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Abstract—Let a complex multi-objective optimization problem 

for which we would like to determine near Pareto-optimal sets. 

Consider a finite set of feasible solutions at random. Performing all 

pairwise comparisons based on the concept of dominance, we can 

find which solutions are non-dominated. This subset defines the first 

rank of non-dominated solutions. Eliminating these solutions, we 

could repeat the procedure, and thus determine the next class of non-

dominated solutions, and so forth. Using the same set of initial data, 

our method constructs and analyzes the ordinal structure of a directed 

acyclic graph by using Hasse diagrams. All the ranks of solutions are 

deduced simultaneously and define an efficient Pareto-ranking. A 

simple application of engineering optimization illustrates the method. 

 

Keywords—Hasse diagram, near Pareto-optimal front, non-

dominated set, Pareto ranking method. 

I. INTRODUCTION 

HE  real-world optimization problems that we consider in 

this article are continuous multiobjective optimization 

(MOO) problems which standard form is 

      
1

minimize , ,
T

rnX
f f

 x
f x x x         (1) 

where the conflicting objectives state that 

: 1, ,
n

k
f k r  , . The feasible search space for this 

problem can be   | 0, 1, ,
n

jfX g j m   x x   , 

where the inequality constraints are 

: 1, ,
n

j
g j m  , .  

Problem (1) expresses the simultaneous minimization of 

uncorrelated objectives subject to inequality constraints
1
. We 

expect a set of ‘best’ solutions for this issue. To compare two 

solutions and tell which solution is “better” in the line of the 

objectives, we have to use the concept of Pareto-dominance. 

Thereafter, the Pareto multi-objective optimization problem is 

to find the non-dominated set of solutions
2
. 
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1 The decision variables are generally bounded in practice, such as we may 
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2 This article expands with new materials and application an issue 

addressed in the Keller’s eBook (2016) [1] being published. 

II. PARETO-DOMINANCE CONCEPTS 

A.  Pareto-Optimality 

Let 
i j

x x  denote that the solution 
i

x  of a minimizing 

problem is “better” than the solution 
j

x  on a particular 

objective. 

Definition 1 (Pareto-optimal solution). A feasible solution x  

of a minimizing MOO problem is Pareto-optimal if there exists 

no other better solution 'x . Then we have 

     , 1, ,
l l

f f ' l r  x x  for at least one objective. 

                        ■ 

In other words, x̂  is Pareto-optimal if there exists no 

feasible ' Xx  which would improve the performance of 

some objective without decreasing that of at least one another 

objective. 

Definition 2 (Pareto optimal set). A Pareto-optimal set is such 

that     | :X ' X '    x x f x f xP .     ■ 

Definition 3 (Pareto optimal front). The Pareto optimal front 

is such that   | f x xF P .          ■ 

B. Non-Dominated Solutions 

Definition 4 (Dominance). A solution 
1

x  dominates another 

solution 
2

x (i.e., 
1 2

x x ) iff two conditions are verified: 

1) The solution 
1

x  is no worse than the solution 
2

x  in all 

the objectives, that is    1 2

k k
f fx x , for all 

1, ,k r . 

2) The solution 
1

x  is strictly better than the solution 
2

x  

in at least one objective i.e.,    1 2

k k
f fx x  in 

at least one  1, ,k r .          ■ 

Suppose a bi-objective optimization problem. For any 
1 2 2

, y y , we have the dominance  
1 2

y y  iff 

1 2

, 1, 2
i i

y y i    and   1 2

1, 2 :
i i

i y y   . In condensed 

form, we can write equivalently 

   1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2
y y y y y y y y       .  
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Let the solution space (or objective space) be  Y X f  

i.e., the image of search space
3
 X  under f . 

Definition 5 (Non-dominated set). For any compact subset 

r

Y  , there exist minimal elements w.r.t. the partial order 

“ ”, also called non-dominated points. Formally, we can 

write  | :
N

Y Y ' Y '   y y y y .        

  ■ 

The aim of Pareto optimization is to find the non-dominated 

set of solutions
4
. 

