Theorem 3: Let [0, Tmax) be the maximal time
interval in which a solution u of problem (9) ex-
ists. If Tmax is finite, then lim

t→Tmax

max
x,∈[0,1]

|u(x, t)| is

unbounded.
Theorem 4: Let u be a blow-up solution of

problem (8). Then the blow-up set of such a solution
u is [0, 1].

Let λ1 be the first eigenvalue of a singular
eigenvalue problem corresponding to problem (8)
and let ϕ1 be its associating eigenfunction. Without
loss of generality we assume

1∫
0

ϕ1(x)dx = 1.

We then define the function H by

H(t) =

1∫
0

ϕ1(x)u(x, t)dx.

Theorem 5: Suppose that
1) f(ξ) ≥ bξp with b > 0 and p > 1,

2) H(0) >
(
λ1

b

) 1

p−1 .

Then a solution u of problem (8) blows up in finite
time.

IV. THE PROOF OF MAIN RESULTS
In this section we will give the proof of our main

theorems by starting from the proof of theorem 2.

A. The proof of theorem 2
In this section, we will first consider some

properties of operators A and F defined by (11)
and (12), respectively.

Let us state important properties of A:
Proposition 6: The operator A defined by (11)

is maximal dissipative and self-adjoint on L2(0, 1)
which, consequently, generate an analytic semigroup
on L2(0, 1).
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Proof: To prove the maximal dissipative property
of A, we have to show two conditions:

1) ⟨Au, u⟩L2(0,1) ≤ 0 for all u ∈ D(A) and
2) R(I − λA) = L2(0, 1) for any λ > 0 where

R(I − λA) and I denote the range of I − λA
and the identity operator on L2(0, 1), respec-
tively.

Condition 1 follows directly from (10), the definition
of A. Let h ∈ L2(0, 1) and λ be any positive
constant. For verifying condition 2, we have to show
that there exists a unique u ∈ D(A) such that
u − λAu = h which equivalent to show that there
exists a unique u ∈ D(A) such that the following
equation holds:

1

λ

1∫
0

u(x)φ(x)dx+

1∫
0

a(x)ux(x)φx(x)dx

=

1∫
0

h(x)φ(x)dx for all φ ∈ H1
a(0, 1).

Such the existence is guaranteed by Lax-Milgram
theorem. Hence, the operator A is maximal dissi-
pative on L2(0, 1). Hence to show that A is self-
adjoint it suffices to prove that A is symmetric: let
u, v ∈ D(A). We consider that, by (10),

⟨Au, v⟩L2(0,1) = −
1∫

0

a(x)ux(x)vx(x)dx

= ⟨u,Av⟩L2(0,1) .

⊓⊔
The proof of next lemma is not difficult. We can

prove directly and then we have:
Lemma 7: D(A) = H2,a(0, 1) ∩H1,a

0 (0, 1).
The next lemma is used to guarantee the exis-

tence of corresponding eigenvalues and eigenfunc-
tions of −A refereed to [1].

Lemma 8: The space H1,a
0 (0, 1) is compactly

imbedded in L2(0, 1).
Proof: See [1] ⊓⊔

Since the operator (−A)−1 is a bounded
well-defined operator on L2(0, 1) with values in
H1,a

0 (0, 1), lemma 8 implies that (−A)−1 is compact
operator on L2(0, 1). The next lemma is the well-
known results about the spectral theory of self-
adjoint compact operator referred from [2].

Lemma 9: There exists a sequence (λn, ϕn) ⊂
(0,+∞)×H1,a

0 (0, 1) such that
1) Aϕn = −λnϕn for all n ≥ 1,

2)
1∫
0

ϕn(x)ϕm(x)dx =

{
0, n ̸= m,
1, n = m,

3)
1∫
0

a(x)ϕ′n(x)ϕ
′
m(x)dx =

{
0, n ̸= m,
λn, n = m,

4) v(x) =
∞∑
n=1

⟨v, ϕn⟩L2(0,1) ϕn(x) for any v ∈

L2(0, 1),

5) ∥v∥2L2(0,1) =
∞∑
n=1

⟨v, ϕn⟩2L2(0,1) for any v ∈

L2(0, 1),

6) Av = −
∞∑
n=1

λn ⟨v, ϕn⟩L2(0,1) ϕn(x) for any

v ∈ D(A) with D(A) = {v ∈ L2(0, 1) such

that
∞∑
n=1

λ2n ⟨v, ϕn⟩
2
L2(0,1) < +∞}.

