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Abstract—A graph G is k-ordered if for any sequence of k distinct

vertices of G, there exists a cycle in G containing these & vertices in the
specified order. Obviously, any cycle in a graph is /-ordered,
2-ordered and 3-ordered. Thus the study of k-ordered graphs always
starts with k£ = 4. In this paper, we study the 4-orderedness of certain
chordal rings, denoted by CR(n; 1,q) for n being an even integer with n
26 and ¢g an odd integer with 3 <g <n/2. More specifically, we prove
that CR(n,1,5) is 4-ordered for n>14, and CR(n,1,7) is 4-ordered for n
>18. The proof is based on computer experimental results by M. Tsai,
which can be found in [9], and mathematical induction.
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I. INTRODUCTION
E consider finite, undirected and simple graphs only. Let
G = (V, E) be a graph, where Vis the set of vertices of G

and £ < {(u,v) |u, v € V} is the set of edges of G, respectively.
Let u, v be two vertices of G. If e = (u,v) € E, then we say that
the vertices u and v are adjacent in G. The degree of any vertex
u is the number of distinct vertices adjacent to u. We use N(u) to
denote the set of vertices which are adjacent to u. A path P
between two vertices v, and v, is represented by
P=(vy,v4,..., V) Where each pair of consecutive vertices is
connected by an edge. We use P! to denote the path
(Vi Vi_1) Vi—2, -, Vg ). We also write the path P=(v, vy,..., V)
as (Vg, V1,..., V;,0, Vj, Vj41,..., Vg), Where O denotes the path
(Vi) Vig1) - Vj)- A hamiltonian path between u and v, where u
and v are two distinct vertices of G, is a path joining u to v that
visits every vertex of G exactly once. A cycle is a path of at
least three vertices such that the first vertex is the same as the
last vertex. A hamiltonian cycle of G is a cycle that traverses
every vertex of G exactly once. A hamiltonian graph is a graph
with a hamiltonian cycle. A graph G is k-ordered (or k-ordered
hamiltonian, resp.) if for any sequence of & distinct vertices of
G, there exists a cycle (or a hamiltonian cycle, resp.) in G
containing these k vertices in the specified order. Obviously,
any cycle in a graph is l-ordered, 2-ordered and 3-ordered.
Thus the study of k-orderedness (or k-ordered hamiltonicity) of

This work was supported in part by National Science Council of R.O.C. under
Contract NSC102-2115-M-033 -004 -.

Shin-Shin Kao is a professor in Department of Applied Mathematics, Chung
Yuan Christian University, Chung Pei Rd, Chung Li, Taiwan 32023, R.O.C.
(Corresponding author. TEL: 886-3-2653116; FAX: 886-3-2653199; e-mail:
shin2kao@gmail.com.).

Shih-Chin Wey received his M.S. from Chung Yuan Christian University in
2011. (e-mail: a4576942@yahoo.com.tw).

Hsiu-Chunj Pan is a graduate student in Chung Yuan Christian University
now. (e-mail: g10201101@cycu.edu.tw).

ISSN: 1998-0159 236

any graph always starts with £k = 4. A graph G=(V,E) is a
k-ordered hamiltonian-connected graph if for any sequence of
k vertices of G, denoted by {u = vy vy,...,v = v,_4}, there
exists a hamiltonian path P between u and v such that P passes
these vertices in the specified order. It can be seen that
k-ordered hamiltonicity and k-ordered
hamiltonian-connectedness do not imply each other.

The concept of k-orderedness and k-ordered hamiltonicity has
attracted various studies since it was first introduced by Ng and
Schultz [8] in 1997. See [2, 5—S8]. In [8], the authors posed the
question of the existence of 4-ordered 3-regular graphs other
than the complete graph K, and the complete bipartite
graph K3 5. In [7], Meszaros answered the question by proving
that the Petersen graph and the Heawood graph are
non-bipartite, 4-ordered 3-regular graphs. Hsu et al. in [3]
provided examples of bipartite non-vertex-transitive 4-ordered
3-regular graphs of order n for any sufficiently large even
integer n. In 2013, Hung et al. further gave a complete
classification of generalized Petersen graphs, GP(n,4), and
showed the following theorems.

Theorem 1.1 [4] Let n = 9. GP(n,4) is 4-ordered hamiltonian
ifand only ifn € {18,19} orn > 21.

Theorem 1.2 [4] Let n = 9. GP(n,4) is 4-ordered
hamiltonian-connected if and only if n > 18.

Since Petersen graphs have been well-known and often provide
examples or counterexamples for interesting graphic properties,
the results of [7] and Theorems 1.1—1.2 might leave us an
impression that most 4-ordered graphs are 4-ordered
hamiltonian, and most 4-ordered hamiltonian graphs are
4-ordered hamiltonian-connected. It might be misleading.
Therefore, we intend to study this topic on graphs with real
applications. In this paper, we are interested in the
4-orderedness of certain types of chordal rings. The chordal
ring family has been adopted as the underlying topology of
certain interconnection networks [1] and is studied for the real
architecture for parallel and distributed systems due to the
advantage of a built-in hamiltonian cycle, symmetry, easy
routing and robustness. See [10] and its references. The chordal
ring CR(n,1,q), where n is an even integer with n > 6 and g an
odd integer with 3 < g < n/2, is defined as follows. Let
G(V,E)=CR(n,;1,q), where V= {a,, a,,..., a, } and E=
{(ai, Arymoamy: 151 <0} U {(a;, A4 qymodamny: i is 0odd and
1<i<n}. See Figure 1 for an illustration.

The following two lemmas are proved by computer
experiments. See [9].
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Lemma 1.1 [9] CR(n,1,5) is 4-ordered for any even integer n
with 14 < n<50.

Lemma 1.2 [9] CR(n,1,7) is 4-ordered for any even integer n
with 18<n <50.

II. THE 4-ORDEREDNESS OF CR(N;1,5)
Theorem 2.1 CR(20 + 6k;1,5) is 4-ordered for £ > 0.

Proof. By Lemma 1.1, CR(20;1,5) is a 4-ordered graph. It is
interesting to see whether or not CR(20+6k;1,5) is 4-ordered for
k > 1. We can embed CR(20+6k;1,5) into CR(26+6k;1,5) as
follows. Let R be a subset of V(CR(20+6k;1,5)) U
E(CR(20+6k;1,5)). We define a function f, which maps R from
CR(20+6k;1,5) into CR(26+6k;1,5) in the following way: (1) If
a; € R N VCRQR0+6k; 1,5)), where 1< i < 20+6k, then
fa)=b.(2) If (a;, a;) eR N E(CR(20+6k;1,5)), where 1<, j <
20+6k, then
(b; , bjyq) for1 <i<I19+ 6kandj=i+1;

fa; , a)))=|(b; , biys) fori=odd with 1<i<15+ 6k
andj =i+5;
undefined otherwise.

Therefore, CR(26+6k;1,5) — f{CR(20+6k;1,5)) consists of the
vertex set{b;1+e60216k Da3+orD2a+6kD25+6k Dasrery and the edge
set {(b20+6t:D21+68)> (D21+6tk D22+61)s (Br2+6ks Da3ver)s (D23r6kD24+6k)s

(b2a+6s bas6k)s (b25+6k-D26+6K)s (b26+6k,b1),(b17+§k,b22+6k),
(b19+66:D24+68)> (B21:61D26+6k)s (D23+616D02), (Dastersba)}. Figure 2.1

gives an illustration, in which f maps R from CR(20;1,5) into
CR(26;1,5). We can see that (1) fla;) = b; for 1 <i <20, denoted
by black vertices on both graphs. (2) f((a;, a;11)) = (b;,bi+1) for
1<i <19, denoted by green edges on both graphs. (3) f{(a;, ais))
= ( b;,b;ss) foriis odd with 1<7 < 15, denoted by blue edges on
both graphs. (4) fl(aze, a1)) = ¢ fl(a17, a2)) = pand f{(a19, as)) =
¢, denoted by dashed edges on CR(20;1,5). (5) CR(26;1,5) —
AICR(20;1,5)) consists of the vertex set {b,1, by, b2z, bay, bys,
bys} and edge set {(bro, b21), (b21,022), (22, b23), (D23, b2s), (Dos,
bas), (bas, bag), (bass 1), (D17, b22)s (D19, baa), (ba1,b26), (D23, D2),
(bas, ba)}.

We first present the construction of the required cycle in
CR(26;1,5) using the known cycle of CR(20;1,5), denoted by
C’, as an illustration. There are 20 vertices a;, ay,..., dyy in
CR(20;1,5), and 26 vertices by, bs,..., bys in CR(26;1,5). To
prove the theorem, we do case studies by considering different
situations. Take G = CR(26;1,5). Let x;, x,, x3 and x4 be four
arbitrary vertices of G. We want to construct a cycle Cin G that
visits xi's in the given order. Note that we can always find at
least one set of six consecutive vertices, denoted by S =
{bisbi+lsbi+23-~-abi+5}» such that S N {xl, X2, X3, X4} = ¢ . Without
loss of generality, let x; = by and S = {b,1,b15,..., b2s}. Removing
the vertices of S and all edges adjacent to S in G, we obtain a
subgraph of CR(20;1,5). Obviously, S N fACR(20;1,5)) = ¢.
Note that CR(20;1,5) is 4-ordered and hence contains a cycle
that visits x:'s in the given order, denoted by C’. We will obtain
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C by embedding CR(20;1,5) into CR(26;1,5) and rerouting the
cycle C’. There are two cases.

Casel (a;7, ap) € C'.

