
 

 

  
Abstract—This paper deals with a design of algorithms for self-
tuning digital control of processes with time-delay. The algorithms 
are based on the some modifications of the Smith Predictor (SP). One 
modification of the SP based on the digital PID controller was 
applied and it was compared with two new designed modifications 
based on polynomial approach (pole assignment and minimization of 
the quadratic criterion). The program system MATLAB/SIMULINK 
was used for simulation verification of these algorithms. Some of 
designed algorithms are suitable for implementation in real time 
conditions.  
 
Keywords—Digital control, Polynomial approaches, Self-tuning 

control, Simulation of control loops, Smith predictor, Time-delay  

I. INTRODUCTION 
IME- delay appear in many processes in industry and 
other fields, including economical and biological systems 
[1]. They are caused by some of the following 

phenomena: 
• the time needed to transport mass, energy or information, 
• the accumulation of time lags in a great numbers of low 

order systems connected in series, 
• the required processing time for sensors, such as analyzers; 

controllers that need some time to implement a 
complicated control algorithms or process. 

Consider a continuous time dynamical linear SISO (single 
input ( )u t  – single output ( )y t ) system with time-delay dT . 

The transfer function of a pure transportation lag is dT se− , 
where s is complex variable. Overall transfer function with 
time-delay is in the form 

 
( ) ( ) dT s

dG s G s e−=  (1) 
 
where ( )G s is the transfer function without time-delay.  
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Processes with significant time-delay are difficult to 
control using standard feedback controllers mainly because of 
the following [1]:  
• the effect of the disturbances is not felt until a considerable 

time has elapsed;  
• the effect of the control action requires some time to elapse; 
• the control action that is applied based on the actual error 

tries to correct a situation that originated some time 
before. 

The problem of controlling time-delay processes can be 
solved by some control methods using 
• PID controllers; 
• time-delay compensators; 
• model predictive control techniques. 

It is clear that many processes in industry are controlled by 
the PID controllers. When the process contains a time-delay, 
the tuning of the PID controller is difficult. The most popular 
tuning rules for processes with small time-delay were 
proposed by Ziegler and Nichols [2]. Several methods for new 
tuning rules were proposed for stable and unstable processes 
with time-delay. An algebraic approach for time-varying 
systems with time-delay is presented in [3, 4].  A presentation 
and review of some these methods are introduced in [5]. 

When a high performance of the control process is desired 
or the relative time-delay is very large, a predictive control 
strategy must be used [5]. The predictive control strategy 
includes a model of the process in the structure of the 
controller. The first time-delay compensation algorithm was 
proposed by Smith [6] in 1957. This control algorithm known 
as the Smith predictor (SP) contained a dynamic model of the 
time-delay process and it can be considered as the first model 
predictive algorithm. 

Historically first modifications of time-delay algorithms 
were proposed for continuous-time (analogue) controllers. On 
the score of implementation problems, only the discrete 
versions are used in practice in this time. 

The majority of processes met in the industrial practice 
have stochastic characteristics and eventually they embody 
nonlinear behaviour. Traditional controllers with fixed 
parameters are often unsuitable for such processes because 
their parameters change. One possible alternative for 
improving the quality of control for such processes is the use 
of adaptive control systems. Different approaches were 
proposed and utilized. One successful approach is represented 
by self-tuning controller (STC). The main idea of an STC is 
based on the combination of a recursive identification 
procedure and a selected controller synthesis. Some STC 
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modifications of the digital Smith predictors are designed and 
verified by simulation in this paper.  

The paper is organized in the following way. The general 
problem of a control of the time-delay systems is described in 
Section 1. The principle of the continuous-time Smith 
Predictor is introduced in Section 2 and digital version in 
Section 3. Three modifications of digital controllers that are 
used for self-tuning versions SPs are proposed in Section 4. 
Section 5 contains brief description of the recursive 
identification procedure. Simulation configuration is presented 
in Section 6. Results of simulation experiments are summed in 
Section 7.  