7) S(t)v =
∞∑
n=1

e−λnt ⟨v, ϕn⟩ϕn for all (v, t) ∈

L2(0, 1)× [0,∞).

We now can define the domain of (−A)1/2 by

D((−A)1/2) =

{
v ∈ L2(0, 1) s.t.

∞∑
n=1

λn ⟨v, ϕn⟩2 <∞

}
(13)

and the unbounded self-adjoint operator (−A)1/2 in
L2(0, 1) by

(−A)1/2v =

∞∑
n=1

λ1/2n ⟨v, ϕn⟩ϕn (14)

for any v ∈ D((−A)1/2). We then have the follow-
ing:

Lemma 10: D((−A)1/2) = H1,a
0 (0, 1) and

∥v∥D((−A)1/2) =
∥∥(−A)1/2v∥∥

L2(0,1)
= ∥v∥H1,a

0 (0,1)

and consequently D((−A)1/2) ↪→ C0[0, 1].

Proof: See [9] ⊓⊔
In order to prove lemma 12, we have to use a

fact referred to [1]:

Lemma 11: The space D(A) is completely
imbedded in D((−A)1/2).
Proof: See [1] ⊓⊔

We next state and prove some properties of F .

Lemma 12: The operator F defined by (12) is
local Lipschitz.

Proof: Let u, v ∈ D(A). It follows form lemmas
20 and 10 that there exists a positive constant M
such that |u| ≤ M and |v| ≤ M. Locally Lipschitz
condition of f and lemma 10 imply that there exists
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a positive constant LM depending on M such that

∥F (u)− F (v)∥2L2(0,1)

=

1∫
0

|F (u)(x)− F (v)(x)|2 dx

=

1∫
0

|f(u)− f(v)|2 dx

≤ L2
M

1∫
0

|u(x)− v(x)|2 dx

≤ L2
M ∥u− v∥2C0[0,1]

≤ C2
0L

2
M ∥u− v∥2D((−A)1/2)

≤ C2
1L

2
M ∥u− v∥2D(A

where C0 and C1 are the constants involved in
the Sobolev embedding H1,a

0 (0, 1) ↪→ C0[0, 1]. and
D((−A)1/2) ↪→ D(A), respectively. ⊓⊔

Moreover, we show that the operator F defined
by (12) is Hölder continuous of exponent α ∈ (0, 1).
Before going to that point, we give the definition of
mild solution of the equivalent semilinear evolution
problem (9).

Definition 13: A solution u is said to be a
mild solution of the equivalent semilinear evolution
problem (9) if there exists u ∈ C([0,∞),H1

a(0, 1))
such that

u(t) = S(t)u0 +

t∫
0

S(t− τ)F (u(τ))dτ

with u0 ∈ H1
a(0, 1).

Based on the proof of theorem 2.5.1 of [16], we
have the following.

Lemma 14: The equivalent semilinear evolution
problem (9) has a unique mild solution u on the
time interval [0, T ] for some positive constant T.
Moreover, let u(t) and ũ(t) be mild solutions cor-
responding to u0 and ũ0, respectively. Then for all,
t ∈ [0, T ], the following estimate holds

∥u(t)− ũ(t)∥H1
a(0,1)

≤ ∥u0 − ũ0∥H1
a(0,1)

eC1T 1/2

,

for some positive constant C1.
By modifying the proof of corollary 2.5.1 of

[16], we establish the following lemma.
Lemma 15: The mild solution u of the equiv-

alent semilinear evolution problem (9) is Hölder
continuous of exponent α = (1/2) in t for any
u0 ∈ D(A).

Proposition 16: The operator F defined by
(12)is Hölder continuous of exponent α = (1/2) in
t.

Proof: Since F satisfies the locally Lipschitz
condition and u is Hölder continuous of exponent
α = (1/2) in t, F is also Hölder continuous of
exponent α = (1/2) in t. ⊓⊔

Now we are in a position to prove theorem 2.

Proof of theorem 2: It follows directly from
proposition 6 and 16. ⊓⊔

B. The proof of theorem 3

Let us modify the proof of theorem 2.5.5 of [16]
to obtain the following result.

Lemma 17: Let [0, Tmax) be the maximal time
interval in which the mild solution u of the equivalent
semilinear evolution problem (9) exists. If Tmax is
finite, then the solution u of the semilinear parabolic
problem (8) blows up in finite time Tmax, i.e.,

lim
t→Tmax

∥u(t)∥H1,a
0 (0,1) = ∞.