Case 1.1 |{a,9, ay} N C’|= 0. It means that only the edge (a7,
ay) € C’. Let C’={a,,01, a17, a2,0,, a; ), where QO is a path
between a;and a;;, O, is a path between a, and a;, and Q; N O,
= ¢ We construct C = (f{a1), AQ1), fa17), bx,b23, @), fQ2),

Sa)) = b1, AQ1), bi7, b, b3, by, (D»), by). See Figure 2.2 and
Figure 2.3 for an illustration.

Case 1.2 |{ a9, ax} N C|= 1.

Case 1.2.1 (a3, a19, a4) € C’. It means that (a7, a;) € C”" and
{arg, arg, ag )€ C'. Let C'={ay, O, ai7, @z, O, ars, a19, aa, O3, ay),
where Q) is a path between a; and a,7, O, is a path between a,
and a,s, 05 is a path between a, and a,, and O; N Q; = ¢ for each
i#jand {i, j} < {1,2,3}. We construct C ={ fla;), AO1), Aa17),
by, b3, flay), AD>), fars), flars), b, brs, Ras), AO3), fay) ) =

<blaﬂQl)7 bl7) b22) b239 b29f(Q2)9 blSa bl99 b249 b259 b47ﬂQ3)9 bl>
See Figure 2.4 and Figure 2.5 for an illustration.

Case 1.2.2 (a;5,a,a; )€ C’. It means that (a7, a;) € C’ and
<a159 a, a1> € C" Let C’ = <a19 Ql» ayr, ay, st ays, dyo, A4 >9
where Q) is a path between a; and a,7, O, is a path between a,
and a;s, and Q1 N O, = ¢. We construct C =( f{a), AQ1), Aai7),
by, bas, flan), (D), flais), flax), bai, b, flar) ) = (b1, AO1), bi7,
by, ba3, by, (D5), bis, by, b2y, bag, by) . See Figure 2.6 and
Figure 2.7 for an illustration.

Case 1.3 {alg, azo} n C,| =2.

Case 1.3.1 { a3, a19, ay, a;sy € C’. It means that (a7, a;) € C’
and ( aig, ayo, az, ars) € C’. Let C"=(ay, O\, ar7, az, O, aig, aro,
as, a5, O3, 1), where Q) is a path between @, and a7, O, is a
path between a, and a;g, Q; is a path between a;5 and a;, and Q;
N Q;= ¢foreachi=jand {i, j} = {1,2,3}. We construct C =
fa), [O1), fai7), b, b, flaz), AO2), flars), flars), fazo), fais),
fOs), flar) ) = (b1, AO1), b7, b, bas, by, (D2), bis, bro, bay, bis,
fQs), by).

Case 1.3.2 ( a;, ay, a9, as) € C’. It means that { a;, ag, a9, a4)
e C’and (a7, ay) € C'. Let C'=( ay, ay, ar9, a4, O1, a17, @z, O,
ay) , where Q, is a path between a4 and a,7, O, is a path between
a, and a;, and O, N O, = ¢. We construct C = (fla,), by, by,
Slax), flaro), bay, bas, flas), AO1), flar7), b, bas, flaz), [O1), far)
> = by, bas, ba1, bao, b9, baa, bas, by, {Q1), bi7, bz, bas, ba, AO),
by).

Case 1.3.3 < a5, dyp, A9, a4) e C’. It means that ( ayr, az) eC’
and {(ais, az, ar9, as) € C’. Let C'={ay, Q1, a7, @, O, ais, Az,
ae, a4, Q3, a;) , where Oy is a path between a; and a7, O, is a
path between a, and a;s, Q; is a path between a, and a;, and Q;
N Q;= ¢ foreachi=jand {i, j} < {1,2,3}. We construct C=¢
fla)), A0, fRarr), bx, by, faz), AO2), flars), fax), Aars), bas,
bas, flas), Qs), lar) ) = b1, AO1), D17, b, ba3, by, ADs), bis, bag,
D19, baa, bas, by, f(O5), by) -

237
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Case 1.3.4 ( ayg, ay9, az, a1y € C’. It means that ( ay7, ;) € C’
and (a3, a9, ax, a1) € C’. Let C'={ay, O, a17, az, O, ais, ao,
ax, a1y , where Q) is a path between a; and a7, O, is a path
between a, and ag, and Q1 N O, = ¢. We construct C = { fla;),
RO, farr), ba, bas, a), AOa), Aars), flars), flaz), bar, bas, flar)
> = b1, Q1) big, ba, by3, by, D2), b, brg, bao, bat, bas, by).

Case 1.3.5 < agg, Ay, a4> S C), < as, Ao, a1> e C’. It means that
(ap, ar) € C’,{ays, aj, ayy € C’and { a;s, azy, a;) € C’. Let C’
={a1, O1, a17, @z, O, a1, Ao, a4, O3, Ay, G0, A1) , Where Oy is a
path between a; and a7, O, is a path between a, and a5, Q5 is a
path between a, and a;5,and O; N O = ¢ foreachi#j and {i, j} <
11,2,3}. We construct C = { flay), f (Q1), far7), bxn, by, flay),
D), flarg), flaro), bra, bas, flas), f (D), Aais), Aax), ba, b,
fay) ) = (b1, RO, bi7, by, bas, by, Ds), big, bro, bra, bas, by,
SO3), bis, bro, bat, b, by).

Case 2 ( aiq, az) g C.

Case 2.1 |{ a9, ayo} N C’|=0. It means that C’ = ( ay, O1, a;) ,
but the edges (a7, a2), (a1s, a20), (@19, as), (a1, a19), (@19, az),
(@20, a))g C.

Case 2.2 |{ ajo, ax} N C|= 1.

Case 2.2.1 { a3, aj9, az) € C’. It means that ( ag, aj, asy € C’.
Let C'=(ay, O, ais, ayo, a4, 0>, @1) , Wwhere Q) is a path between
a, and ayg, O is a path between a4 and a;, and Q; N O, = ¢. We
construct C = ( fla)), AO)), flas), flaw), b, b, flas),
AO) S ar)) = (b1, A1), bis, br9, bra, bas, ba, [ (O2), by) .

Case 2.2.2 < ays, dyo, a1> e C’. It means that < ays, Ao, a1> eC’.
Let C’=<(ay, Q1, ais, ax, a1) , Where Q, is a path between a; and
ais. We construct C = ( fla)), AO1), Aai5), Aaz), bai, brs, flar) )
={ bl,f(Ql), bis, by, ba1, bae, by).

Case 2.3 |{ a0, ax} N C|=2.

Case 2.3.1 <alg, a9, Ao, 015> € C’. It means that < aig, Aig, Ao,
ais) € C'.Let C’={ay, O, a13, a9, azo, a15, O, a1), where Q; is
a path between «; and a;g, O, is a path between a5 and a;, and
01N Or= ¢. We construct C = fla)), AO1), flawg), flai), flaz),
fas), Da), f(ar) ) = bi, RO, big, bro, bao, bis, (D), by) -

Case 2.3.2 <a1, ayo, A9, a4> e C’. It means that (al, ayo, A19, a4)
e C’. Let C’ = {ay, ay, ay, a4, Q1, a;) , where O, is a path
between a4 and a;. Let C = { fla,), by, b21, L), A19), b2a, by,
fas), RO, flar) ) = by, bas, by1, bao, bro, baa, bas, ba, AO), by).

Case 2.3.3 (a5, ax, a19, as) € C’. It means that { a;s, ay, a9,
a4> eC’.LetC’'= < aip, Ql; ays, Ao, A19, A4, Q2) a1> s where Ql is
a path between a; and a;s, O, is a path between a, and a;, and
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Case 2.3.4 ( a3, a9, ax, a1y € C’. It means that { a3, a9, a2,
ap) e C'. Let C’ = ay, O1, arg, arg, az, @1y , Where Q; is a path
between a; and a;3. We construct C={ fla,), AQ1), flais), Aar),
Slax), bar, bas, flar) ) = b1, AO1), bis, 19, bao, bay, bas, by) -

Case 2.3.5 ( aig, a9, as) € C’, { ays, axy, a;) € C’. It means that
(ais, a9, as) € C"and{as, ay, a) € C’. Let C’ =(a,, 01, ais,
ag, a4, Os, ais,an, ai) , where Qg is a path between a; and a3,
0, is a path between a4 and a;s, and Q; N O, = ¢. We construct
C=(fla), f(Q1), fa), flaro), baa, brs, flas), AO2), flais), Aaz),
ba1, bas, flar) ) = b1, AO1), bis, bro, ba, D), bis, b, ba1, b,
by).

Given four arbitrary vertices {x]l1 <i <4} in CR(26;1,5), we
have presented a constructive skill for finding a cycle C in
CR(26;1,5) from the known cycle C’ in CR(20;1,5) that visits
x;'s in the right order. The same technique is applied to derive a
cycle C in CR(26+6k;1,5) from a cycle C' in CR(20+6k;1,5)
that passes four arbitrary vertices in the required order. More
specifically, using the induction hypothesis, we assume that the
statement holds for CR(20+6k*;1,5) for some integer £* > 1.
Replacing the vertex label a; (or b;, resp.) with @ (OF bjigpr
resp.) in the above derivation, we can show that the statement in
the theorem holds for CR(26+6k*;1,5). Hence the theorem is

proved by mathematical induction. mi

With Lemma 1.1, it is known that CR(22;1,5) and CR(24;1,5)
are 4-ordered. It is easy to see that our technique in Theorem
2.1 can be utilized to obtain the following two theorems.