II. PRINCIPLE OF SMITH PREDICTOR 
The principle of the SP is shown in Fig. 1. It can be 

divided into two parts – the primary ( )cG s  controller and 
predictor part. This algorithm was primarily designed for 
continuous time PID controller. The predictor is composed of 
a model of the process without time delay and ( )mG s (so 

called as the fast model) and a model of the time delay dT se− . 
Then the complete process model is  

 
( ) ( ) dT s

p mG s G s e−=  (2) 
 

 
Fig. 1 Block diagram of an analogue Smith Predictor  
 

The fast model ( )mG s is used to compute an open-loop 
prediction. The difference between the output of the 
process ( )y t  and the model including time delay ( )ŷ t  is the 

predicted error ( )pê t  as shown is in Fig. 2, where 

( )u t , ( )w t , ( )e t and ( )n t  are the control signal, reference 
signal, the error and the noise. If there are no modeling errors 
or disturbances, the error between the current process output 
and the model output will be null and the predictor output 
signal ( )pŷ t will be the time-delay-free output of the process. 

Under these conditions, the controller ( )cG s can be tuned, at 
least in the nominal case, if the process had no time delay.         

The Smith Predictor structure for the nominal case 
(without modelling errors) has three fundamental properties: 
time-delay compensation, prediction and dynamic 
compensation. 

III. DIGITAL SMITH PREDICTOR 
Although time-delay compensators appeared in the mid 1950s, 
their implementation with analogue technique was very 
difficult and these were not used in industry. Since 1980s 
digital time-delay compensators can be implemented. In spite 
of the fact that all these algorithms are implemented on digital 
platforms, most works analyze only the continuous case. The 
digital time-delay compensators are presented e.g. in [7] – [9]. 

The discrete versions of the SP and its modifications are 
suitable for time-delay compensation in industrial practice. 
Most of authors designed the digital SP using discrete PID 
controllers with fixed parameters. However, the SP is more 
sensitive to process parameter variations and therefore 
requires an auto-tuning or adaptive approach in many practical 
applications [10], [11]. In [12], the structure of the discrete 
disturbance observer time-delay compensator is analyzed.  

  
Fig. 2 Block diagram of a digital Smith Predictor with tuning  
 

A. Structure of Digital SP 
 The digital SP (see [10] – [14]) is shown in Fig. 2. The 
function of the digital version is similar to the classical 
analogue version. The block ( )1

mG z− represents process 
dynamics without the time-delay and is used to compute an 
open-loop prediction. The difference between the output of 
the process y  and the model including time- delay ŷ  is the 
predicted error pê  as shown is in Fig. 2, where u , w , e and 

se  are the control signal, the reference signal, the error and 
the noise. If there are no modelling errors or disturbances, the 
error between the current process output and the model output 
will be null and the predictor output signal pŷ will be the time-
delay-free output of the process. Under these conditions, the 
controller ( )cG s can be tuned, at least in the nominal case, as 
if the process had no time-delay. The primary (main) 
controller ( )1

cG z−  can be designed by the different 
approaches (for example digital PID control or methods based 
on algebraic approach). The outward .feedback-loop through 
the block ( )1

dG z−  in Fig. 1 is used to compensate for load 

disturbances and modelling errors. The dash arrows indicate 
the self-tuned parts of the Smith Predictor.  

Most industrial processes can be approximated by a 
reduced order model with some pure time-delay. Consider the 
following second order linear model with a time-delay 

_ 

_ 

+

+ 
Gm (z-1) 

w e u y 

+ 

+ 

 

+ 

 es 

Gc(z-1) Gp (z-1) 

Gd (z-1) 

pê  
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( ) ( )
( )

1 1 2
1 1 2

1 21
1 21

d d
B z b z b z

G z z z
a z a zA z

− − −
− − −

− −−

+
= =

+ +
 (3) 

 
for demonstration of some approaches to the design of the 
adaptive Smith Predictor. The term z-d represents the pure 
discrete time-delay. The time-delay is equal to 0dT  where 

0T is the sampling period. 
If the time-delay is not an exact multiple of the sampling 

period 0T , then 0dT  represents the largest integer multiple of 
the sampling period with remaining fractional deal absorbed 
into ( )1B z−  using the modified z-transformation [15].  

Please submit your manuscript electronically for review as 
e-mail attachments.  