Before proving theorem 3, we have to find some
useful properties of the analytic semigroup S(t)
generated by operator A. By modifying the proof
of proposition 2.3.1.4 and 2.3.1.5 in [9], we obtain
two results

Lemma 18: If v ∈ D((−A)1/2), then
S(t)v ∈ D((−A)1/2) and

∥∥(−A)1/2S(t)v∥∥
L2(0,1)

=∥∥S(t)(−A)1/2v∥∥
L2(0,1)

≤
∥∥(−A)1/2v∥∥

L2(0,1)
.

Lemma 19: There exists a position C2 such
that

∥∥(−A)1/2S(t)v∥∥
L2(0,1)

= ∥S(t)v∥H1,a
0 (0,1) ≤

C2

t1/2 ∥v∥L2(0,1) for any (v, t) ∈ L2(0, 1)× (0,+∞).

We next prove theorem 3.

Proof of theorem 3: We will prove theorem 3 by
contradiction argument. Suppose that there exists a
positive constant M such that max

x∈[0,1]
|u(x, t)| ≤M as

t→ Tmax. It follows from u(t) = S(t)u0 +
t∫
0

S(t−

τ)F (u(τ))dτ that

∥u(t)∥H1,a
0

≤ ∥S(t)u0∥H1,a
0

+

t∫
0

∥S(t− τ)F (u(τ))∥H1,a
0
dτ.
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By lemmas 18 and 19, we obtain

∥u(t)∥H1,a
0

≤ ∥u0∥H1,a
0

+ C

t∫
0

∥F (u(τ))∥L2(0,1)

(t− τ)1/2
dτ

≤ ∥u0∥H1,a
0

+ Cf(M)

t∫
0

1

(t− τ)1/2
dτ

= ∥u0∥H1,a
0

+ 2Cf(M)t1/2,

for some positive constant C. So, as t → Tmax,
∥u(t)∥H1,a

0 (0,1) is bounded which contradicts to
lemma 17. Hence the proof of this theorem is com-
plete. ⊓⊔

C. The proof of theorem 4

To show the blow-up set of such a blow-up so-
lution u of problem (8), we need following lemmas.

Lemma 20: Let v ∈ L2(0, 1) and v ≥ 0 a.e. on
(0, 1). Then, for all t > 0, we have S(t)v ≥ 0 a.e.
on (0, 1).
Proof: Suppose that there exists a (x1, t1) ∈ (0, 1)×
(0,∞) such that (S(t1)v)(x1) < 0. By continuity of
S(t) for t > 0, there exists a positive constant ε such
that (S(t)v)(x) < 0 for any (x, t) ∈ (x1 − ε, x1 +
ε) × (t1 − ε, t1 + ε). Let us consider the following
auxiliary problem:

wt − (a(x)wx)x = 0, (x, t) ∈ (0, 1)× (0,∞),
w(0, t) = 0 = w(1, t), t > 0,
w(x, 0) = v(x), x ∈ [0, 1].


(15)

We remark that if the solution w of problem (15)
exists, then by maximum principle for parabolic type,
w ≥ 0 on [0, 1]× [0,∞). We transform problem (15)
into the equivalent evolution problem:

wt −Aw = 0, t > 0 and w(0) = v, (16)

where A is an operator mapping from L2 to L2

defined by (11). As in previous discussion, the evo-
lution problem (16) has a solution w(t) = S(t)v. for
t ≥ 0 From remark, we have that (S(t)v)(x) ≥ 0
for any (x, t) ∈ [0, 1] × [0,∞). We therefore get a
contradiction. ⊓⊔

Lemma 21: Let u be a continuous solution of
problem (8). Then u(x, t) ≥ u0(x) for any (x, t) ∈
[0, 1]× [0, Tmax) and u is a nondecreasing function
in t.
Proof: Let w(x, t) = u(x, t)−u0(x) for any (x, t) ∈
[0, 1]× [0, Tmax). Let us consider:

wt − (a(x)wx)x = f(u) +
d

dx

(
a(x)

du0(x)

dx

)
.

for any (x, t) ∈ [0, 1] × [0, Tmax). Condition (C)
yields that

wt − (a(x)wx)x ≥ f(u)− f(u0)

= f ′(ξ1)w(x, t)

where ξ1 is some constant between u and u0. We
moreover have that w(0, t) = 0 = w(1, t) for t ∈
[0, Tmax) and w(x, 0) = u(x, 0) − u0(x) = 0 for
x ∈ [0, 1]. Maximum principle for parabolic type
implies that w ≥ 0 on [0, 1] × [0, Tmax), that is,
u ≥ u0 on [0, 1]× [0, Tmax).