C. Domination Degrees 

We have different degrees of domination, for which the 

definitions are as follows 

Definition 6 (Strong domination). The solution 
1

x ”strongly 

dominates” the solution 
2

x (i.e., 
1 2

x x  or 
1 2

x x ) if 

   1 2

, 1, ,
k k

f f k r  x x . In other words, the 

solution 
1

x  is better than 
2

x  for all objectives.      ■ 

Definition 7 (Weak domination). The solution 
1

x  “weakly 

dominates” solution 
2

x  (i.e., 
1 2

x x ) if 

   1 2

, 1, ,
k k

f f k r x x . In other words, the 

solution 
1

x  is not worse than 
2

x  for all objectives.    ■ 

Definition 8 (Incomparable domination). Two solutions 
1

x  

and 
2

x  are “incomparable” w.r.t. the domination (i.e., 
1 2

x x  

or 
2 1

x x ) if    1 2

k k
f fx x  nor    1 2

k k
f fx x , 

1, ,k r  .                   ■ 

III. PARETO-RANKING 

Which elements of a population of potential solutions can 

we select as members of the next generation? This question is 

that of the selection mechanism of an evolutionary algorithm 

(EA), used to solve a complex MOO problem (see Alberto et 

al., 2003 [6]). 

A. Pareto-Based Ranking Methods 

Most commonly ranking methods are Goldberg’s ranking 

and Fonseca and Fleming’s ranking
5
 

6
. Goldberg’s ranking in 

 

3 The inverse image of 
N

Y  defined by  1

N N
X Y



 f  is the efficient 

set of the MOO problem, which members are the efficient solutions. 
4 More theoretical aspects of ordered sets and Pareto optima in MOO can 

be found in Ehrgott (2000)[2], Emmerich and Deutz (2006) [3], Coello et al. 

(2007) [4], and Rudeanu (2012) [5]. 
5 Alberto et al. (2003) [6] also presented the Belegundu’s ranking by 

which all the non-dominated points are assigned rank 0 and the dominated 

ones rank 1.  
6 Deb (2001) [7] discusses three algorithms for finding a non-dominated 

set. In the simplest approach, each solution is compared with every other 

solutions in a population of size N . Suppose that we have M  objectives. 

1989 [9] assign an equal rank 0 to the non-dominated 

solutions. Removing that solution set from the population of 

candidates, the new set of non-dominated solution is obtained 

with rank 1, and so forth. The approach by Fonseca and 

Fleming (1993) [10] is different. The rank of a solution in the 

objective space equals the number of other solutions by which 

it is dominated. The non-dominated solutions are all assigned 

rank 0. All the dominated solutions will then have a rank 

between 1 and 1N  , where N  denotes the population size.  

B. Determination of Non-Dominated Solutions 

The determination of non-dominated solutions is the direct 

application of the concept of dominance which computation is 

illustrated in Fig. 1. 

 
Fig. 1 construction of the dominance matrix based on the 

conditions of the dominance relation 

The data of the following example are drawn from Reyes-

Sierra and Coello (2006) [11]. 

Example 1 An application is defined by a given set of 18 

feasible solutions in the objective space. We suppose a MOO 

minimization problem with two objectives. The dominance 

matrix for this example is a 18 18  sparse matrix in Fig. 2. 

                                                                                                     

The total complexity for this procedure is  2

MNO . A more efficient 

technique was introduced by Kung et al (1975) [8]. 
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Fig. 2 dominance matrix for Example 1 where a point “.” 

stands for zero. 

The entries of the dominance matrix M  take the values 0 or 

-1. An entry 0
ij

m   denotes that i j , and i  dominates j  

(i.e., i j ) when 1
ij

m   . 

The data and the non-dominated solutions are shown in Fig. 3. 

 
Fig. 3 all potential solutions with non-dominated solutions 

 

IV. EFFICIENT PARETO-RANKING METHOD 

Changing the entries 1
ij

m    into 1
ij

m   for all 

, 1, ,18i j  , we obtain the adjacency matrix A  of an 

oriented digraph (i.e., without loops). Moreover, the digraph is 

acyclic since its construction is based on a dominance concept.  

These properties validate the use of Hasse diagrams. A circular 

embedding of this graph for Example 1 is represented in Fig. 4 

(a). In this 18-vertex oriented graph, vertices are placed on a 

unit circle, and arcs connect pairs of vertices (see Pemmaraju 

and Skiena, 2003 [12]). Since this graph is acyclic, we can 

determine the corresponding Hasse diagram in Fig. 4(b). 

A. Hasse Diagram  

A Hasse diagram is the best embedding for a partially 

ordered set (i.e., “poset”). In this context, the dominance 

relation is a strict partial relation. In fact, the dominance 

relation ” ” is not reflexive, asymmetric, antisymmetric, and 

transitive. The Hasse diagram is drawn according to the 

following rules: 

1) If i j  then i  is placed below j , 

2) No edge is implied by transitivity, 

3) All edges, whose orientation is omitted, go upwards. 