Theorem 2.2. CR(22+6k;1,5) is 4-ordered for k£ > 0.

Theorem 2.3. CR(24+6k;1,5) is 4-ordered for k£ > 0.

Combining Lemma 1.1 and Theorems 2.1-2.3, we have the
following theorem.

Theorem 2.4. CR(n;1,5) is 4-ordered for any even integer n
with n > 14.

III. THE 4-ORDEREDNESS OF CR(N;1,7)
Theorem 3.1. CR(26+8k;1,7) is 4-ordered for £ > 0.

Proof. By Lemma 1.2, CR(26; 1, 7) is a 4-ordered graph. We
can embed CR(26+8k; 1, 7) into CR(34+8k; 1, 7) as follows. Let
R be a subset of V' (CR(26 + 8k; 1, 7)) [1 E(CR(26 + 8k; 1, 7)).
We define a function /', which maps R from CR(26 + 8k; 1, 7)
into CR(34 + 8k; 1, 7) in the following way: (1) Ifa;, € RN V
(CR(26 +8k; 1,7)), where 1 <i<26+ 8k, thenf(a;)=b;.(2) If
((a;,a;) ) € RN E(CR(26 + 8k; 1, 7)), where 1 <4, j <26 + 8k,
then

(b; , bjyq) for1 <i<25+8kandj=i+1;

01N 0,= ¢ We construct C = flar), AQ1), fars), Nax), Aar0),  fi(a; , a;))=7(b; , biyy) for i= odd with 1<i<19 + 8k
baa, bas, flas), AQa), flar) ) = (b1, AO1), bis, bao, brg, b, bas, ba, and j=i+7,
SO, by). undefined otherwise.
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Therefore, CR(34 +8k; 1, 7) — f(CR(26 + 8k; 1, 7)) consists of
the vertex set {b,, ¢, Dogiarr Prgrgys bigise biraser Diaase Dszisic
b and the edge set {(b

’ b29+8k )’ (b29+8k’ b30+8k)’ (b30+8k’ b31+8k )’ (b31+8k’ b32+8k )’ (b32+8k’

b33+8k)’ (b33+8k’ b34+8k )’ (b34+8k’b1)’ (b21+8k ’ b28+8k )’ (b23+8k ’ b30+8k

) (s Digeg) Pyt Dsgigd (Bagug 03, (b gy b)), (B
by), (by5.5:- bg)}. Figure 3.1 gives an illustration, in which f'maps
Rfrom CR(26;1,7) into CR(34;1,7). We can see that (1) fla,) =
b, for 1 <i<26, denoted by black vertices on both graphs. (2)

((a;,a;41))= <b;,b;4q) for 1<i<25, denoted by brown edges

on both graphs. (3) fi(a;, ;47 )) = {b;,b;,,) foriis odd with
1 <i<19, denoted by blue edges on both graphs. (4) f{(a,, @,))
=, f(ay), a,)) = ¢, f((a,3, a,)) = ¢ and f((a,5, a4)) = ¢, denoted
bydashed edgeson CR(26;1,7).(5) CR(34;1, 7)—ACR(26;1,7))
consists of the vertex set {b,,, by, byg, by, by, by, by, by}
and edge set {(Dyg, by7), (byy, bag), (byg, byg), (brg, byy), (s, b3y),
(b31, byy), (bsy, b3y), (B3, b3y), (byy, b)), (byy, big), (By3, by), (Dys,
b33),(by7,b34), (bog, by), (byy, by)s (bsz, ) -

34+8k } 26+8k’ b27+8k)’ (b27+8k’ b28+8k)’ (b28+8k

We first present the construction of the required cycle in CR(34;
1, 7) using the known cycle of CR(26; 1, 7) as an illustration.
There are twenty-six vertices a;, ay,..., s in CR(26; 1, 7), and
thirty-four vertices by, b,,..., b3y in CR(34; 1, 7). To prove the
theorem, we do case studies by considering different situations.
Take G = CR(34; 1, 7). Let x1, x,, x3 and x,; be four arbitrary
vertices of G. We want to construct a cycle C in G that visits
xi's in the given order. Note that we can always find at least one
set of eight consecutive vertices, denoted by S = { b;, b1, b2,
..»bir7}, such that S N { xy, x5, x3, x4} = ¢. Without loss of
generality, let x; = b, and S = { by7,b23,...,b34}. Removing the
vertices of § and all edges adjacent to S in G, we obtain a
subgraph of CR(26;1,7). Obviously, S N fACR(26;1, 7)) = ¢.
Note that CR(26; 1, 7) is 4-ordered and hence contains a cycle
that visits xi's in the given order, denoted by C’. We will obtain
C by embedding CR(26; 1, 7) into CR(34; 1, 7) and rerouting
the cycle C’. There are two cases.

Case 1 (a,,a,) €EC".

Case 1.1 |{a,;, a,,,a,5,a,,} NC’|=0.

It means that only the edge (a,,, a,) € C’. See Figure 3.2 for an
illustration. Let C’" =({a,, O,, a,,, a,, O,, a,), where O, is a path
betweena, anda,,, O, is apathbetweena, anda,,andQ, NQ, =

@. Weconstruct C=(f{a,), Q,). fay,), by, by, fla,). LO,).fa)) )
=(b,.f10,). by, bag, by, 0, 0D,), b))

Case 1.2 |{a,;,a,,, a5, 0,5} NC’|= 1.

Case 1.2.1 {ay, a,,a,) €C".

Itmeans that (a,;,a,) € C"and {ay, a,,,a,) €C". LetC'= (
a;, 0, a,,,a,, Q,,a,4, ay, a,), where Q, is a path between a, and
a,,, O, is a path between a, and a,y, and O, N O, = ¢p. We

construct C = {fla,), Q). flay), by, byy. a,). 0. faye).f
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(a56), by7, b3y, fla ) = <b1 SQ1).051,025,5:9.0,,00,).5,9,0,4,0,,,
byub)).

Case 1.2.2 {a,), a,,a,) €C’.

Itmeans that (a,,,a,) €C’and {a,,,a,,,a,) €C". LetC= (
a,, 0,,0,,,0,,0,,0,,, 05, a,, 05,a,), where O, is a path between
a, and a,,, O, is a path between a, and a,,, O, is a path between
a,and a;, and Q,NQ, =¢ for each i #jand {i,j} < {1,2,3}.We

construct C = <f(a1):f(Q1 )’4}((“21)’ bzg) szxf(az):f(Qz)af(azz):

ﬂa23): b30’ b31,f(a4),f(Q3),ﬂal)> = <b1:f(Q1)’ b21’ b28’ b29’ b2’
JO,).by0,by5, b5, b5,,b,,/(05),b,). See Figure 3.3 for an
illustration.

Case 1.3 [{ay;, a,,, ay5, 0, } NC'|=2.

Case 1.3.1 {a, a,,4a,,a,) €C.
It means that (a,,,a,) €C"and {a,,,a,,,a,;,a,,) €C".Let C'=

{a,, 0,, ay;, a5, Oy, A, Ayy, Aoy, Ayy, O, @), Where O, is a path
between a, and a,,, O, is a path between a, and a,,, O, is a path
between a,, and a,, and 9,NQ, =¢ foreach i # jand {i,j} € {1,

2,3}. We construct C = {fla,), 0,). ay,), by by, fa,), AO,).

ﬂa17)af(a24)lf(a23 ):ﬂazz ):f(Q3 );f(al )> = <b1,f(Q1 ), b21’b28’b291b21
SO,).b,75,0,4,5,3,00,/(03).0)).

Case 1.3.2 (ag, a,5, a5, a,) €C.

It means that (a,,,a,) €C and (a,, ays,a,,,a,> €C". Let C'=
a,, 0,,ay,, 4y, Q,, 0, 055, G55, a,), Where O, isapathbetweena, and
a,,,0,isapathbetweena, andag,and0,N 0, = ¢. We construct C

= Ma). Q). /ay). by, byg. f1ar). 1O,). f(ag), by by, flars),
fézs)’bzwbwf(al»: <b1’f(Q1)’bzllb28’b29’b2’ﬂQ2)’bs’bwb}z’bzs’

b,.b,7,0,,,b,). See Figure 3.4 for an illustration.

260727

Case 1.3.3 {a,, a,,a,5,a,) €C
It means that (a,,,a,) EC"and {a,, ay,a,5,a,> €C". Let C’'=

{a,, 0,, ay,, a,, 0,, 4y, Ay, ays, ag, 05, a,), where O, is a path
between a, and a,,, O, is a path between a, and a,, O, is a path
between agand a;, and Q,N Q,=¢ for each i #jand {i,j} < {1,2,

3}. We construct C = <f(a1)’f(Q1)xf(a21) ybyg byg  ay) , (O,),

fa ). fay).Rays), by, bys, flag), (O5), fla, )> = <b1’f(Q1 )by,
b28’ b29’ b2’ﬂQ2)’ b17’ b24’ b25’ b32’ b33’ b6’f(Q3 )’ b1>‘

Case 134 (a, a,,ay,a,) €C’
It means that (a,,,a,) € C’and <a17,a24, a23,a4> €C’. LetC'=

(al, 0, 4y, ay, 0,, ay5, Ay, Ay, a,, Oy, a,), where Q, is a path
between @, and a,,, O, is a path between a, and a,,, O, is a path
between a,and a;, and 0,1 Q;=¢ foreach i #jand {i,j} € {1,2,
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3}. We construct C= {fla,), fO)), fla,)). byg by, fa,). O,),

f(a17),f(a24),f(a23), b30’ b31:ﬂa4)’f(Q3)xf(a1)> = <b1’f(Q1)’ bzp
b28’ b29’ bZZﬂQZ)’ bl7’ b24’ b23’ b30’ b3 1’ b4’ﬂQ3 )’ bl>

Case 1.3.5 (ay, ay, ay5,a,) €C.
It means that (a,,,a,) €C’and {a,y, ay ay5,a,) EC’. Let C'=
{a,, 0,, ay,, ay, 0,, 9, g, Ass, A, Oy, a,), Where QO is a path

between a, and a,,, O, is a path between a, and a ,, O, is a path
between agand a;, and O,N Q=g for each i #jand {i,/} < {1,2,

3}. We construct C = <f(a1), RO, flay,), by, by, flay). QD))

f(am)’f(az(,)’f(ax)x b32’ b33,ﬂa6),f(Q3),f(a1 )> = <b1’f(Q1 ), bzp
b28’ b29’ bz’ﬂQZ)’ b19’ b26’ b25’ b32’ b33’ b6’ﬂQ3 )’ bl>‘

Case 1.3.6 (ay, a,,a,) €C’, {ay ay.a,) €C.

