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Abstract- Simulation studies play an impor-
tant role in the evaluation of the performance of a
variety of statistical methods. Such assessment is
performed under computer intensive procedures
and cannot be achieved with studies of real data
alone. These studies are increasingly employed in
evaluating the properties of the proposed meth-
ods being the generation of data the most fun-
damental and important component. However,
only a few of published studies provide sufficient
details to allow readers to understand fully all
the processes to generate the data. In this paper
we present a collection of practical algorithms for
simulating multivariate data from a wide class of
multivariate copulas. This paper also details im-
portant considerations necessary when generat-
ing the survival data in a variety of scenarios. A
software application for R was developed in which
we implement all the methods.

Keywords- Copulas, Archimedean copulas,
Random number generation, Inversion of Laplace
transforms, Survival data.

I. Introduction
Recent advances in computer and software technology

have allowed simulation studies to be more accessible.
However, performing simulations is not a simple issue.
Important guidelines to achieve a good quality simula-
tion study are given by [6]. Data generation is proba-
bly the most important step to achieve a good quality
simulation study and require a rigorous planning. Un-
fortunately, only few published articles provide sufficient
details to assess the integrity of the study design or to al-
low readers to understand fully all the processes required
when designing their own simulation study. In addition,
it is important to obtain simple and high-quality simula-
tions that reflect the complex situations seen in practice,
such as, for example, for survival data.

Longitudinal survival data often require the joint
modeling of two or more random variables. For exam-
ple, to model the relationship between survival time of a
patient and the hemoglobin level; to model the relation-
ship between two consecutive events of the same nature
(recurrent events) or to model different stages in the evo-
lution of an illness (multi-state models). Simulating data

for such studies is a challenging issue that can be per-
formed using copulas. Copulas provide a useful method
for deriving joint distributions given the marginal dis-
tributions, especially when the variables are non-normal
as in the case of time-to-event variables. In addition, in
a bivariate context, copulas can be used to easily con-
trol the measures of dependence for the pairs of random
variables.

A copula C is a multivariate distribution function
that links a univariate marginal distribution to their
full multivariate distribution. Copulas were first intro-
duced by [36] and its terminology is derived from the
Latin word copulare, to connect or to join. Our objec-
tive in this paper is to present algorithms to generate
2-dimensional random vectors (X,Y ) whose distribution
is H(x, y) = C(F (x), G(y)) where F and G denote the
marginal distribution function and C is a copula. We
will illustrate the usefulness of these methods to gener-
ate survival data in a variety of scenarios.

This paper explores the topic of random generation
in several families of copulas. In addition, we describe
basic properties of copulas, their relationships to mea-
sures of dependence, and some of the most known fami-
lies of copulas that have appeared in the literature. One
important aim of this work is to present several algo-
rithms for the generation of multivariate survival data
from several copulas. These algorithms are based on
three of the most used techniques for generating multi-
variate data from copulas: the conditional distribution
method; based on the bivariate distribution of the cop-
ula or sampling algorithms based on numerical inversion
of Laplace transforms. A conceptual framework of these
algorithms is presented in Figure 1.

Fig. 1: Copulas and Random Number Generation
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The purpose of this paper is to introduce copulas,
their characteristics and properties, and their applica-
bility to simulate multivariate survival data. Section 2
discusses properties and characteristics of copulas. Sec-
tion 3 provides practical algorithms for simulating data
from a wide class of multivariate copulas. Sampling al-
gorithms are also given to simulate multivariate survival
data in a variety of scenarios. Section 4 briefly presents
an R package to implement all the methods. A discus-
sion of the main conclusions of this work and some future
research are reported in Section 5.

II. Most common bivariate copulas
A. Definitions and properties of copulas
Copulas are functions that link multivariate distribu-

tions to their one-dimensional margins. These functions
are restrictions to [0, 1]2 of bivariate distribution func-
tions whose margins are uniform in [0, 1]. [36] showed
that if H is a bivariate distribution function with mar-
gins F (x) and G(y), then there exists a copula C such
that H(x, y) = C(F (x), G(y)). Sklar also showed that if
the marginal distributions are continuous, then there is a
unique copula representation. In the multivariable case,
if H is an p-dimensional cumulative distribution func-
tion with univariate margins F1, ..., Fp, then there ex-
ists an p-dimensional copula C such that F (x1, ..., xp) =
C(F1(x1), ..., Fp(xp)). The case p = 2 has attracted spe-
cial attention and will be considered from now on.