B. Identification of Systems with Time-delay 
 In this paper, the time-delay is assumed approximately 

known or possible to be obtained separately from an off-line 
identification using the least squares method (LSM) [16, 17] 

 

( ) 1ˆ −
= T TΘ F F F y  (4) 

 
where the matrix F has dimension (N-n-d, 2n), the vector y 
(N-n-d) and the vector of parameter model estimates Θ̂ (2n). 
N is the number of samples of measured input and output data, 
n is the model order. 
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1
1 2

1 2

1 1
1 2

1 2

y n d y n d y d
y n d y n d y d

y N y N y N n

u n u n u
u n u n u

u N d u N d u N d n

⎡ − + − + − − +
⎢− + + − + − +⎢= ⎢
⎢

− − − − − −⎢⎣

− ⎤
⎥+ ⎥
⎥
⎥

− − − − − − ⎥⎦

F

 (5) 

 
Equation (4) serves for a one-off calculation of the vector 

of parameter estimates Θ̂  using N samples of measured data. 
The individual vectors and matrix in equation (4) have the 
form 
  

( ) ( ) ( )1 2T y n d y n d y N= + + + +⎡ ⎤⎣ ⎦y  (6) 

 

1 2 1 2
T

n n
ˆ ˆ ˆˆ ˆ ˆ ˆa a a b b b⎡ ⎤= ⎣ ⎦Θ  (7) 

 
Consider that model (3) is the deterministic part of the 

stochastic process described by the ARX (regression) model 
 

( )
( )

( ) ( ) ( ) ( )
1

1 1

1
d

s

B z z
y k u k e k

A z A z

− −

− −
= +  (8) 

 
where ( )se k is the random nonmeasurable component 

The ARX model (8) can be expressed as a stochastic 
difference equation 

 
( ) ( ) ( )

( ) ( ) ( )
1 2

1 2

1 2

1 2 s

y k a y k a y k

b y k d b y k d e k

= − − − − +

+ − − + − − +
 (9) 

 
The vector of parameter model estimates is computed by 

solving equation (4)  
 

( ) 1 2 1 2
ˆ ˆˆ ˆ ˆT k a a b b⎡ ⎤= ⎣ ⎦Θ  (10) 

 
and is used for computation of the prediction output  
  

( ) ( ) ( )
( ) ( )

1 2

1 2

1 2

1 2

ˆ ˆ ˆy k a y k a y k
ˆ ˆb u k d b u k d

= − − − − +

− − + − −
 (11) 

 
The quality of ARX model can be judged by the prediction 

error, i.e. the deviation 
 

( ) ( ) ( )ˆ ˆe k y k y k= −  (12) 
 

The prediction error plays a key role in identification of 
regressions model parameters derived from measured data. It 
is important for selecting the structure (order) of the 
regression model and a suitable sampling period. The quality 
of the model is also judged by the purpose for which it is 
used. In this case the prediction error was used for suitable 
choice of the time-delay 0dT . 

IV. ALGORITHMS OF DIGITAL SMITH PREDICTORS 
When you submit your final version, after your paper has 

been accepted, prepare it in two-column format, including 
figures and tables.  

A. Digital PID Smith Predictor (PIDSP) 
 Hang et. al.[13, 14] used to design of the main controller 
( )1

cG z−  the Dahlin PID algorithm [18]. This algorithm is 

based on the desired close-loop transfer function in the form 
 

( )1
1

1
1e

eG z
z

α−
−

−

−
=

−
 (13) 

 

where 0

m

T
Tα = and mT  is desired time constant of the first 

order closed-loop response. It is not practical to set mT  to be 
small since it will demand a large control signal ( )u k  which 
may easily exceed the saturation limit of the actuator. Then 
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the individual parts of the controller are described by the 
transfer functions 
 

( ) ( )
( )

( )
( )

1
1

1

1

11c

ˆe A z
G z

B̂z

α− −
−

−

−
=

−
;    ( ) ( )

( )
1

1
1

1
m

ˆz B
G z

Â z

−
−

−
=   

 

( ) ( )
( )

1
1

1 1

d

d

ˆz B z
G z ˆz B

− −
−

−
=  (14) 

 
where ( ) ( )1

1 21
1

z
ˆ ˆˆB B z b b−

=
= = + .  