It meansthat(a,;,a,) €C’, ay,a,,a,) €C'and {a, a4,

) €C’. LetC’= <al,Ql,a21,a2, 0,,a,,,0,3,0,,05,0,4,0,6,a,),
where O, isapathbetweena, and a,,, O, is apath between a, and
a,,, O, is a path between a, and a,,, and O, N Qj = ¢ for each i #

jand {i,j}S {1,2,3}. WeconstructC= {f{a,)f0,)fay).b,5.bs,
Nay), (Oy), fay), fays). by, byy. fay), AO3) a9 as6).0,7.b3
fa)) = b, 10 )by bag, g, by 10,).05.b3, b3, b1, b, Q).
b19,b56:D27,b34,D1)-

Case 1.4 |{a,,,a,,, a,;,a,,} N C’|=3.

Case 1.4.1 (a,, a,,a,, a,,a,) €C".
It means that (a,,,a,) € C’and a,,,a,,, a,5,a,,a,) €C". Let C’

= {a,, 0, a5, a5, Q,, A, Ay, a5, Gy, a,), Where O, is a path
between a, and a,,, O,isapath betweena, anda,,and O, N 0, =

. We construct C= {fla,), A0,), fa,,), by, by, fla,), AO,),

Aa,7) fay,).fays).ay), by, by fa, ) = <b1’ﬂQ1 )by, D25, by,
by f(D,). 517,554,055, D16, b57, b3, b, ).

Case 1.4.2 (a,, ay, a,, a,5,a,) €C’.
Itmeans that (a,,,a,) € C'and {a,,, a,;, a,,, ay5,a,) €C’. Let C'=

{a,, 0,4y, a,,0,, 0y, Gy3,ay,, 0,5, a5, O, a,), where O, is apath
between a, and a,,, 0, is a path between a, and a,,, O, is a path
between a,and a,, and QiﬂQj:gz) foreachi # jand {i,j} S {1, 2,

3}. We construct C = (f(al), fO)), flay)), by, by, fa,). AO,),

Aay) fay,) fay,). fays), by, by fag) AO;) fla)) = b AO)),
by, bag, brg, by, fDy), byy, byy by, by, by, by, b, f(O5), by). See
Figure 3.5 for an illustration.

Case 143 (a,, a,, a,5, ay, a,9) €C.
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It means that (a,,,a,) € C'and {a,,,ay, a55, 4,5, a0, €C’. Let

C'= £a,,0,,5,,a5, 0,0y, Gy, Gy, 1, O,y ), Where O, is
path between a, and a,,, O, is a path between a, and a,,, O;is a
pathbetweena,, and a,,and 9,NQ, =¢ foreachi# jand {i,j} S
{1,2,3}. We construct C = {f(a,), f(Q,). f(ay)), byg, byy, f(a,),
f(Qz)xf(‘ﬁ7)Jﬂaz4)’ﬂa25)’f(aze):f(am):f(Q3):f(a1)> = <b1:f(Q1)x
by1025:b29,0, 005, 017,b34,055,b26,b19.D5),51)-

Case 144 (a, a,5,a,,4a,,,a,) €C.
It means that (a,,,a,) € C’and (as, Ays, 0y, a23,a4> eC’. LetC’
= (a,,0,,ay,a,, 0,,aq, a5,y ay3,d,, 05, a, ), where O, isapath

between a, and a,,, O, is a path between a, and a,, O, is a path
between a, and a,, and Q,NQ, =¢ for eachi #/and {i,j} € {1,2,

3}. We construct C = {f(a,), f(O)), (), by brg, f(ay), AO,),
fag), by, byy, flars) fay,). fas), byg, by, f(a) f(03).flay)) = €

bl’f(Ql )’ b21’ b28’ b29’ b2’f(Q2)’ b6’ b33’ b32’ b25’ b24’ b23’ b30’ b31’ b4’
AQ5).b)).

Case 1.4.5 (a,;, a4y, 0, 0,0 €C’, (aygay,a,) €C’
It means that (a,;,a,) € C’, {a,,,a,,a,,a,,> € C'and <
a19’a26’a1> €C. Let C'= (al,Ql,aZI,az,Qz,a17,a24,a23,a22,

0,. 4,4, 0y, a,), where O, isapathbetweena, and a,,, 0, is apath
betweena,and a,,, O;isapathbetween a,, and a,y, and O,NQ,=

pforcach i/ and {ij} € {1,2,3}. We construct C= {fla,),
AQ1), Ray), byg, brg, 1a,). (D). 1(a7) R y,) far;) May). Q).
ﬂa19)‘ﬂa26)’b27’b34ﬂa1)> = <b12f(Ql)’b21’b28’b29’b2ﬂQ2)1 b17’
by by3, 055, 005), 19, by, by, 034, b))

Case 1.4.6 <a22, ay,, a4> eC’, <a6, Ays, Gy, a1> eC’.
It means that (a,,,a,) € C’, {a,,a,,a,) € C’and {a,, a,s,
a26’a1> €C . LetC’= <a1,Q1,a21,a2, 0,.05,,0y3, a4, 05,0, Ay,

a,, a,), where Q, is a path between ¢, and a,,, O, is a path
between a, and a,,, O, is a path between a, and a,, and 9,1 O, =

@ foreachi#j and {i,j} € {1,2,3}. We construct C = <f(a1),
RO\, fay)), byg, byg, fay), O,). @) ays), by, by, (a,) Os),
Rag) b33, b3 far) Rarg).byrbsyflay)) = by fO))byybog, by,
by, (QD2), b1, b3, b3, b31, b, 0D5), b, b3y, b3y, bys, by, b7, b3y, By).

Case 14.7 (a,;,ay,a,,a,) €C’, (aaya,) €C.
It means that (a,,a,) € C', {a,;a,,a,,a,) € C'and <
100550, € C'. Let C’ = £a,,0,,05,,0,,0,,0,7,0,4,05,,4,,

0,.a,y, a5, a,), Where O, isapath betweena, and a,, 0, is apath
between a, and a,,, O, is a path between a, and a,,, and O,N Qj =

g foreachi #j and {ij} S {1,2,3}. We construct C = <f(a1),
AO)). fayy), byg, by f(a,). 0D,). f(a,7) ayy) fars). by, by, flay),
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O Ma,9) M ay). by, by, a1)>: <b1ﬂQ1)’bzvbzs’bzwbz’f(gz)’
D17, D54, by3, by, by, by, (O5), b1, bag, byy, b3y, D))

Case 148 (a,,, a,, ays, a0 €C, {a,, ay,a,) €C.

It means that (a,,,a,) € C’, (a,y, a5, a55,a,) € C’and <
ay a5, a,) € C' Let C'= £a,,0,,8,,,a5, 05,d,9, 8y, Gys, A
0,.a,,,0,,,a,,0,,a,), where O, isapathbetweena, and a,,, O, is
a path between a, and a,,, O, is a path between a, and a,,, O, is a
pathbetween a, and a;, and O, N O, = ¢ for each i #/ and {,
JE {1,2,3,4}. We construct C = {fla,), AQ,), fay), by,
D19, f(a,). [1D,). [a,5). [ (a5). [@y5), bs,, bss, flag), f(Q5). May)f
(a23)’ b3()’ b31zﬂa4)’.f(Q4)zﬂa1) > = <b1).f(Ql )’ bzl’ b28’ b29’ bz’f
(92).519,056,D,5,b35,b33, 6,003,053, b33, b3, 031, 0,./(04). b))

Case 149 (a,,, a,, a5, a0 €C', (a5 aya,) €C.

It means that (a,,,a,) € C’, €a,,,a,,a,5,a,) € C’and <
ayy aze’a1> € C. Let C'= <a1’Q1’a21’a2’ 0,.0,7,0y,, 55,4,
0,.a,4, ay, a,), where Q, isapath betweena, and a,, O, is apath
between a, and a,,, O is a path between agand a5, and O,NQ, =
pforeachi #j and {ij} < {1,2,3}. We construct C = (f(al),
RO, fay)), byg, bys, 1ay). Q,). [ay7) ) ays), bsy, by, fatg),
RO fag) far) by, by fla)) = by fQ,).by,.byg, by, by, AO,),
D17 Dy4 bys, by, b3, b, [(Q3), brg, Dyg, byg, b3y, by).

Case 1.4.10 (a ; a,, a,,a,) €C’, (ay, ay,a,) €C’.