A function ϕ : [0, 1] → [0,∞] is called a generator if
it is convex, decreasing and ϕ(1) = 0. The generalized
inverse of ϕ (also known as pseudo-inverse) is denoted
by ϕ[−1] = inf{u ∈ [0, 1] | ϕ(u) ≤ t}, t ∈ [0,∞].

A copula C is called Archimedean if there ex-
ists a generator ϕ such that C(u, v) = ϕ]−1[(ϕ(u) +
ϕ(v)), (u, v) ∈ [0, 1]2. The copula C determines the gen-
erator ϕ uniquely up to a multiplicative constant. In
Table 1 we present the different choices of generator for
several important families of Archimedean copulas.

Archimedean copulas are popular because they are
easily derived and are capable of capturing wide ranges of
dependence. Given a pair of variables (X,Y ) whose dis-
tribution is H, and C the associated copula, this depen-
dence can be measured by Kendall’s tau τ or Spearman’s
ρ. Kendall’s tau can be defined as the difference between
the probabilities of concordance and discordance for any
two independent pairs. In terms of copulas, Kendall’s τ
is defined by

τC = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1.

The Spearman’s ρ coefficient is defined as

ρC = 12
∫ 1

0

∫ 1

0
(C(u, v)− uv)dudv.

Table 2 illustrates the calculation of these correlation
measures.

Modeling the multivariate dependence also involves
quantifying tail-dependence. Tail-dependence describes
the concordance between extreme values of the random
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variables X and Y . Lower tail-dependence λL and the
upper tail-dependence λU can also be expressed in terms
of bivariate copulas

λL = lim
u→0+

C(u, u)
u

andλU = lim
u→1−

1− C(u, u)
1− u .

One of the most popular families of copulas, that
were studied by [12], [16] and [32], is the Farlie-Gumbel-
Morgenstern (FGM) family that is defined by

C(u, v) = uv(1 + θ(1− u)(1− v)),−1 ≤ θ ≤ 1.
The FGM copula can be seen as a perturbation of

the product copula which is obtained for θ = 0. This
copula is attractive because of its simplicity but is re-
strictive since is only useful when dependence between
the two marginals is small. A maximum correlation of
33% is attained for the Spearman’s coefficient while this
correlation is limited to the interval [− 2

9 ,
2
9 ] for Kendall’s

τ correlation.
To demonstrate the dependence properties of differ-

ent copulas we simulate 500 pairs of exponential random
variables (with rate 1) from the Clayton, Frank, Gum-
bel, AMH, Joe, and FGM copulas using the approaches
outlined in next section. This is illustrated in Figure 2.
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AMH copula, theta = 1
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Fig. 2: Simulated samples from copulas (cut at a level
of 7).

The pairs of exponential variables are plotted in order
to illustrate dependence properties of the copulas. For
four of the six copulas, the dependence parameter θ is set
to 2. For the remaining copulas the dependence parame-
ter was set to 1. Note that the dependence parameter in
FGM, is set such that the dependence between the two
variables are maximized (the FGM is unable to accom-
modate larger dependencies).

Fa
m

ily
K

en
da

ll’
s
τ

τ
∈

Ω
Sp

ea
rm

an
’s
ρ

[7
]

θ
θ

+
2

[0
,1

)
N

o
si

m
pl

e
fo

rm
[1

3]
1
−

4 θ
{D

1
(−
θ
)−

1}
[−

1,
1]
\
{0
}

1
−

12 θ
{D

2
(−
θ
)−

D
1
(−
θ
)}

[1
6]

θ
−

1
θ

[0
,1

)
N

o
si

m
pl

e
fo

rm
[1

]
1
−

2 3θ
−

2 3θ
2

(θ
−

1)
2
ln

(1
−
θ
)

[−
0.