Since ( )1
mG z− is the second order transfer function, the 

main controller ( )1
cG z− becomes a digital PID controller 

having the following form: 
  

( ) ( )
( )

1 2
1 0 1 2

11c

U z q q z q z
G z

E z z

− −
−

−

+ +
= =

−
 (15) 

 
where 0 1 1 2 2ˆ ˆq , q a , q aγ γ γ= = =  using by the substitution 

( ) ( )1 1ˆe / Bαγ −= − . The PID controller output is given by  

 
( ) ( ) ( ) ( ) ( )0 1 21 2 1u k q e k q e k q e k u k= + − + − + −  (16) 

B. Digital Pole Assignment Smith Predictor (PASP) 
Another two controllers applied in this paper were designed 

using a polynomial approach. Polynomial control theory is 
based on the apparatus and methods of a linear algebra (see 
e.g. [19] – [21]). The polynomials are the basic tool for a 
description of the transfer functions. They are expressed as the 
finite sequence of figures – the coefficients of a polynomial. 
Thus, the signals are expressed as infinite sequence of figures. 
The controller synthesis consists in the solving of linear 
polynomial (Diophantine) equations [22].  

The design of the controller algorithm is based on the 
general block scheme of a closed-loop with two degrees of 
freedom (2DOF) according to Fig. 3.  

 

 
 
 Fig. 3 Block diagram of a closed loop 2DOF control system 

 
The controlled process is given by the transfer function in 

the form 
  

1
1

1

( ) ( )( )
( ) ( )

p
p

Y z B zG z
U z A z

−
−

−= =  (17) 

where A and B are the second order polynomials. The 
controller contains the feedback part Gq and the feedforward 
part Gr. Then the digital controllers can be expressed in the 
form of a discrete transfer functions 
 

( ) ( )
( )

1
1 0

11
11r

R z r
G z

p zP z

−
−

−−
= =

+
 (18) 

 

( ) ( )
( ) ( )( )

1 1 2
1 0 1 2

1 1 1
11 1q

Q z q q z q z
G z

P z p z z

− − −
−

− − −

+ +
= =

+ −
 (19) 

 
According to the scheme presented in Fig. 2 (for es  = 0),  
 

1 1
1 1

1 1 1 1

( ) ( )( ) ( )
( ) ( ) ( ) ( )

B z R zY z W z
A z P z B z Q z

− −
− −

− − − −=
+

 (21) 

 
where  
  

1 1 1 1 1( ) ( ) ( ) ( ) ( )A z P z B z Q z D z− − − − −+ =  (22) 
 
is the characteristic polynomial. 

The procedure leading to determination of polynomials Q, 
R and P in (21) and (23) can be briefly described as follows 
(see [23]). A feedback part of the controller is given by a 
solution of the polynomial Diophantine equation (2). An 
asymptotic tracking is provided by a feedforward part of the 
controller given by a solution of the polynomial Diophantine 
equation 

 
( )1 1 1 1 1( ) ( ) ( ) ( )wS z D z B z R z D z− − − − −+ =  (23) 

 
 For a step-changing reference signal value 

( )1 11wD z z− −= −  holds and S is an auxiliary polynomial 

which does not enter into controller design.  
A feedback controller to control a second-order system 

without time-delay will be derived from Equation (22). A 
system of linear equations can be obtained using the uncertain 
coefficients method 

 

1 0 1 1

1 2 1 22 1 1

2 3 22 1 2 1

1 42 2

ˆ 0 0 1 ˆ1
ˆ ˆ ˆ ˆˆ0 1

ˆˆ ˆ ˆ ˆ0
ˆ0 0

b q d a
q d a ab b a
q d ab b a a
p db a

⎡ ⎤ + −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ −−⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥+−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦−⎣ ⎦

 (24) 

 
where the characteristic polynomial is chosen as  
  

( )1 1 2 3 4
1 2 3 41D z d z d z d z d z− − − − −= + + + +  (25) 

For a step-changing reference signal value it is possible to 
solve Equation (23) by substituting z = 1 

 

w 

u y Gp Gq 

Gr 

es 
yp uq 

ur 

_ 

+ 

+ 

+ 
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1 2 3 4
0

1 2

1(1)
(1)

d d d dDR r
B b b

+ + + +
= = =

+
 (26) 