The Hasse diagram shows all the ranks. At the bottom, we find 

the subset of non-dominated with rank [0], i.e., 

 3,8,10,16,17 . At other levels, we find subsets of vertices 

with different ranks
7
. 

 
Fig. 4 oriented digraph in (a) and Hasse diagram in (b) of 

Example 1. 

 

B. Pareto Ranking 

The Pareto-ranking of Example 1 is deduced from the Hasse 

diagram. The result is shown in Fig. 5. 

 
7 Partial order applications were presented by Brüggermann and Patil 

(2011) [13]. 
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Fig. 5 Pareto-ranking the Example 1 

V. APPLICATION TO AN ENGINEERING PROBLEM 

The following application is the simple four-bar plane truss. 

It was retained by Coello (2001) [14] to illustrate a MOO 

problem.  

A. Engineering Problem 

An illustration of the four-bar plane problem is shown in 

Fig. 6. 

 
Fig. 6 a four-bar plane truss [adapted from Coello (2001) [14], 

Fig.1]  

Example 2 (four-bar plane truss). The MOO problem consists 

of two objectives and four bounded decision variables. We 

have the following program 

   

 

 

1 1 2 3 4

1

1 2 3 4

1 4

2 3

4

4

such that :

minimize 2 2

2 2 2 2 2 2
minimize

, / ,3 /

, 2 / ,3 /

f L x x x x

FL
f

E x x x x

x x F F

x x F F

 

 

  





   









  
  
  


    

x

x

x

x

 

 

  

              

(2) 

where the parameters are 10kNF  , 
5 2

2 10 kN / cmE    

(Young’s modulus), 200cmL  , and 
2

10kN / cm  .  

The engineering problem is to minimize simultaneously the 

structural volume of the truss (
1

f ) and its joint displacement 

(
2

f ). The design variables 
1 4
, ,x x  denote the cross-

sectional areas of the four bars. The four variables are 

bounded as in (2). 

B. Pareto Ranking Based on a Small-size Data Set 

Example 2 has no analytical Pareto-optimal front in the 

objective space. Therefore, the shape was specified by using 

the images of 1,000 points drawn randomly in the search space 

of the programming problem.  

Using the Hasse diagram approach, we obtain the following 

non-dominated Pareto-optimal front in Fig. 7. This figure 

shows the image of 1,000 random feasible solutions. The 

Hasse diagram analysis is based on a subset of 20 points in the 

objective space (see big colored points). These points are 

drawn randomly in the initial list of the 1,000 points. 

 
Fig. 7 a non-dominated set based on small-size data set for 

Example 2 

The Pareto-ranking for this subset is shown in Fig. 8. We can 

draw the set of non-dominated solutions that is 

 5,8,10,12,18 . This set is reordered by increasing values of 

1
f  as  10,5,18,12,8  to get the cone-representation of the 

non-dominated solutions at rank  0 . The shaded region of 

the stepwise near Pareto-optimal front includes all the 

dominated solutions. 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 313



 

 

 
Fig. 8 Hasse diagram based on small-size data set of Example 

2 

C. Pareto Ranking Based on a Large-Size Data Set 

Using the same data set (i.e., 1,000 images of random 

points), we draw a larger random subset of 100 points in the 

objective space (see the big colored points). Fig. 9 shows 

better performances. The reordered set of non-dominated 

solutions consists of 14 elements (instead of 5 elements in the 

small-size case). 

This reordered set is 

 86,21,60,12,30,23,28,58,71,78,84,65,77,83 .  

 
Fig. 9 nondominated set  based on large-size data set of 

Example 2 

VI. CONCLUSION 

The ranking method uses a dominance-based Hasse diagram 

to construct and analyze the ordinal structure of an acyclic 

digraph. A simple four-bar plane truss consists of two 

nonlinear objective functions and four bounded decision 

variables. We aim at approximating the Pareto-optimal front in 

the objective space.  

The image of 1,000 random feasible solutions approximates 

the shape of Pareto-optimal front to the border of the feasible 

set in the solution space. We define a partial order by means of 

the Pareto domination concept. 

A random subset of 100 points is selected to construct an 

acyclic graph  100,995G  with 100 vertices and 995 

oriented edges. The Hasse diagram  100, 267H  shows a 

ranked ordinal structure with 9 ranks. At rank zero,we find the 

non-dominated solutions. Reordering the non-dominated set, 

we can represent a stepwise linear function which 

approximates the Pareto-optimal front for this problem.  
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