18
17

26
,

1 3
]

a
∗

[2
0]

1
+

4 θ
E
J

(θ
)

[0
,1

)
N

o
si

m
pl

e
fo

rm
FG

M
2 9
θ

[−
2 9
,

2 9
]

θ 3

Ta
bl

e
2:

C
op

ul
as

an
d

th
ei

rm
ea

su
re

s
of

de
pe

nd
en

ce
.
D
k
(x

)=
k x
k

∫ x 0
tk

e
t
−

1
d
t

de
no

te
st

he
“D

eb
ye

”
fu

nc
tio

n;
a
∗

=
12

(1
+
θ

)d
il
o
g

(1
−
θ

)−
24

(1
−
θ

)l
n(

1−
θ

)
θ

2
−

3(
θ

+
12

)
θ

;d
il
og

(x
)=

∫ x 1
ln
t

1−
t
d
t;
E
J

(θ
)=

∫ 1 0
(1
−
tθ

)l
n(

1−
tθ

)
tθ
−

1
d
t.

NTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION 
DOI: 10.46300/9102.2020.14.5 Volume 14, 2020

ISSN: 1998-0159 30



III. Copulas and Random Number Generation
Simulations have an important role in statistical in-

ference. They are particularly useful to investigate prop-
erties of estimators and to study the quality of a model.
Moreover, they are also necessary to understand the un-
derlying multivariate distribution. The copula construc-
tion allows us to simulate outcomes from many multi-
variate distributions easily.

The goal of this section is to present practical al-
gorithms to simulate bivariate random variables for all
copulas mentioned in the previous section. Assume that
(X,Y ) is a 2-dimensional random vector whose distribu-
tion is

H(x, y) = C(F (x), G(y))

where F denotes the marginal distribution of X, G the
marginal distribution of Y and C is a copula.

A. Conditional distribution algorithm
One popular algorithm for simulating random vari-

ables is based on the conditional distribution approach.
This approach separates the copula into several univari-
ate components, each of which can be easily sampled.
This method can be used in many copulas (Clayton,
Frank, FGM, AMH). Assume that (X,Y ) has a bivari-
ate distribution function based on the two-dimensional
Archimedean copula (Clayton, Frank, FGM or AMH).
To generate data from a bivariate distribution function
(X,Y ) we first sample (u1, u2) from the copula-based
distribution C(u1, u2) with uniform margins and then we
have to invert each ui using the marginal distributions
to obtain the data for the (X,Y ). The procedure is to
generate the observation of one margin, say U1, and then
to generate an observation for U2 from its distribution
given U1. Consider two uniform random variables U1
and U2 with known copula C. Assuming sufficient reg-
ularity conditions, we obtain the conditional cumulative
distribution function (cdf)

C2|1(u2 | u1) = P (U2 ≤ u2 | U1 ≤ u1) = ∂C(u1, u2)
∂u1

Thus, the procedure to sample (u1, u2) from a copula-
based distribution C(u1, u2) is based on the algorithm 1
shown below.

Algorithm 1
(1) Simulate two independent uniform U(0, 1) random
variables, say (v1, v2).
(2) Set u1 = v1.
(3) Find the conditional distribution C2|1(v2 | v1) and
its quasi-inverse C−1

2|1(v2 | v1). Set u2 = C−1
2|1(v2 | v1).

Then, the pairs (u1, u2) are uniformly distributed
variables drawn from the respective copula C(u1, u2).
(4) The desired simulated values are x = F−1(u1) and
y = G−1(u2).

Algorithm 1.1: Generating bivariate outcomes from
Clayton copula
(1) Simulate two independent uniform U(0, 1) random
variables, say (v1, v2).
(2) Set u1 = v1.
(3) Set u2 = [v−θ1 (v−θ/(1+θ)

2 − 1) + 1]−1/θ.
(4) The desired simulated values are x = F−1(u1) and
y = G−1(u2).

Algorithm 1.2: Generating bivariate outcomes from
Frank’s copula
(1) Simulate two independent uniform U(0, 1) random
variables, say (v1, v2).
(2) Set u1 = v1.
(3) Set u2 = − 1

θ ln
(

1 + v2(1−e−θ)
v2(e−θv1−1)−e−θv1

)
.