It means that (a,,, a,) € C', {a,,, a,, ay5, a7 € Cland
Uy, sy, ay) € C.Let C'= £a;, 0,5,y 0y,d,7, tyy, 55,0, O,
,, Qys, a,, Oy, a,), Where Q, is a path between a, and a,,, O, isa
path between a, and a,,, O, is a path between a; and a,,, 0,is a
pathbetween a, and a,, and O, N Qj = ¢ for each i # j and {j,
J} € {1,2,3,4}. We construct C = ( fla,), A0O,), flay,), by,
D15, /1)), J(0,).f(@,7). f (ay4). [ay5), bs,, bys, flag). [(O3). flay).f
(ay3), b3, b5, /(ay) 1O fa,) ) = <bl’f(Q1 ), by, byg, bro, by f
(©92),D17,b54,b5,b35,b33,b6,(05), 055,053,059, b31, 0, (D), ).

Case 1.5 |{a,;,a,,, a,5, a,,} NC'|=4.

,
Case 1.5.1 <a19, Ay Ays, Ayy, Ays, a22> ec.

It meansthat (a,,,a,) €C’, (alg, ) €C’. Let

e Apsr Ay ozr Aoy

C'= £a,,0,,,,,a5, s, ), Uy, Gy, Uiy, ys, Ay, O,y ), Where O,
is apathbetween a, and a,, O, is apath between a, and a,, Q; is
a path between a,, and @,, and O.N Qj =g foreachi #jand {i,j}

c {1,2,3}. We construct C = (f(al),f(Ql), Say)), by, by, flay),

RO, fayg). Rar) far5) faz,). fary) fap) ) Ma)) = (b,
HQ1).by1,b3,029,0) 005), 519,02, b5, b4,D53.055, D3), B )-
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Case 1.5.2 {a, a,;, a,, 4,5, a,5,a,) E€C".
Itmeans that (a,,,a,) €C’, <a4, Ay, oy azs,a%,al) €C’. LetC’

= {a,, 0, a5, a5 0,, 4, 4,3, 4y, ay5, ays, a,), Where O, is a path
betweena, anda,,, O, isapathbetweena, anda,, and O, N0, =

9. We construct C= {fla,).0)).fa,,). by, by, a). O,). R ay),

by, by far) 5. R 55) ). by, by fla)) = b0, by,,
byg. Drg, by, J1O5), by, by, by, bys, by, by, byg, byg, by, by). See
Figure 3.6 for an illustration.

Case 1.5.3 {a,y, a5, ays, 4y, ayy, a,) €C
It means that (a,,,a,) € C’, {a,y, ay, ay5, ayy, ay3,a,) €C. Let C

= €a,,0,,4,, 4, 0,, g, Uy s, oy, oy, 0y, Oy, ), Where O, is a
path between a, and a,,, O, is a path between a,and a,, O, is a
path between a, and a,, and O, Q, = ¢ for each i#jand {i,/} S

{1,2,3}. We construct C = {fla,), f0,), flay), by, byo. fla,),
RO, fay) Rang), fay5) ) ), by, by fa) 05 fa,))

= <b1’f(Q1)’b21’b28’b29’b2’ﬂQ2)’ b19’b26’b25’b24’b23’b30’b31’b4’
AQ).by).

Case 1.5.4 (a,,, a3, a5, 455, a5, a,) EC.
Itmeans that (a,,,a,) EC’, {ayy, a3, 054,055, 55,a,) €EC. Let C”

= (al, 0., ay,, 0y, Oy, Ay, oy, Gy, Qys, Gy, A, ), Where Q) isa path
between a, and a,,, O, is a path between a, and a,,, and Q,NQ, =

9. We construct C = {f(a,), f(0,). f(a)), byy, by, /(). Q). f

(azz)’f(am)ﬂaz4)ﬂa25)ﬂazs)’bzwbwﬂal)> = <b1zﬂQ1)’b21’b28’
29,01 005),013,013,54,D15,b56,b57, b3y, b))

Case 1.5.5 <a17,a24,a23,a22> eC’, (alg,azs,azs,%) eC’

It means that (a,,,a,) € C’, {a,, a,,,a,,,a,,7 € C’and {a,,,

Uyg tos, ) € C'. Let C'= £a,, 0,,ay,, 85, 05,017,483, @5, O,
a9, Ay, Uys, G, 0y, a,), Where Q| isapathbetweena, and a,,, O, is
a path between a, and a,,, O, is a path between a,, and a,,, O,
is a path between a, and a,, and Q,N O, = ¢ for each i#jand {i,/}
C {1,2,3,4}. Weconstruct C = {f(a,), f(O,). f(a,)), byg, by, f
(a,). (Q,). f(ay7), ayy), [lays), fay,). (Q5). flay), f(ar) flays),
b32,b33,f(a6)ﬂQ4),f(al)>: <b1ﬂQ1):b21’bzx’bzwbzﬂQz)’bn:bzw
D302 (D3), b19,D56 b5, 035, b33, 06,(0,). by ).

Case 1.5.6 (a”, Ay, Oy, a4> eC’, <a6, ys, Uy, a1> eC’.
Itmeans that (a,,,a,) €C’, {a,q, ayg, ays, dyy, ayy, a,) €C". Let C

= £a;, 0. a4y, 5, 0,, 49, g, s, Gy, O3, 4y, O, Gy Gy, Gy ),
where O, is a path between a, and a,,, O, is a path between a, and
a,9, Oy is a path between a, and a,, and Q,NQ, = ¢ for each i # j

and {i,j} € {1,2,3}.WeconstructC= {f(a,), AO,), fa,,), b b0,
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Aay), D,), fayo), Rae), Aays), Aayy) fars), byg, b3, Ma,).Q5),

Aag),bsy, by flays) ) bar, by fla)) = by fQ,),by,,byg, by,
by J(Q2), brg, byg s, by by, Dy, by, by, f(Q3), b, bz, by, b,

by bar, by b)).

26’ 34

Case 15.7 {a,,, a,, ay;, 05,0 €C’, {ag ay5,a,50,) €C".
It means that (a,,, a,) € C’", {a,;, a,,, ay, ay,) € C’and
Qg s, o) € C' Let C'= £a,,0,,y,,8,, 050,75,y 0y, @,
0, ag, ays, ay, a,), where Q, is a path between a, and a,,, O, is a
path between a, and a,,, O, is a path between a,, and a,, and O,
NQ,=gpforeachi# jand {i,j} < {1,2,3}. We construct C = f
(a). Q). fay)), byg, by, flay), (D)), fla,;) ). ay) Ray). f
(03)ag), bys by, fays), fare) 0y, by, fla))) = b, Q). Dy,

by brg, 0y, (D), b3, Doy, by, by, J(Q3), b, by, by, bos, by, by,
by b))

Case 1.5.8 {a,;.a,,, 4,5, 4y, a,9) €C’, (ay, ay,a,) €C.

It means that (a,,,a,) € C’, {a,;, 0y, 55,0y a,9) € C’and <

Ay, y5,0,) € C. Let €= £a,,0,,05,,a5, 05,07,y G5, Ay,

0,.ay,,0,;,a,,0,,a,), where Q, isapathbetweena, and a,,, O, is

a path between a, and a,,, O, is a path between a,, and a,,, O,

is a path between a, and a, and O,NQ, =¢ for each i # jand {i,

J1E{1,2,3,4}. We construct C = {f{(a,), 0, flay)), byg, o, [
(a,), (D)), fla,7). ay,), flays). flay), fla,g). O5), f(ay,). flays),

b30,b312f(a4)!f(Q4),f(al)>: <b1zﬂQ1)’bz1’b28’b29’b2ﬂQ2)’b17’b24’

bys5,026:019. D3, yy, byy, b3, b3y, by, (O, by).

, ,

Case 1.5.9 <a6, ys, Oy, Oy, a4> eEC’, <a19, a26,a1> eC.

It means that (a,,,a,) € C’, {ay, ay5,a,,,ay5,a,> € C'and
, .

ayy a26’a1> €C . LetC'= <a1’Ql’a21’a2’QZ’a6’a25’a24’a23’a4’

0,.a,4, ay, a,), where O, is a path betweena, and a,,, O, isapath
between a, and ag, Q5 is apath between a, and a4, and 9,00, =¢

foreachi#jand {i,j} S {1,2,3}. We construct C = (f(al),‘f(Ql),
@y, byg, bag, f(y), (), flag). by3.b35. flays). lary). flays), by,

by, la) (05)Sa,,). faye). b27,b34,f(a1)> = <b1’f(Q1)’b2l’b28’
1905, 00,), b, b33, b3, b5, by, b3, b3, b3, by, [(D5), g, by, by,
by b)).

