
 

 

  
Abstract—This research deals with the initial investigations on 

the concept of a chaos-driven evolutionary algorithm Differential 
evolution. This paper is aimed at the embedding of simple two-
dimensional chaotic system, which is Lozi map, in the form of chaos 
pseudo random number generator for Differential Evolution. The 
chaotic system of interest is the discrete dissipative system. Repeated 
simulations were performed on standard benchmark Schwefel’s test 
function in higher dimensions. Finally, the obtained results are 
compared with canonical Differential Evolution. 
 
Keywords—Chaos, Differential evolution, Evolutionary 

algorithms, Lozi map.  

I. INTRODUCTION 

HESE days the methods based on soft computing such as 
neural networks, evolutionary algorithms, fuzzy logic, and 

genetic programming are known as powerful tool for almost 
any difficult and complex optimization problem. Ant Colony 
(ACO), Genetic Algorithms (GA), Differential Evolution 
(DE), Particle Swarm Optimization (PSO) and Self 
Organizing Migration Algorithm (SOMA) are some of the 
most potent heuristics available. 

Recent studies have shown that Differential Evolution [1] 
has been used for a number of optimization tasks, [2], [3] has 
explored DE for combinatorial problems, [4] has hybridized 
DE whereas [5] - [7] has developed self-adaptive DE variants. 

This chapter is aimed at investigating the chaos driven DE. 
Although a several of papers have been recently focused on 
the connection of DE and chaotic dynamics either in the form 
of hybridizing of DE with chaotic searching algorithm [8] or 
in the form of chaotic mutation factor and dynamically 
changing weighting and crossover factor in self-adaptive 
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chaos differential evolution (SACDE) [9], the focus of this 
paper is the embedding of chaotic systems in the form of 
chaos number generator for DE and its comparison with the 
canonical DE. 

This research is an extension of the work [10] and 
continuation of the previous successful initial application 
based experiment with chaos driven DE [11] – [13] with 
simple test functions in low dimensions. 

The primary aim of this work is not to develop a new type 
of pseudo random number generator (PRNG), which should 
pass many statistical tests, but to try to use and test the 
implementation of natural chaotic dynamics into evolutionary 
algorithm as a chaotic pseudo random number generator 
(CPRNG). 

The chaotic system of interest is the simple discrete 
dissipative chaotic system. The two-dimensional Lozi map 
was selected as the chaos pseudo random number generators 
for DE based on the successful results obtained with DE [11] 
or PSO algorithm [14]. 

Firstly, Differential Evolution is explained. The next 
sections are focused on the used chaotic systems and test 
function. Results and conclusion follow afterwards. 

II. DIFFERENTIAL EVOLUTION 

DE is a population-based optimization method that works 
on real-number-coded individuals [15]. A schematic of the 
canonical DE strategy is given in Fig. 1.  

There are essentially five sections to the code depicted in 
Fig. 1. Section 1 describes the input to the heuristic. D is the 
size of the problem, Gmax is the maximum number of 
generations, NP is the total number of solutions, F is the 
scaling factor of the solution and CR is the factor for 
crossover. F and CR together make the internal tuning 
parameters for the heuristic. 

Section 2 in Fig. 1 outlines the initialization of the heuristic. 
Each solution xi,j,G=0 is created randomly between the two 
bounds x(lo) and x(hi). The parameter j represents the index to 
the values within the solution and parameter i indexes the 
solutions within the population. So, to illustrate, x4,2,0 

represents the fourth value of the second solution at the initial 
generation. 

After initialization, the population is subjected to repeated 
iterations in section 3. 

Section 4 describes the conversion routines of DE. Initially, 
three random numbers r1, r2, r3 are selected, unique to each 
other and to the current indexed solution i in the population in 
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4.1. Henceforth, a new index jrand is selected in the solution. 
jrand points to the value being modified in the solution as given 
in 4.2. In 4.3, two solutions, xj,r1,G and xj,r2,G are selected 
through the index r1 and r2 and their values subtracted. This 
value is then multiplied by F, the predefined scaling factor. 
This is added to the value indexed by r3. 

However, this solution is not arbitrarily accepted in the 
solution. A new random number is generated, and if this 
random number is less than the value of CR, then the new 
value replaces the old value in the current solution. The fitness 
of the resulting solution, referred to as a perturbed vector 
uj,i,G., is then compared with the fitness of xj,i,G. If the fitness 

of uj,i,G is greater than the fitness of xj,i,G., then xj,i,G. is 
replaced with uj,i,G; otherwise, xj,i,G. remains in the population 
as xj,i,G+1. Hence the competition is only between the new 
child solution and its parent solution. 