(4) The desired simulated values are x = F−1(u1) and
y = G−1(u2).

Algorithm 1.3: Generating bivariate outcomes from
FGM copula
(1) Simulate two independent uniform U(0, 1) random
variables, say (v1, v2).
(2) Set u1 = v1.
(3) Set a = 1 + θ(1− 2v1); b =

√
a2 − 4(a− 1)v2.

(4) Set u2 = 2v2/(a+ b).
(5) The desired simulated values are x = F−1(u1) and
y = G−1(u2).

Algorithm 1.4: Generating bivariate outcomes from
AMH copula
(1) Simulate two independent uniform U(0, 1) random
variables, say (v1, v2).
(2) Set a = 1 − v1; b = 1 − θ(1 + 2av2) + 2θ2a2v2;
c = 1 + θ(2− 4a+ 4av2) + θ2(1− 4av2 + 4a2v2).
(3) Set u2 = (2t(aθ − 1)2)/(b+

√
c).

(4) The desired simulated values are x = F−1(u1) and
y = G−1(u2).

The conditional distribution algorithm can be ex-
tended to the general case of p variables. In higher
dimensions, the full distribution of (X1, ..., Xp) is sim-
ulated by recursively simulating the conditional distri-
bution of Xk given X1, ..., Xk−1 for k = 2, ..., p ([5]).

B. Bivariate distribution algorithm
For some copulas the conditional distribution is not

directly invertible and so different algorithms are neces-
sary. This is the case of the Gumbel-Hougaard copula
and the Joe copula. One alternative and popular al-
gorithm that can be used to simulate random variables
from an Archimedean copula is based on the following
Theorem.

Theorem Let U1 and U2 be uniform U(0, 1) random
variables and let its bivariate distribution function be de-
fined by the Archimedean copula generated by ϕ. Then,
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the function KC(t) = t−ϕ(t)/(ϕ′(t)) is the distribution
function of C(U1, U2). Furthermore, the joint distribu-
tion of the random variables X = ϕ(U1)/[ϕ(U1)+ϕ(U2)]
and Y = C(U1, U2) is characterized by H(x, y) = x ×
KC(y), for all (x, y) ∈ I2 with X and Y independent,
and X uniformly distributed on (0, 1). Following, we
present a proof in case of copula C to be absolutely con-
tinuous. A proof for the general case can be found in
[15].

The joint density h (x, y) = ∂2

∂u1∂u2
C (u1, u2) ·∣∣∣∣∣∂ (u1, u2)

∂ (x, y)

∣∣∣∣∣ in terms of x and y, where ∂2C (u1, u2) is

given as follow and ∂ (u1, u2) /∂ (x, y) correspond to the
Jacobian of the transformation ϕ(u1) = xϕ(y), ϕ(u2) =
(1− x)ϕ(y). Since

∂ (u1, u2)
∂ (x, y) = ϕ (y)ϕ′ (y)

ϕ′ (u1)ϕ′ (u2)

and consequently

h (x, y) =
(
−
ϕ′′ (y)ϕ′ (u1)ϕ′ (u2)[

ϕ′ (y)
]3

)
·
(
−

ϕ (y)ϕ′ (y)
ϕ′ (u1)ϕ′ (u2)

)
=

ϕ′′ (y)ϕ′ (y)[
ϕ′ (y)

]2

Thus

H (x, y) =
∫ x

0

∫ y
0
ϕ′′(z)ϕ(z)[
ϕ′(z)

]2 dzdw = x ·
[
z − ϕ(z)

ϕ′(z)

]y
0

= x ·Kc (y)

and the conclusion follows.

The resulting simulation procedure follows algorithm
2.

Algorithm 2
(1) Simulate two independent uniform U(0, 1) random
variables, say (v1, v2).
(2) Set t = K−1

C (v2) where KC(t) = t− ϕ(t)/(ϕ′(t))
(3) Set u1 = ϕ−1(v1ϕ(t)) and u2 = ϕ−1((1− v1)ϕ(t))
Then, the pairs (u1, u2) are uniformly distributed vari-
ables drawn from the respective copula C.
(4) The desired simulated values are x = F−1(u1) and
y = G−1(u2).