 
The 2DOF controller output is given by 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0 0 1 2

1 1

1 2

1 1 2

u k r w k q y k q y k q y k

p u k p u k

= − − − − − +

+ + − + −
 (27) 

 

C. Digital Linear Quadratic Smith Predictor 
The linear quadratic control methods try to minimize the 

quadratic criterion by penalization  the controller output 
 

[ ] [ ]{ }2 2

0
( ) ( ) ( )

k
J w k y k u kλ

∞

=

= − +∑  (28) 

 
where λ is the so-called penalization constant, which gives the 
rate of the controller output on the value of the criterion 
(where the constant at the first element of the criterion is 
considered equal to one). The standard procedure of the 
minimization of the criterion (28) is based on the state 
description of the system and leads to the solution of the 
Riccati equation. In this paper, criterion minimization will be 
realized through the spectral factorization for an input-output 
description of the system. Spectral factorization of 
polynomials of the first and second order degree can be 
computed simply; the procedure for higher degrees must be 
performed iteratively. 

For the coefficients of the second order characteristic 
polynomial ( )1 1 2

1 21D z d z d z− − −= + +  of the closed loop were 
derived the expressions [20]  

 
1 2

1 2
2

;
m m

d d
mδ δ

= =
+

 (29) 

 
The parameters m1, m2 and δ are computed as follows: 

  
22 2

2 20 0
2 2 1

2 2 2 2
0 1 2 1 2 1 1 1 2 1 2

2 2

4
;

2 2 2

(1 ) ; ( )

m m m
m m m

m a a b b m a a a bb
m a

γ λ
δ γ

λ λ
λ

+ − ⎛ ⎞= = − + + −⎜ ⎟
⎝ ⎠

= + + + + = + +

=

 (30) 

 
The LQ controller of 2DOF structure has the same form as 

controller (27), only 3 4 0d d= = in (24) - (26).  
 

V. RECURSIVE IDENTIFFICATION PROCEDURE 
The regression (ARX) model of the following form 

 
( ) ( ) ( ) ( )T

sy k k k e k= +Θ Φ  (31) 
 

is used in the identification part of the designed controller 
algorithms, where 
 

( ) [ ]1 2 1 2
T k a a b b=Θ  (32) 

 
is the vector of model parameters and 
  

( ) ( ) ( ) ( ) ( )1 1 2 1 2T k y k y k u k d u k d− = − − − − − − − −⎡ ⎤⎣ ⎦Φ (33) 

 
is the regression vector. The non-measurable random 
component es(k) is assumed to have zero mean value E[es(k)] 
= 0 and constant covariance (dispersion) 
R = E[es

 2(k)]. 
All digital self-tuning SP controllers use the algorithm of 

identification based on the Recursive Least Squares Method 
(RLSM) extended to include the technique of directional 
(adaptive) forgetting. Numerical stability is improved by 
means of the LD decomposition [23], [24]. This method is 
based on the idea of changing the influence of input-output 
data pairs to the current estimates. The weights are assigned 
according to amount of information carried by the data. 

VI. SIMULATION VERIFICATION OF SELF-TUNING (ST) 
DIGITAL SP CONTROLLER ALGORITHMS 

Simulation is a useful tool for the synthesis of control 
systems, allowing one not only to create mathematical models 
of a process but also to design virtual controllers in a 
computer. The mathematical models provided are sufficiently 
close to a real object that simulation can be used to verify the 
dynamic characteristics of control loops when the structure or 
parameters of the controller change. The models of the 
processes may also be excited by various random noise 
generators which can simulate the stochastic characteristics of 
the processes noise signals with similar properties to 
disturbance signals measured in the machinery. The 
simulation results are valuable for an implementation of a 
chosen controller (control algorithm) under laboratory and 
industrial conditions. It must be borne in mind, however, that 
the practical application of a controller verified by simulation 
can not be taken as a routine event. Obviously simulation and 
laboratory conditions can be quite different from those in real 
plants, and therefore we must verify its practicability with 
regard to the process dynamics and the required standard of 
control quality (for example maximum sufferable overshoot, 
accuracy, settling time, etc.). 