Description of used DERand1Bin strategy is presented in 
(1). Please refer to [15] - [18] for the detailed complete 
description of all other strategies. 

 
( )GrGrGrGi xxFxu ,3,2,11, −⋅+=+  (1) 

 

 

 
Fig. 1. Canonical DE Schematic 

 

III. THE CONCEPT OF CHAOS DRIVEN DE 

This section contains the description of discrete dissipative 
chaotic maps, which can be used as the chaotic pseudo 
random generators for DE as well as the main principle of the 
ChaosDe concept. In this research, direct output iterations of 
the chaotic maps were used for the generation of real numbers 
in the process of crossover based on the user defined CR value 
and for the generation of the integer values used for selection 
of individuals. The initial concept of embedding chaotic 
dynamics into the evolutionary algorithms is given in [19]. 

A. Chaotic pseudo random number generator 
The general idea of ChaosDE and CPRNG is to replace the 

default PRNG with the discrete chaotic map. As the discrete 
chaotic map is a set of equations with a static start position, 
we created a random start position of the map, in order to have 
different start position for different experiments. This random 
position is initialized with the default PRNG, as a one-off 
randomizer. Once the start position of the chaotic map has 
been obtained, the map generates the next sequence using its 
current position. 

The first possible way is during the evolutionary process 
initialization to generate and store a long data sequence 
(approx. 50-500 thousands numbers) and keep the pointer to 
the actual used value in the memory. In case of the using up of 
the whole sequence, the new one will be generated with the 
last known value as the new initial one. 

The second approach is that the chaotic map is not re-
initialized during the experiment and no long data series is 
stored, thus it is imperative to keep the current state of the 
map in memory to obtain the new output values. 

As two different types of numbers are required in 
ChaosDE; real and integers, the use of modulo operators is 
used to obtain values between the specified ranges, as given in 
the following equations (2) and (3): 

 
rndreal = mod (abs (rndChaos) , 1.0) (2) 

 
rndint = mod (abs (rndChaos) , 1.0) × Range + 1 (3) 

 
Where abs refers to the absolute portion of the chaotic map 

generated number rndChaos, and mod is the modulo operator. 
Range specifies the value (inclusive) till where the number is 
to be scaled. 
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B. Chaotic systems for CPRNG 
Following chaotic systems as given in Table I can be used 

as the CPRNGs. 

 
 

 

TABLE I.  POSSIBLE DISCRETE CHAOTIC SYSTEMS AS CPRNG AND PARAMETERS SET UP 

Chaotic system Notation Parameters values 
Burgers Map 
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α = 6, β = 0.4, γ = 1 and μ = 
0.9 

Lozi Map 
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C. Selected chaotic system - Lozi map 
Lozi map is the selected example of chaotic systems. The x, 

y plot of the Lozi map is depicted in Fig. 2. The map 
equations are given in (4). The parameters are: a = 1.7 and  
b = 0.5 as suggested in [20]. The chaotic behavior of the Lozi 
map, represented by the examples of direct output iterations 
are depicted in Fig. 3 (line-plot) and Fig. 4 (point-plot). 
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Fig. 2. x, y plot of the Lozi map 

 

Fig. 3. Iterations of the uncontrolled Lozi map (variable x) 

 

Fig. 4. Iterations of the Lozi map (variable x – point-plot) 

The illustrative histogram of the distribution of real 
numbers transferred into the range <0 - 1> generated by 
means of chaotic Lozi map is in Fig. 5. 
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Fig. 5. Histogram of the distribution of real numbers transferred into the 
range <0 - 1> generated by means of the chaotic Lozi map – 5000 samples 

IV. BENCHMARK FUNCTION 

For the purpose of evolutionary algorithms performance 
comparison within this initial research, the Schwefel’s test 
function (5) was selected. The 3D diagram for D = 2 is 
depicted in Fig. 6, and the 2D diagram for D = 1 is depicted in 
Fig. 7. 
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Function minimum: 
Position for En: (x1, x2…xn) = (420.969, 420.969,…, 420.969) 
Value for En: y = -418.983·Dimension 
 

 

Fig. 6. 3D plot of Schwefel’s function 

 

 

Fig. 7. 2D plot of Schwefel’s function 

V. RESULTS 

The novelty of this approach represents the utilization of 
discrete chaotic map as a pseudo random number generator 
for DE. In this paper, the canonical DE strategy DERand1Bin 
and the Chaos DERand1Bin strategy driven by Lozi map 
(ChaosDE) were used. The parameter settings for both 
canonical DE and ChaosDE were obtained analytically based 
on numerous experiments and simulations (see Table II). 
Experiments were performed in an environment of Wolfram 
Mathematica, canonical DE therefore used the built-in 
Mathematica software pseudo random number generator. All 
experiments used different initialization, i.e. different initial 
population was generated in each run of Canonical or Chaos 
driven DE. 