Extensions of the results shown in the above theorem
can be used to provide the corresponding simulation al-
gorithm to the multi-dimensional case ([39]). The main
challenge for the practical implementation of this algo-
rithm is to find the inverse function of KC .

Algorithm 2.1: Generating bivariate outcomes from the
Gumbel-Hougaard copula
(1) Simulate two independent uniform U(0, 1) random
variables, say (v1, v2).
(2) Set KC(t) = t × (1 − ln(t)/θ) = v2, and solve
numerically for 0 < t < 1.
(3) Set u1 = exp[v1/θ

1 ln(t)] and u2 = exp[(1 −
v1)1/θ ln(t)].

Then, the pairs (u1, u2) are uniformly distributed
variables drawn from the respective copula C.
(4) The desired simulated values are x = F−1(u1) and
y = G−1(u2).

Algorithm 2.2: Generating bivariate outcomes from Joe
copula
(1) Simulate two independent uniform U(0, 1) random
variables, say (v1, v2).
(2) Set KC(t) = t − [ln(1−(1−t)θ)][1−(1−t)θ]

[θ(1−t)θ−1] = v2, and
solve numerically for 0 < t < 1.
(3) Set u1 = 1 − {1 − [1 − (1 − t)θ]v1}1/θ and
u2 = 1− {1− [1− (1− t)θ]1−v1}1/θ.
Then, the pairs (u1, u2) are uniformly distributed
variables drawn from the respective copula C.
(4) The desired simulated values are x = F−1(u1) and
y = G−1(u2).

C. Laplace Transform algorithm
Clayton, Frank, Joe and Gumbel-Hougaard copulas

fall into the class of the so-called Laplace (Stieltjes)
Transform Archimedean copulas (LT-Archimedean cop-
ulas). This LT representation leads to a useful way of
simulating such copulas ([25]; [20]; [18]). For such cop-
ulas, the inverse of the generator function ϕ has a nice
representation on a Laplace Transform of some function
G. The algorithm 3, based on the LT representation is
given below:

Algorithm 3
(1) Generate a variable V with distribution function G

with ψ(t) =
∫ +∞

0 etxdG(x), t ≥ 0 , the Laplace-Stieltjes
transform of G.
(2) Generate independent standard uniform random
variables v1, v2.
(3) Set ui = ψ(−ln(vi)/V ).

Then, the vector (u1, u2) has the desired
Archimedean copula dependence structure with
generator ϕ = ψ−1.

• For a Clayton copula, V is gamma distributed
Ga(1/θ, 1) and ψ(t) = (1 + t)−1/θ.

• For a Gumbel-Hougaard copula, V is stable dis-
tributed St(1/θ, 1, (cos(Π/(2θ)))θ, 0; 1) (see [33])
and ψ(t) = exp(−t1/θ).

• For a Frank copula, V is discrete with P (V = k) =
(1− e−θ)k/(kθ) and ψ(t) = − 1

θ ln[1 + e−t(e−θ − 1)],
k ∈ N.

• For the AMH copula, V is discrete with P (V = k) =
(1− θ)θk−1 and ψ(t) = 1−θ

et−θ , k ∈ N.

• For Joe copula, V is discrete with P (V = k) =
(−1)k+1(1/θ

k

)
and ψ(t) = 1− (1− e−t)1/θ, k ∈ N.
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Unfortunately, it is not known how to find G explic-
itly. If we know how to sample G, this algorithm provides
a powerful tool for sampling these copulas with large di-
mensions.

D. Survival data and Random Number Generation
Copulas have been widely studied in the last decades.

Their first applications were mainly in actuarial sciences
and finances but their use has spread to other areas such
as survival analysis. The copula construction allows the
selection of different marginal distributions for each out-
come while accounting for the dependence between the
random variables. They can be used to model and un-
derstand explanatory variables in survival analysis. The
copula structure can also be used to study different sur-
vival models such as the bivariate survival. For example,
suppose we are considering to examine the survival of
twins. There is strong empirical evidence that supports
the dependence of their lifetimes. Another problem that
often appear in survival analysis and that can be mod-
eled with copulas is the issue of competing risks. Though
in many cases the outcomes (competing risks; see Figure
3) are assumed to be statistically independent there is
strong evidence that this assumption is not realistic. To
account for this dependence, one general approach is to
apply copulas ([11]; [21]).