Case 1.5.10 (azz, Ay, a4> eC’, <a17, Ay, Oys, Oy, a1> eC’
It means that (a,,,a,) € C’, {a,,,a,,a,> €C and {a,; a,,
ty5 g ay) €C . Let C7= a;,0,,ay,, 05,0y, ay, 53,0, 0,4y,

Ay, Gys, Ay, ), Where O, isapathbetweena, and a,,, O, isapath
betweena, anda,,, O, isapathbetweena, anda,;,and ONQ0, =¢

foreachi#jand {i,j} < {1,2,3}. We construct C = (f(al),f(Ql),
Nay), byg, by, 12, RO,), fay,), fars), by, by, lay). Q5) Aays),
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ﬂa24)xf(a25):ﬂa2(,): b27) b34xﬂa1 )> = <bll<ﬂQ1 )’ b21’ b28’ b29’ bZ’f
(Q2)’ b22’ b23’ b30’ b31’ b4’f(Q3)’ b17’ b24’ b25’ b26’ b27’ b34’ b1>‘

, ,
Case 1.5.11 <a22, Ay, Ay, Gy, a6> eC’, <a19, 9 a1> eC
It means that (a,,,a,) € C, {a,,,dy, a5, ay5,a,) € C’and
a9, 8y0,) €C. Let C'= £a,, 0,05, 0,05y, tns, 04,8y,

0,, a4, Gy, a,), where O, isapathbetweena, and a,,, O, is apath
betweena, anda,,, Q; isapathbetweena anda,y,and 0NQ, =¢

foreachi #jand {i,j} S {1, 2, 3}. We construct C = (f(al),f
(9)). ayy), byg, byg, (). O,). far,), M) fa54). 5), sy, b5,

f(a6),f(Q3),f(a19),f(a26),b27,b34,f(al)> = <b1’f(Q1 ):by1.b5g, brg, by,

D), by, by, 054, b5, b3y, b3y, b, f1QD3), 1o, b, by, by, By)

Case 1.5.12 a,,, a,y, ay;, a,) €C’, a,g, ay, ays,a5) € C.
It means that (a,,,a,) € C", {a,,,a,,,a,;,a,> € C and {a,,,

Uy ty5,a) € C'. Let C'= £a,,0,,8,,,05,0,.0,7,05,053,4,, O,

a9, Qyg, Uys, G, Oy, a,), Where O, is apath between a, and a,,, O,
is a path between a, and a,,, O, is a path between a, and a4, O,
is a path between a, and @, ,and O, ﬂQj =¢ for each i#jand {i,j}

C {1,2,3,4}. We construct C = {f(a,), (0)), f(ay,). by, bso, f
(az)JﬂQz)’f(an)lﬂam)xﬂam ), b}o: b31’f(a4)’ﬂQ3 ):f(alg)x ﬂazs):f
(a55).b33, 053, ) O D)) = b RO,).byy g brg, b, O,),

b17:b24,by3,030, 31,03, 003),b19,b3,55,b35,b33,0,(05),by).

Case 1.5.13 {a,,,a,, a,5,a) €C’, {ay,a,,a,) €C, <
Ay, Gy, a1> eC.
It means that (a,,, a,) € C’, (a5, a4y, ay5,a,) €C’, {a,, ay,
a4> € C’and <a19, Ay, a1> eC’. Let C’ = <a1, 0,.a,,, a,,
0, 4,7, Gy, s, A, O3, Gy, Ay, Ay, Oy, g, Ay, @), Where O s
a path between q, and a,,, O, is a path between a, and a,, O,
is a path between a, and a,,, O,is a path between a, and a,4,and
0,NQ; =g foreachij=jand {i,j} < {1,2,3,4}. Weconstruct C =
<f(a1),f(Q1),f(a21), by, by flay), 1Oy), a,;), Aayy). flays). by,
by;, ag), NO3) M ay,). ays), by, by, fay). Q) a9). Kay), by,
b34zf(a1)>: <b1zﬂQ1 0:051,055,059,0,,00,),017, b4, b5, b5, by, b,
J(QO3), by, by, b3, by, by, f1O,), byg, boge byg, by, b))

Case2(a,,,a,)& C".

Case 2.1 [{ay;,a,,, ay5, a4, } NC’'|=0.
It means that C’ = (al, 0., a,), but the edges (a,,, a,,), (@,

ay), (@yy, @y5), (Ays, Ane), (g, @), (a7, @yy), (@19, Gyg), (a5, @),
(ay,a,).(ay,a,) € C. If the cycle C that departs from a, and
pass through @, has to pass a, for returning to a,. Hence C’ =

{a,,a,, O, ag, a,) Weconstruct C= {fla,), fla,).fAQ, ).fay),
f(al)> = <b1 ,b,, 0,), bg ,b,). On the other hand, if the cycle
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C’ that departs from @, and pass through @; has to pass a, for

returning to a,. Hence C’ = {a,,a, O,,a,, a,). We construct C

= <f(a1):f(ag)xf(Q1)’f(a2):ﬂa1)> = <b1 ’ bs’f(Ql)’ bz ’bl>-

Case 2.2 |{a,;,a,,, 0,5, 0, } NC’|= 1.

Case 2.2.1 {ay, a,,a,) €C .
It meansthat {a,,a,,a,) €C".LetC’= (a,,0,,a,,05.a,),

where Q, isapathbetweena, and a,,. We construct C= {f(a,),

RO Nag). flay), by, b34,‘f(a1)> = <b1’ﬂQ1)’b19’b26’ by7, by,
b).

Case 2.2.2 (a,,,a,,a,) €C".

It means that {a,,, a,;,a,) €C’.LetC'= {a,,0,,a,, a4,
0,. a,), where Q, is a path between ¢, and a,,, O, is a path
between a, and a, , and O, N Q, =¢. We construct C = (f(al) ,

f(QJJ(Qz):f(azz):f(aB)’ b3o: b31’f(a4)’f(Q2):f(a1)> = <b1:f(Q1)’
by, bys, by, by, by, f(O,), b)) See Figure 3.7 for an illustration.

Case 2.3 |{a,;,a,,, a,5,a,,} N C’|=2.

Case 2.3.1 {a,; a,,ay,a,) €C'.

Itmeans that a,,,d,,,d,,,a,,) €C".LetC’= {a,,0,,.a,;a,,
Ay, Gy, O, a,), where O, is a path between a, and a,,, Q,is a
path between a,, and a;, and O, N 0, = ¢. We construct C = {f

(al)’f(Ql)’ﬂan):ﬂam):ﬂaz})Jﬂazz)’ﬂQZ),ﬂal)> = <bl,ﬂQ1),
b17’ b24’ b23’ b22’-f(Q2)’bl>'

Case 2.3.2 {ag a,5,a,,a,) €C .
It meansthat {a,,a,5,a,¢,a,) EC". LetC "= (a,,0,,d,0,5.0,.4,),
whereQ, isapathbetweena, anda,. WeconstructC= {f{a,)AQ, ).

Rag), by, b3y 0,9 Rar), byy by fla)) = Kby RO,) b by by,
by5,056,057,034,0)).

Case 2.3.3 {a,;, a,,a,5,a,) €C .

Itmeans that {a,, a,,a,5,a,0 €C . LetC'= {a,,0,,a,5,a,,
a,s, ag, O,, a,), where Q, is a pathbetweena, and a,,, O,isapath
betweenaganda,,and O,NQ,=¢p. Weconstruct C= fla,).f0)),

Ra ) fay). flays). by, by, flag). (O,) fla))) = b, Q). b5,
byy bys, b3y, b33, b f1O,),b)).

Case 234 (a,; a,,ay,a,) €C’.

Itmeans that {a,,,a,,,a,;,a,> €C".LetC'= (a,,0,.a,;a,,
a,,, a,, Q,, a,), where Q, is a pathbetweena, and a,,, O,isapath

betweena,anda,,andQ,NQ,=¢. We construct C= (f(al),f(Ql),
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@) fay). flay,), by, by fa) RO, fla)) = (b, fO)), b,
by bys, byg, by, b (O)).0y).

Case 2.3.5 (a4 ay ay5,a,) € C'.

Itmeans that {a,,, d, ay5,a;0 €C . Let C'= {a;,0,,d,4 ay,
a,s,a¢, O,.a,), where Q, is a pathbetweena, anda,,, 0, 1is a path
betweenaganda,,and 9,NQ,=¢. Weconstruct C = (f(al )L A0,

Rayg). flay). flays), by, b33,f(a6),f(Q2),f(a1)> = <b1’ﬂQ1)’ by,
byg: bys, by, by, b f1O,).0,).

Case 2.3.6 (ay, a,,a,) €C’, {aya,,a,) €C .
It meansthat {a,,,a,;,a,) €C and a,ya,5,a,> €C".LetC’

= {a,,0,, a5, 4y, a,,0,,a,9, 4y, a,), Where O, is a path between
a, and a,,, O,1s a path between a, and a,,, and O,NQ0, = ¢. We
construct C = {f(a,), (Q,). flay,), (ay3), byy, by, f(a,), (), f
(a19).May6). by, b34,f(a1)> = <b1zf(Q1)’bzz’bzybso’bwbmf(Qz)’
b9 b Dy3.b34,D1).

Case 2.4 |{a,;,a,,, a,5,a,,} NC’|=3.

Case 2.4.1 (a, a,, a,5, a,,a,) €C’ .

It means that <a17,a24, azs,a26,a1> €C . LetC’'= <a1,Q1,a17,
Qy4, ys, Gy, @), Where O, is a path between @, and a,,. We

construct C= {fla,), AQ,), fa,,), fay,), fays).far), by, by,
f(al)> = <b1’ﬂQ1)’b17’b24’b25’bzs’b27’b34’b1>~

Case 2.4.2 (a,,, a,, a5, a,5,a,) €C .

It means that <a22,a23,a24, azs,a6> €C’. LetC’'= <a1, 0,,a,,
Qys, Uy, Oy, G, O, a,), Where O, is a path between a, and a,,, O,
is a path between a¢ and a, and O, N O, = ¢. We construct C

= (@) f0)). flay). fay). (ayy). flars), bsy. by, flag). Oy, f
(a1)> = <b1’f(Q1)’bzz’b23’b24’b25’b32’b33’b6’f(Q2)’b1>‘

Case 24.3 {a,, a,,a,,a,,a,9) €EC’ .