Within this research, one experiment was performed. It 
utilizes the maximum number of generations fixed at 3000 
generations. This allowed the possibility to analyze the 
progress of DE within a limited number of generations and 
cost function evaluations.  

The results of the experiment are shown in Table III, which 
represent the simple statistics for cost function values, e.g. 
average, median, maximum values, standard deviations and 
minimum values representing the best individual solution for 
all 50 repeated runs of canonical DE and ChaosDE.  

The main aim of the optimization was to find the global 
extreme (minimum) of the Schwefel’s test function in higher 
dimensions. For D = 30, the global minimum has the 
following value En: y = -12569.49. 

 

TABLE II.  PARAMETER SET UP FOR CANONICAL DE AND CHAOSDE 

DE Parameter Value 
Popsize 75 
F 0.8 
Cr 0.8 
Dimensions 30 
Generations 100·D = 3000 
Max Cost Function Evaluations (CFE) 225000 
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Table IV compares the progress of ChaosDe and Canonical 
DE. The Table IV contains the average CF values for the 
generation No. 750, 1500, 2250 and 3000 from all 50 runs. 

The bold values within the both Table III and Table IV 
depict the best obtained results.  
 

TABLE III.  SIMPLE RESULTS STATISTICS 

CF statistical parameter Canonical DE ChaosDE 
Average CF -5944.01 -10883.5 
Median CF -5961.63 -10966.5 
Max. CF -5412.69 -7609.94 
Min. CF -7045.82 -12427.6 
Std. Dev. 262.232 996.605 

 

TABLE IV.  COMPARISON OF PROGRESS TOWARDS THE MINIMUM 

DE Version 
Avg. CF value 
for Gen. No. 

750 

Avg. CF value 
for Gen. No. 

1500 

Avg. CF value 
for Gen. No. 

2250 

Avg. CF value 
for Gen. No. 

3000 
Canonical DE -5341.68 -5591.21 -5831.25 -5944.01 
ChaosDE  -5519.11 -7625.59 -9501.46 -10883.5 
 

Obtained numerical results and graphical comparisons in 
Fig. 8 – 11 support the claim that Chaos DE driven by Lozi 
map has given the best overall results. The graphical 
comparison of the time evolution of CF values for the best 
individual solutions (the solution with the minimal final cost 
function value) for Chaos DE with Lozi map and canonical 
DERand1Bin strategy is depicted in Fig. 8, whereas Fig. 9 
represents the comparison of the time evolution of average CF 
values from all 50 runs. Fig. 10 shows the time evolution of 
CF values for the best progressive individual solutions. These 
individual solutions represent the ones with the lowest sum of 
the CF values with the step of 20 generations, i.e. with the 
best progress towards the global optimum. Finally the Fig. 11 
confirms the robustness of Chaos DE driven by chaotic Lozi 
map in finding the best solutions for all 50 runs. 
 

 

Fig. 8. Comparison of the time evolution of CF values for the best individual 
solutions, i.e. the solutions with the minimal final cost function value 

 

 

 

Fig. 9. Comparison of the time evolution of average CF values for all 50 runs 
of ChaosDE and Canonical DE 

 

 

Fig. 10. Comparison of time evolution of CF values for the best progressive 
individual solutions, i.e. solutions with the lowest sum of the CF values with 
the step of 20 generations. 

 

 

Fig. 11. Comparison of the time evolution of CF values for all 50 runs of 
canonical DE (blue) and ChaosDE (red) 

VI. CONCLUSION 

In this paper, chaos driven DERand1Bin strategy was tested 
and compared with canonical DERand1Bin strategy. Based on 
obtained results, it may be claimed, that the developed 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 7, 2013 367



 

 

ChaosDE driven by means of the chaotic Lozi map gives 
considerably better results than other compared heuristics. 

Since this was an initial study, future plans include 
experiments with benchmark functions in higher dimensions, 
testing of different chaotic systems and obtaining a large 
number of results to perform statistical tests. 

Furthermore chaotic systems have additional parameters, 
which can by tuned. This issue opens up the possibility of 
examining the impact of these parameters to generation of 
random numbers, and thus influence on the results obtained 
using differential evolution. 
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