In many longitudinal studies subjects can experience
several events across a follow-up period. The events of
concern may be of the same nature (e.g., cancer pa-
tients may experience recurrent disease episodes) or rep-
resent different states in the disease process (e.g., alive
and disease-free, alive with recurrence and dead). If the
events are of the same nature these are usually referred
as recurrent event, whereas if they represent different
states (i.e. multi-state models) they are usually modeled
through their intensity functions ([37]; [17]; [23]). The
dependence between the different outcomes can also be
modeled using copulas ([8]; [19]; [24]; [35]).

The algorithms shown above can be used to gener-
ate survival data that can be used in many of these sit-
uations. One can use them to generate survival data
observed subject to random right-censoring ([22]; [19]),
arising from censored gap times ([10]; [30]), competing-
risks ([34]) and multi-state models ([3]; [26]; [28]; [29]).
Below we present the algorithms to generate data for the
four models.

Time-to-event data
Standard survival data measure the time from some par-
ticular time origin until the occurrence of one type of
event. The main feature of survival data is censoring.
Right-censoring is the most common type of censoring
and can occur because of insufficient follow-up, loss to
follow-up or failure unrelated to the study. We denote
the random variable survival time by Y . Next, we denote
the random censoring variable by Z, which we assume to
be independent of Y ; and ∆ = I(Y ≤ Z) the indicator
status indicating either a failure (i.e., ∆ = 1) or censor-
ship occurred. Because of censoring rather than Y we ob-

Fig. 3: Schematic representation of some common
multi-state models. Mortality model for survival analy-
sis (top); recurrent events model (second row); compet-
ing risks model (third row) and progressive illness-death
model (bottom).
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serve (T,∆) where T = min(Y,Z) is the observed time.
If covariables, X, are present, the observed data consists
of the triplets (Ti,∆i, Xi) (i = 1, . . . , n) of independent
and identically distributed replicates of (T,∆, X).

The procedure to generate such data is as follows:
(1) Generate (X,Y ) from a bivariate distribution
function based on some known two-dimensional copula.
(2) An independent censoring time Z is generated,
according to some particular model (e.g., Uniform or
Exponential).
(3) Set T = min(Y,Z) and ∆ = I(Y ≤ Z).

Recurrent events data
Recurrent events involve repeat occurrences of the same
type of event over time ([8]). Recurrent events in longi-
tudinal studies include recurrent leukaemia episodes, tu-
mor recurrences in cancer patients (e.g. bladder cancer)
or heart failure hospitalizations. Let (X,Y ) be gap times
corresponding to two consecutive events, which are ob-
served subject to random right-censoring. The fact that
the variables X and Y are recorded successively, rather
than simultaneously, is important when the variables are
subject to censoring. Again, we consider here random
right censoring (denoted by Z). In the present context of
successive events, we only observe the second gap time if
the first failure time is uncensored. More precisely, the
observable variables are given by (T1, T2,∆1,∆2) where
T1 = min(X,Z), ∆1 = I(X ≤ Z), T2 = min(Y,Z2) and
∆2 = I(Y ≤ Z2), where Z2 = (Z −X)I(X ≤ Z) is the
censoring variable for the second gap time.

The procedure to generate such data is as follows:
(1) Generate (X,Y ) from a bivariate distribution func-
tion based on some known two-dimensional copula.
(2) An independent censoring time Z is generated, ac-
cording to some particular model (e.g., Uniform or Ex-
ponential).
(3) Set T1 = min(X,Z); ∆1 = I(X ≤ Z); T2 =
min(Y,Z −X)× I(X ≤ Z); ∆2 = I(X + Y ≤ Z).