The above mentioned SP controllers are not suitable for 
the control of unstable processes. Therefore, three types of 
processes were chosen for simulation verification of digital 
self-tuning SP controller algorithms. 

Consider the following continuous-time transfer functions: 
 

1) Stable non-oscillatory ( ) ( )( )
4

1
2

1 4 1
sG s e

s s
−=

+ +
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2) Stable oscillatory ( ) 4
2 2

2
4 2 1

sG s e
s s

−=
+ +

  

3) With non-minimum phase ( ) ( )( )
4

3
5 1

1 4 1
ssG s e

s s
−− +

=
+ +

 

 

Let us now discretize them a sampling period 0 2 sT = . 
The discrete forms of these transfer functions are (see 
Equation (2))   

 

 ( )
1 2

1 2
1 1 2

0 4728 0 2076
1 0 7419 0 0821

. z . zG z z
. z . z

− −
− −

− −

+
=

− +
 

  

 ( )
1 2

1 2
2 1 2

0 6806 0 4834
1 0 7859 0 3679

. z . zG z z
. z . z

− −
− −

− −

+
=

− +
 

 

 ( )
1 2

1 2
3 1 2

0 5489 0 8897
1 0 7419 0 0821

. z . zG z z
. z . z

− −
− −

− −

− +
=

− +
 

 
A simulation verification of proposed design was 

performed in MATLAB/SIMULINK environment.  A typical 
control scheme used is depicted in Fig. 4. 

This scheme is used for systems with time-delay of two 
sample steps. Individual blocks of the Simulink scheme 
correspond to blocks of the general control scheme presented 
in Fig. 2.  The green blocks represent the controlled system. 
Constants bc0, ac2, ac1, and ac0 are parameters of 
continuous-time system. Blocks Compensator 1 and 
Compensator 2 are parts of the Smith Predictor and they 
correspond to ( )1

mG z−  and ( )1
dG z−  blocks of Fig. 2 

respectively. The control algorithm is encapsulated in Main 
Pole Assignment Controller which corresponds to ( )1

cG z−  
Fig. 2 block. The Identification block performs the on-line 

identification of controlled system and outputs the estimates 
of 2nd order ARX model (a1, b1, a2, b2) parameter. 

The internal structure of the Main Pole Assignment 
Controller block is shown in Fig. 5. 

 
 

 
Fig. 5 Internal structure of the controller 
 
Block MATLAB Function is the heart of the controller. 

The inputs to this function are current ARX estimates, current 
and previous values of process without time-delay, reference 
signal as well as previous control values and sample time. The 
MATLAB Fcn is a standard m-function which carries out 
desired control algorithm as described in Section 4. 

The on-line identification part of the scheme, which is 
represented by block Identification block in Fig. 4, uses 
several parameters that are entered via standard SIMULINK 
dialog. This dialog is presented in Fig. 6. 

The most important parameters form the point of view of 
the problem this papers is coping with are sample time, initial 

Fig. 4 Simulink control scheme 
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parameters estimations and dead time. The dead time is not 
entered in time units but in sample times. The other 
parameters affect the method used to compute ARX model 
and their detailed description can be found in [20] and [21]. 

 
 

 
 
Fig. 6. Dialog for setting identification parameters 

VII.  SIMULATION RESULTS 
The configuration for simulation verification of the designed 
algorithms was chosen as follows: 
 All three control loops were verified in the non-adaptive 

versions without a random noise. 
 A suitable time constant mT  was chosen for the control 

using the PIDSP controller and the pole assignment of the 
closed-loop was calculated. These poles were used for the 
design of the PASP controller. 

 A suitable penalization constant λ has been chosen for the 
control using the LQSP controller. 

 All three control loops were verified in the adaptive 
versions with a random noise. Firstly, without a priori 
information (the initial values of the model parameter 
estimates were chosen randomly). Secondly, using a priori 
information (the initial estimates were chosen on the basis 
of the previous experiments).  

 The outputs of the process models were influenced by 
White Noise Generator with mean value E = 0 and 
covariance R = 10-4.    