{a,, 0,
A1, Ay, Oys, Qo A19, O,, @), Where Q, is a path between a, and
a,,, O, is a path between a4 and a;, and O, N O, = . We

construct C = {fla,), A0)), fa,,), flay,), Kays) fay) fay,),
f(QZ)’f(al)> = <b1ﬂQ1)’bwb24’b25’b26’b19zﬂQ2)’b1>~

It means that a,,,a,, a,5, aya,9) € C’. Let C'=

Case 244 (a a,,a,,a,,a,) €C .

It means that <a6, azs,a24,a23,a4> eEC’. LetC’= (al,Ql,a6,
Ay, O,y Ays, Ay, O,, a,), Where O, is a path between a, and a, O,
is a path between a, and a,, and O, N O, =¢. We construct C =

fla), Q). fag), by, byy, fays), Rary), Ray), byg, by, fay),
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fO).fla)) = <b1zﬂQ1)’b6’b33’b32’b25’b24’bza’b30’b31’b4’ﬂQ2)’
b).

Case 24.5 (a,;, a,,ay,a,,) €C’, (ay a,,a,) €C’.
It meansthat {a,, a,,a,,a,,) €C and {a,ya,,a,) €C .

Let C'= {a,, Q,, a5, ayy, dys, yy, O, a1, Ay a)), Where O, isa
path between a, and a,, O, is a path between a,, and a,,, and

0,NQ,=¢. We construct C= <f(a1), fO), fla,,), fa,,), fa,,),

Ray). fD,) Rayg), Aay), by, by, fla ) =<b,./0)), by7.byy D55,
by, (Q5), b19, by, b7, by, by).

Case 2.4.6 (ay,a,,a,) €C’, {aga,,a,5,a,) €C .
It meansthat $a,,,a,;,a,> €C and {ay, a,5,a,,a,) €C’. Let

C'= (a,, 0, ay, ay, a, O, g, ays, Gy, a,), where O, is a path
between a, and a,,, O, is a path between a, and a,,and O, N O,

=p. We construct C= {f{a,). f0)), fla,,), fla,;), by, by, flay),

RO A @), by by flays). flay), byy by, fla)) = b, (0).by,
b3, b30, 031, by, Q1) b6, b33, 035, b5, by, by, By, by ).

Case 24.7 {a,,,ay, 0,0, €C’, (a5 a,,a,) €C .

It meansthat {a,,,a,,,a,,,a,> €C and {a,,a,,a,) €C’. Let

17’ 19’

C’'= (al, 0., a7, Ay, Gys, 0y, O,, A1, Gy, a,), Where O, is apath
between a, and a,,, O, is a path between a, and a 4, and O, N Q,

=¢. We construct C = (f(al),f(Q1 ), Ra7). fayy), fay,), by, by,

Ra).f0,) fa ) far). by by, f(a))) = b f1O).D,7,by0.by,
b30’ b31 4 b4:f(Q2); b]g; b26’ b27, b34, b1>

Case 2.4.8 (alg, Ayg, Ay, a6> eC’, (azz, Ay, a4> eC’.
It means that (aw, Ay, azs,a6> €(C’and <a22,a23,a4> e€C’. Let

C'= £a,,0,.a,9, 455, ay5, a5, Oy, Uy, ay3,a,, 05, a,), Where O, is a
path between a, and a,,, O, is a path between a, and a,,, O, is a
path between a, and a,, and O,NQ, = ¢ foreachi # jand {i,/} S

{1,2,3}. We construct C= {f{a,),A0,).Aa,) ) fays), bs,,

bys, flag), RO,), May). flay). by, b31,f(a4),f(Q3),f(a1)> = <bv
HO).b1g.byg b5, b3y, 033,06, O,),05,055,b5,b51,.05,0,).5, ).

Case 2.4.9 <a17, yy, Gy, a6> eC’, <a19, Gy, a1> eC’ .
It meansthat {a,,,a,,,a,5,a,> €C’and {a,ya,,a,) €C . Let

. .
C'= {a,,0,,a,,, Gy, ays, a5, Oy, a9, Ay, a,), Where O, is a path
between a, and a,,, O, is a path between agand a,, ,and O, N Q,

=¢. We construct C = <f(a1), A0)), Ra,,), fa,,), fa,s), by, b,

Aa ). 0, fa,0)f(ay), by by fla)) = b, O,),b,,by,b,s,
b32’ b33’ b6’f(Q2): b]g; b26’ b27, b34, b1>
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Case 2.4.10 <a17, Ay Ay, a6> eC’, <a22, ay,, a4> eC’.
It means that <a17, Ayy, Gy, a6> € C’and <a22, ays, a4> eC’.
LetC’ = (al, 0., a5, Ayy, Gy5, A, O, Gy, Ays, a4y, Oy, @), Where
0, is apath between ¢, and a,, O, is a path between a, and a,,,
O, is a path between a, and a,, Q, is a path between a, and a,,
and Q,NQ; = ¢ for each i# jand {i,j } S {1,2,3}. WeconstructC=

Ha) RO a7 faz) fans), by, bag flag) RO, May,) fays),
b30’b31:f(a4)’f(Q3)’ﬂa1)>: <b1,f(Q1 )’b17’b24’b25’b32’b33’b6’f(Q2):
by by, b3g, b3y, b4, (Q3), b))

Case 2.5 [{a,;,a,,, ay5,a,,} NC’|=4.

,
Case 2.5.1 <a19, Ayer Ays, Aoy, Ays, a22> ecC’.

It means that (aw, o, Oy s, oy, a23,a22> EC . LetC’= (al, 0,
Ayg, Oy, Oy, oy, Oy, Oy, O, @), Where O, isapathbetweena, and
a,y, Q,isapathbetweena,,anda,,and O,NQ, =¢. We construct

Cc= <f(a1)x f(Q1)’f(a19):f(azs)’f(azs)’ﬂaz4):f(az3)xﬂazz):ﬂQz):
f(al)> = <b1’J((Ql)’b19’b26’b25’b24’b23’b22’f(Q2)’b1>'

Case 2.5.2 {a, a,;, a,,, ay5, aye,a,) €C'.

(a0,
Qy, Qys, Qyy, Gys, Ao, 4,), Where O, is apath betweena, anda,. We
construct C={fla,), AQ,), fa,), by, by, flay,), fay,), fays),

Aay). by, by fla, )=<b, A0, byby1,b30, 053,054, b55,026,057, b3,
bp).

Itmeans that {a,,a,;,a,,,a,5,a,5,a,) €C’".LetC’'=

,
Case 2.5.3 <a19, Ayer Ays, Aoy, Ays, a22> ecC’.

It meansthat {a,y, dy, dy5, a4, a55,0,) €C . LetC'= (a,,0,,
g, Qyg, Oys, Oy, Oys, Ay, O, @), Where O, is apath between a, and
a,q, O,isapathbetweena, anda,,and Q,N Q,=¢. We construct

C= {fla)), Q). fay). fay). fays). fay,) flay), fla,), AO,),
f(a1)> = <b1ﬂQ1)’b19’b26’b25’b24’b23’b4’f(Q2)’b1>~

Case 2.5.4 (a,,, a3, ayy, ays, 4y, a,) EC.

, .
It means that {a,,, a,y, a,,, ay5, ays, @) €C . LetC’'= {a,, 0,
sy, Oy, oy, Gys, G, 4,), Where Q) isapathbetweena, anda,,.

We construct C= <f(a1 WO Sfay,) fa,,).fa,,) fla,s).fay),
b27,b34,‘f(a1)> = <b1’ﬂQ1)’bzz’b23’b24’b25’b26’b27’b34’b1>-

Case 2.5.5 {a,;, a,, ay;,a,,) €C’, (a,y, ay, ay5, a7 €C.
Itmeans that {a,,,a,,,d,,,a,,) €C’ and a,,, ay, a,5,a5) €C’.

Let C' = (a;, 0, 4,5, ayy, @53, . Oy, 4y, iy, s, g, O, ),
where Q, is a path between a, and a,,, O, is a path between a,,
anda,y, O, isapathbetweena, anda,,and 9,NQ, =¢ foreachi#

jand {i,j} € {1,2,3}. WeconstructC= (f(al),f(Ql),f(al7),f(a24),
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Nay) far) 0;)a,0) ar5) fars). sy, by flag) O Ma,)) =
<b1’f(Q1 ):512,034,053.00,05), 19,056,055, b3, b33, b6, £O,), by ).

Case 2.5.6 <a17, Ay, Oy, a4> eC’, <a6, ys, Oy, a1> eC’.
It means that {ay,, dy, dy5, dyy, Ay a,) €C'. Let C'= (a,,

O\, a9, Uy, Gy, Ay, Aoy, Ay, Oy, Ag, Gy, Ayg, ay), Where O is a
path between ¢, and a4 , O, is a path between a, and a, , and

0,N 0,=¢p.Weconstruct C= {fla,), AQ,). fa,,) fa), fla,s),
Aay)Nay).b50,05,, fay), (D)) Raq).byy.b5,, (ay5) )by,

b34,f(a1)> - <bl!ﬂQl ):519:b36,055,054,b3,b30, 031,04, 80,),b, b3,
b32’ b25’ b26’ by, b34: b1>~

Case 2.5.7 <a17, Ay, Oy, a22> eC’, <a6, Ay, Gy, a1> eC’.
It meansthat $a,,,dy,, a5, a,,> €C and {ag,dysa,,a,) €C .