Competing risks data
Competing risks data (Figure 3, third row) are en-
countered in many medical studies where the subjects
under study are at risk for more than one mutually
exclusive event. The observable data in these models
is represented by the failure time T and the indicator
status variable ∆, which in this case will take the value
0 if the competing risk process does not move from the
initial state at the survival time T , or the value 1 and 2
for the possible causes of death 1 and 2. The observable
data may also include a possibly covariable vector,
which we shall ignore for the moment. The survival
time and cause of death may be modeled as arising from
the minimum of latent failure times corresponding to
the different causes. The procedure to generate such
data is as follows:
(1) Generate (X,Y ) from a bivariate distribution
function based on some known two-dimensional copula.
(2) An independent censoring time Z is generated,
according to some particular model (e.g., Uniform or

Exponential).
(3) If X ≤ Y then D = 1; otherwise D = 2.
(4) Set T = min(X,Y, Z); ∆ = I(min(X,Y ) ≤ Z)×D.

Alternative simulation designs for competing risks
data are given by [4].

Progressive illness-death multi-state model
In some cases the events of concern may not be of the
same nature, representing different stages in the disease
process. In biomedical applications these stages or states
may represent health conditions (e.g., healthy, diseased,
dead), disease stages (e.g., stages of cancer or HIV in-
fection) or a nonfatal complication in the course of the
illness (e.g., cancer recurrence, transplantation, etc.)[38].
These are known as multi-state models and are usually
modeled through their intensity functions ([3]; [26]; [29];
[14]). Consider for example a cancer study, where X rep-
resents the time between tumor resection and recurrence
(local or distant), and Y represents the time between de-
velopment of a recurrence and death of the patient. Some
individuals may die without observing a recurrence. The
progressive illness-death model, also known as disability
model, is probably the most popular one in the medical
literature. The irreversible version of this model (Fig-
ure 3, bottom), describes the pathway from an initial
state to an absorbing state either directly or through an
intermediate state. Many event-history data sets from
biomedical studies with multiple endpoints can be re-
duced to this generic structure.

To simulate the data in the progressive illness-
death model, we separately consider the subjects passing
through State 2 at some time, and those who directly go
to the absorbing State 3. For the first subgroup of indi-
viduals, the successive gap times can be simulated using
a two-dimensional copula, whereas those in the second
group can be simulated from any continuous distribu-
tion.

The procedure to generate such data is as follows:
(1) Draw ρ ∼ Ber(p) where p is the proportion of
subjects passing through State 2.
(2) If ρ = 1 then generate (X,Y ) from a bivariate distri-
bution function based on some known two-dimensional
copula.
(3) If ρ = 0, one particular model (e.g., Uniform, Ex-
ponential or Weibull) is used to generate the transition
time, W, from State 1 to State 3.
(4) An independent censoring time Z is generated,
according to some particular model (e.g., Uniform or
Exponential).
(5) If ρ = 1 then set T1 = min(X,Z) and
∆1 = I(X ≤ Z). Set also T = min(X + Y,Z)
and ∆ = I(X + Y ≤ Z).
(6) If ρ = 0 then set T1 = min(W,Z) and
∆1 = I(W ≤ Z). Set also T = T1 and ∆ = ∆1.

The stochastic behavior of the process in this model
is characterized by the vector of random variables
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(T1, T,∆1,∆), where T1 is the sojourn in State 1, T the
total time and ∆1 and ∆ the corresponding indicator
statuses.

The general (and usual) censoring distributions as-
sumed to model censoring are uniform and exponential.
The parameters in these distributions can be determined
by iterative algorithms to control the censoring percent-
age one wishes to obtain.

IV. An R package to generate complex
survival data

In R, several packages provide functions for simulat-
ing survival data. A comprehensive list of these pack-
ages can be seen in the CRAN task view ‘Survival Anal-
ysis’ ([2]). Some of them can be used to simulate data
from complex processes, such as the genSurv ([27]) pack-
age that permits to generate data with one binary time-
dependent covariable and data stemming from a progres-
sive illness-death model. Univariate and semi-competing
risks data can be generated using the SimSCRPiecewise
package. The survsim package ([9]; [31]) can also be
used to simulate simple and complex survival data such
as recurrent event data and competing risks data. Com-
plex multi-state models data with possibly nonlinear
baseline hazards and nonlinear covariable effects can be
simulated using functions available as part of the simMSM
package.