Let h be any positive constant with 0 < t+h <
Tmax. Let v(x, t) = u(x, t + h) − u(x, t) for any
(x, t) ∈ [0, 1]× [0, Tmax − h). We then consider:

vt − (a(x)vx)x = f(u(x, t+ h))− f(u(x, t))

f ′(ξ2)f(w(x, t))

where ξ2 is some constant between u(x, t + h) and
u(x, t) for any (x, t) ∈ (0, 1) × (0, Tmax − h). We
furthermore have that v(0, t) = 0 = v(1, t) for t ∈
(0, Tmax−h) and it follows from u ≥ u0 on [0, 1]×
[0, Tmax − h) that v(x, 0) = u(x, h) − u0(x) ≥ 0
for any x ∈ [0, 1]. Maximum principle for parabolic
type implies that v ≥ 0 on (0, 1) × (0, Tmax − h).
Therefore the proof of this lemma is complete. ⊓⊔

We next give the proof of theorem 4.
Proof of theorem 4: Let (x, t) ∈ (0, 1)× (0, Tmax).
We then consider that

u(x, t) = u(t)(x)

= (S(t)u0) (x) +

t∫
0

(S(t− τ)F (u(τ))) (x)dτ.

We then have

|u(x, t)| ≤ |(S(t)u0) (x)|

+

t∫
0

|(S(t− τ)F (u(τ))) (x)| dτ.

Since there exists a positive constant C2 such that
|S(t)u0(x)| ≤ C2, we obtain that

|u(x, t)| ≤ C2 +

t∫
0

|(S(t− τ)F (u(τ))) (x)| dτ

or

max
x∈[0,1]

|u(x, t)| ≤ C2+

t∫
0

|(S(t− τ)F (u(τ))) (x)| dτ.

By theorem 3, we have
t∫

0

|(S(t− τ)F (u(τ))) (x)| dτ → ∞ as t→ Tmax.
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It then follows from lemmas 20 and 21 that
t∫

0

|(S(t− τ)F (u(τ))) (x)| dτ

=

t∫
0

(S(t− τ)F (u(τ))) (x)dτ.

and then we obtain that
t∫

0

(S(t− τ)F (u(τ))) (x)dτ → ∞ as t→ Tmax.

On the other hand, lemma 20 and condition (C)
imply that

u(x, t) ≥
t∫

0

(S(t− τ)F (u(τ))) (x)dτ.

Then, we have that u(x, t) approaches to infinity for
all x ∈ (0, 1) as t converges to Tmax. Moreover, for
x ∈ {0, 1} , we can find a sequence {(xn, tn)} in
(0, 1) × (0, Tmax) such that lim

t→Tmax

u(xn, tn) → ∞.

Therefore, the proof of theorem 4 is complete. ⊓⊔

D. The proof of theorem 5

We next show the proof of theorem 5.
Proof of theorem 5: Multiplying problem (8) by ϕ1
and integrating problem (8) with respect to x from
0 to 1 yield

dH(t)

dt
= −λ1H(t) +

1∫
0

f(u)ϕ1(x)dx

≥ −λ1H(t) + b

1∫
0

up(x, t)ϕ1(x)dx.

Hölder inequality implies that

1∫
0

ϕ1(x)u(x, t)dx ≤

 1∫
0

ϕ1u
pdx


1

p
 1∫

0

ϕ1(x)dx


p−1

p

or  1∫
0

ϕ1(x)u(x, t)dx

p

≤
1∫

0

ϕ1(x)u
p(x, t)dx.

We obtain that

dH(t)

dt
≥ −λ1H(t) + bHp(t)

and then we can rewrite such a inequality in the form

Hp−1(t) ≥ 1

b
λ1

+
[
H1−p(0)− b

λ1

]
e−λ1(1−p)t

.

The second assumption of theorem 5 implies that
there exists a finite time T such that H tends to
infinity as t converges to T. By definition of H, we
obtain

H(t) ≤
1∫

0

ϕ1(x)dx max
x∈[0,1]

|u(x, t)| = max
x∈[0,1]

|u(x, t)| .

Therefore, the solution u of problem (8) blows up in
finite time. ⊓⊔

V. CONCLUSION

As shown in [11], if we would like to prove
the existence and uniqueness of a blow-up solution
by Green’s function method, we have to make many
assumptions on functions k and a to guarantee the
existence of eigenvalues and eigenfunctions of such
a problem which contrast to method in semigroup
theory. But the difficulty of applying semigroup
theory is to construct the suitable Banach spaces.
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