. .
LetC'= (a,,0,,a,7,0y,, 0y, ayy, Oy, 0y, Gys, Gy, a, ), Where O, isa
path between a, and a,, O, is a path between a,, and «a, and

0,NQ, =p. We construct C = (f(al), fO).fa;) Ray,).flay),

Ray) LO,). ag).bs3, b3y, fay5). [ a56), b7, b3, e ) =<b 1 AO)).
b17,54,053. 055, 00,). b, b33,055, b5, by, by, By, ).

Case 2.5.8 <a17, yy, Uys, G, a19> eC’, <a22, ys, a4> eC’.

Itmeans that {a,,,a,,,d,5, a5, a,,) €C’ and {a,,,a,;,a,) EC".

17

Let C7= a;,0,,0,7,ay, 5,055,019, 05,05, 03,0, O3, 1)),
where Q, is a path between @, and a,, O, is a path betweena,,
anda,,, O, isapathbetweena, anda, and 0.1 Qj =g foreachi#

Jjand {i,j} € {1,2,3}. WeconstructC= {fla,), A0, ). fla;)Aay,),
Ray5), Rae) 1) MQ,) ar,) M) by by fla) fO5)Ma,)) =
by, 10,).517:524:b25, 03,519 D3). b33 by, b3, b3, by, AO;).D)-

Case 2.5.9 <a6, s, Oy, Oy, a4> eC’, (aw, a26,a1> eC.
It meansthat a,,ays,a,,,a,,,a,) €C and a,y, a,,a,) €C .

Let C'= {a,, 0,5 ays, ayy, Gy, 04 Oy, @y, g, 4, ), Where O, isa
pathbetweena, anda,, O, isapathbetweena,anda,,, and Q,NQ,

=¢. We construct C = <f(a1 ), RO, fag), byy, byy, flays) fayy).f

(a23)’ b30’ b31’f(a4):f(Q2)l f(alq):.f(azf,): b27; b34:f(a1)> = <b1,‘f
(Ql )’ b6’ b33’ b32’ b25’ b24’ b23’ b30’ b}l’ b4’f(Q2)’ bl9’b26’b27’ b34’ b1>

Case 2.5.10 {a,,, a,;,a,) €C’, {a,; ay, a5 ay5,a,) €C'.
Itmeans that a,,,a,,,a,) €C and {a,,,a,,,a,5, ays,a,) EC".

Let C'= {a,,0,,ay), a5, 4y, Oy,d,7,5,,0y5, 0o, @, ), Where O, isa
pathbetweena, and a,,, O, isapathbetweena,and a,,,and O, N

0, = ¢. We construct C = <f(a1), AO)) fay,), fay,), by, by,

f(a4),f(Q2),f(a17),f(a24),ﬂ025),f(026), b27’ b34:f(a1 )> = <b1:f(Q1 )’
b22’ b23’ b30’ b}l’ b4’f(Q2)’ bl7’ b24’ b25’ b26’ b27’ b34’ b1>
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Case 2.5.11 <a22, Ay, oy, Gy, a6> eC’, (alg, Ay, a1> eC’.
It meansthat {a,,,d,;,a,,, a,5,a,) €C’ and {a,g,a,,a,> €C .

. .
LetC'={a,,0,, 0y, ayy, yyy Gys, A, Oy, 19, Ao, ), Where O, isa
path between a, and a,,, O, is a path between a, and a,,, and O,

NQ,=¢p. We construct C= {fla,), A0)), flay,). fay). fia,,).

Hays), by, by, fag). (O, faye) fayg), by, by, fla)) = by f
(1) 533,053,054, 055, b33, b33, b, (O,), 19, byg, by, by, by).

, ,
Case 2.5.12 (a”, Ay, Oy, a4> eC’, <a19, Ay, Oy, a6> eC’.
It meansthat {a,,,a,,,a,;,a,) €C and {a,yay,a,5,a,) €C .
LetC'= $a,,0,,a,,, a5, 4y, a,,0,,0,0,0y4,0y5, a5, 05,4, ), Where

0, isapathbetweena, anda,, 0, isapathbetweena,and a,,, O,
is a path between agand a,,and O, NQ,=¢ for each i # jand {i,j}

€ {1,2,3}. We construct C = {f(a,),0,).fla,,). fla,,). fla,,).
by, by, flay). f0O,). fay). flaye) Nays), by, by flag) AO;) fla, )=

<b1’f(Q1 )’ b17’ b24’ b23’b30’b31’b4’ f(QZ)’bIQ’bZG’b25’b32’ b33’b6’
NQ3).by).

Case 2.5.13 (a”, Ay, Ay, a6> eC’, <a22, ays, a4> eC’, (
Ay, Gy, a1> eC’.

It means that <a17,a24,a25,a6> eC’, <a22,a23,a4> €C’and (
al‘)’a26’al> €C. LetC'= <a1,Ql,a17,a24,a25,a6,Qz,azz,a23,a4,
0,.a,4, 4y, a;), where Q, isapathbetweena, and a,, O,isapath
betweena anda,,, Q,is a path betweena, anda,,, and O,N Q] =
¢ foreach i # j and {i,j} € {1,2,3}. Weconstruct C= {fla,),
0. fla,,), fay,), flays), by, byy, f(ag) O,). ay,). lays), by,
b31:ﬂa4)’ﬂQ3)’f(a19):f(a2(,): b27: b34,f(a1)> = <b1’f(Q1 ),b17, b24’
bys, b3y, b3, b6, f(Q1), by, 03, b3, 031,04, (05), 019, by, byg, b3y, b))

We want to construct the required cycle C of CR(34+8k;1,7)
by rerouting the cycle C’ of CR(26 + 8k; 1, 7) in each of the
above cases. Here we omit the lengthy path description in each
case since it is tedious and indeed very similar to what we’ve

done in Section II. o

With Lemma 1.2, it is known that CR(28;1,7), CR(30;1,7) and
CR(32;1,7) are 4-ordered. It is easy to see that our technique in
Theorem 3.1 can be utilized to obtain the following three
theorems.

Theorem 3.2. CR(28+8k;1,7) is 4-ordered for k£ > 0.
Theorem 3.3. CR(30+8%;1,7) is 4-ordered for k£ > 0.
Theorem 3.4. CR(32+8k;1,7) is 4-ordered for £ > 0.

Combining Lemma 1.2 and Theorem 3.1- 3.4, we have the
following theorem.

245



INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Theorem 3.5. CR(n,1,7) is 4-ordered for any even integer n
with n > 18.

IV. 4. CONCLUSION

Let n>6 be an even integer. In this paper, we show the
4-orderedness of certain chordal rings, which are widely
applied in real applications. More precisely, we prove that
CR(n;1,5) for n > 14, and CR(n;1,7) for n > 18, are 4-ordered.
Our derivation combines computer experimental results for
small »n, and mathematical induction for general n's. An natural
question to be explored is the 4-ordered hamiltonicity of the
chordal rings. In particular, the 4-ordered hamiltonicity for the
graphs in CR(n;1,5) and CR(n;1,7). Currently, computer
experiments already shows that the 4-ordered hamiltonicity
only exists on CR(n;1,5), or CR(n;1,7), and some other chordal
rings for specific n's. We have the following conjecture.

Conjecture 4.1 CR(n,1,5) is a 4-ordered hamiltonian graph if
n=14, n=12k+2 or n=12k+10 with

Furthermore, the 4-ordered hamiltonian-connectedness of the
chordal ring family remains an open problem.

aq a2
a0 a,
Qg az
ag K >< Y as
Qg as

Figure 1: CR(12; 1, 5)
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f(ay;) = by, f%a_,%: b,
f(ay6) = byg f(az) = by

f(a,s) = bys f(a;) = b,
f(ay4) = by4 f(as) = bs
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f(4“11)=b1."’ : (ﬂ7j=b7
f(ay;) = by, /) aj()=b,‘
f(@10) = by Flle) = By

(b)
Figure 2.1: (a) CR(20; 1, 5); (b) CR(26; 1, 5) and the function f.

QA9
G

Figure 2.2: Case 1.1 in Theorem 2.1., where (  , )€

Figure 2.3: The cycle C constructed in Case 1.1 in Theorem 2.1.
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Figure 2.4: Case 1.2.1 in Theorem 2.1., where (

b}

Figure 2.5: The cycle C constructed in Case 1.2.1 in Theorem 2.1
Q19 Qo
o

aq
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Q16
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Figure 2.6: Case 1.2.2 in Theorem 2.1., where ( , )€ and(

R €

Figure 2.7: The cycle C constructed in Case 1.2.2 in Theorem 2.1.
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Figure 3.1: (a) CR(26; 1, 7); (b) CR(34; 1, 7) and the function /.
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Figure 3.2: Case 1.1 of Theorem 3.1.
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Figure 3.3: Case 1.2.1 — Case 1.2.2 of Theorem 3.1
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Figure 3.4: Case 1.3.1 — Case 1.3.2 of Theorem 3.1

Case 1.4.1: <ax'-azuas-azs:ax)e C'.  Case 1.4.2: (03-03,014-015-05) eC'
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Figure 3.5: Case 1.4.1 — Case 1.4.2 of Theorem 3.1
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Case 1.5.1: {15,926, @, @24, @5, @) € C". Case 1.5.2: {40, G4, 025, 0234,0,)€ C"
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Figure 3.6: Case 1.5.1 — Case 1.5.2 of Theorem 3.1.

Case 2.2.1: {a;.a5.a4,)€C. Case 22.2: {a.az.a,)€C.
az 9% axs ax
or =P ===
an > E
Ay oo e N
g Y
ap -7 o as
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ay, < s

Figure 3.7: Case 2.2.1 ‘— Case 2.2.2 of Theorem 3.1.
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