To provide researchers with an easy-to-use tool for
simulating complex survival data we develop an R pack-
age called survCopula. This package is composed by
a set of functions which allow the user to simulate a
cohort with the objective of studying its behavior in a
variety of scenarios including survival, competing risks,
recurrent events and some multi-state models. The main
feature of the package is its ability for using differ-
ent copulas for simulating correlated multivariate sur-
vival data in a variety of scenarios as discussed in Sec-
tion 3. Copulas are a useful tool to model multivari-
ate distributions. They allow us to control the de-
pendence between time variables with knowledge of the
marginal distributions. This software and source code
are all available at the GitHub repository at https:
//github.com/gsoutinho/survCopula. Details on the
usage of its functions can be obtained with the corre-
sponding help pages after the package is installed.

For illustration purposes, suppose we are interested to
simulate survival data for the mortality model. One pos-
sibility would be using a bivariate copula with marginal
functions uniformly distributed on (0; 5), where the sur-
vival (denoted by T) could be for instances the survival
time (in years) of lung cancer since diagnosis, and tumor
size (in cm) is a covariate value measured for each indi-
vidual. Individuals alive at the end of the follow-up have
right censored observations (i.e., Delta = 0). Such data
can be obtained using the dgCopula function of the
survCopula package through the following input com-
mands:

> library(survCopula)
> setseed(2345)
> sim.data<-dgCopula(typeCopula =’clayton’,

theta=1, typeX=’Unif’, num1_X=0, num2_X=5,
typeY=’Unif’, num1_Y=0, num2_Y=5,
typeCens=’Unif’, num1_Cens=0, num2_Cens=7,
nsim=250,typeSurvData=’time-to-event’)

> head(sim.data)

T Z Delta
1 3.3786641 5.3939928 1
2 4.5925602 6.3436964 1
3 1.9646380 1.9646380 0
4 0.5421364 5.1900408 1
5 0.4418575 0.5881083 1
6 2.1502214 2.1502214 0

As arguments, typeCopula correspond to the bivari-
ate copula used to generate data and theta to a numeric
value for the space parameter. In the arguments typeX,
typeY and typeCens are indicated the marginal distri-
butions for the bivariate copula and the censuring time
distribution, respectively. The parameters of the distri-
butions are given by the arguments num1 and num2.

V. Discussion and Future research
Copulas have become a popular tool to create distri-

butions that model correlated multivariate data. In this
paper a review of the most common copulas is presented
with the goal to introduce the generators functions of
some important families of Archimedean copulas as well
as their dependence that can be measured by Kendall’s
tau τ or Spearman’s ρ. Due to the important role of
the simulation studies in statistical inference this arti-
cle also describes several algorithms to generate bivari-
ate data from several copulas, and explored the use of
these correlated data for generating multivariate survival
data in a variety of scenarios. In fact, the use of copu-
las is suitable for this purpose since they can be used to
introduce dependence between time and covariates, or
between times of different transitions in more complex
survival systems. In case of the Conditional distribu-
tion algorithm this can be applied in many copulas such
as Clayton, Frank, FGM or AMH. Since some copulas
are not directly invertible for the Gumbel-Hougaard and
the Joe copulas was also discussed an alternative algo-
rithm making use of the function the function KC . A
Laplace Transform algorithm is also described for some
copulas and finally, four types of survival data and ran-
dom number generation are presented covering different
situations, including recurrent events, competing risks
and models with multiple events of different types. In
this paper we also demonstrated the application of these
methods of copulas to the biomedical statistics namely in
simulation studies involving different models in survival
analysis or multistate models who have the advantage
to take in consideration the dependence of variables. In
order to be used on biomedical practices a user-friendly
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software in the form of an R package is provided too. The
package provides several functions that can be used to
generate survival data in a variety of scenarios including
competing risks, recurrent event and multi-state models.
Users can choose the marginal distributions as well as
the dependence between the correlated data which is in-
duced in the joint distribution by means of copulas. As
a future field of research we are interested to use cop-
ulas to simulate longitudinal and survival data. This
type of data is particularly relevant in cancer studies in
which longitudinal biomarkers may be associated to the
survival time.
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