A.  Simulation Verification of ST Digital PIDSP 
Figs. 7 - 10 illustrate the simulation control performance using 
PIDSP controller (15), (16).  
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Fig. 7 Control of the model ( )1

1G z− , controller PIDSP (without a 

priori information) 
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Fig. 8 Control of the model ( )1

1G z− , controller PIDSP (with a priori 

information)  
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Fig. 9 Control of the model ( )1

2G z− , controller PIDSP (with a priori 

information) 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 5, 2011 348



 

 

It is obvious from Figs. 7 and 8 (the control of the stable 
model ( )1

1G z− ) that the control process is dependent on 

knowledge of a priori information. The process output y has a 
large overshoot, when the initial model parameter estimates 
are chosen randomly. Using a priori information (the initial 
estimates were chosen based on the previous experiments) 
leads to very good control quality (without overshoot of y and 
with short settling time). 
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Fig. 10 Control of the model ( )1

3G z− , controller PIDSP (with a 

priori information) 
 
Simulation results for the models ( )1

2G z− (the stable 

oscillatory model) and ( )1
3G z− (the non-minimum phase 

model) are shown in Figs. 9 and 10. The control quality (with 
a priori information) is very good. 

B. Simulation Verification of ST Digital PASP 
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Fig. 11 Control of model ( )1

1G z− , controller PASP (without a priori 

information) 
 

Figs. 11 - 13 illustrate the simulation control performance 
using PASP controller (24), (26) and (27). From Figs. 11 and 

12 (the control of the stable model ( )1
1G z− ), it is obvious that 

the control process is not dependent on knowledge of a priori 
information (the control courses in both cases are practically 
identical). In the case of choosing of the suitable closed-loop 
poles, the self-tuning PASP controller is more robust than the 
self-tuning PIDSP controller. 
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Fig. 12 Control of the model ( )1

1G z− , controller PASP (with a priori 

information) 
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Fig. 13 Control of the model ( )1

2G z− , controller PASP (with a priori 

information) 
 

Fig. 13 illustrates the simulation control performance of 
the stable oscillatory model ( )1

2G z− . The control process is 
relatively slow without overshot of y and u (it is the cautious 
adaptive controller). 

Fig. 14 illustrates the simulation control performance of 
the non-minimum phase model ( )1

3G z− . The control process 
is good after initial part. 
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Fig. 14 Simulation results: control of the model ( )1

3G z− , controller 

PASP (with a priori information) 
 

C. Simulation Verification of ST Digital LQSP 
Figs. 15 - 17 illustrate the simulation control performance 
using LQSP controller (16), (29), (30). It is obvious from 
Figs. 14 and 15 that control process of the model ( )1

1G z− is 
similar as that one using the controller PIDSP. The 
model ( )1

2G z− is controlled with large overshoot of y in the 
initial part (see Fig. 17). The control of the non-minimum 
phase ( )1

3G z− model was unstable.  
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Fig. 15 Control of the model ( )1

1G z− , controller LQSP (without a 

priori information) 
 
 The relative low-quality control using the controller LQSP 
could be caused by choosing a second degree characteristic 
polynomial 1( )D z− (optimal polynomial is a fourth degree 
with four poles). The procedure for higher degrees than two 
must be performed iteratively. 
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Fig. 16 Control of the model ( )1

1G z− , controller LQSP (with a priori 

information) 
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Fig. 17 Control of the model ( )1

2G z− , controller LQSP (with a priori 

information) 

VIII.  CONCLUSION 
Adaptive Smith predictor algorithms for control of processes 
with time-delay based on polynomial design (pole assignment 
and linear quadratic control) were proposed. The polynomial 
controllers were derived purposely by analytical way (without 
utilization of numerical methods) to obtain algorithms with 
easy implementability in industrial practice. Both pole 
assignment and linear quadratic control algorithms were 
compared by simulation with adaptive digital Smith PID 
predictor. Three models of control processes were used for 
simulation verification (the stable non-oscillatory, the stable 
oscillatory and the non-minimum phase). Results of 
simulation verification demonstrated advantages and 
disadvantages of individual approaches for control of above 
mentioned processes with time-delay. The designed adaptive 
SP algorithms will be verified in real time conditions for a 
control of the laboratory heat exchanger [25].           
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