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Abstract—Calcium is essential for human. Apart from providing

skeletal strength, calcium also plays important role in a wide range of
biological functions. In this paper, calcium homeostasis, the
mechanism that maintains the serum calcium level to be in the normal
range, is investigated mathematically. A mathematical model is
formulated to incorporate the effects of parathyroid hormone, vitamin
D and time delay on calcium homeostasis. The conditions on the
model parameters for which a periodic solution exists are then
derived by means of Hopf bifurcation theorem. Moreover, various
kinds of dynamic behavior of the model are also investigated
numerically.
Keywords—Calcium homeostasis, parathyroid hormone, time

delay, vitamin D.

I. INTRODUCTION

VER 99% of total body of calcium is stored in bone [1]-
[5]. Calcium is essential for many mechanisms in human

body. It plays a key role in the regulation of enzymatic
activities and fundamental cellular events including the
contraction of muscles, hormone secretion, cell division and
blood clotting [1]-[5]. Serum calcium levels are regulated by
three main mechanisms which are bone turnover, intestinal

This work was supported by the Centre of Excellence in Mathematics,
Commission on Higher Education, Thailand and the Royal Golden Jubilee
Ph.D. Program (contract number PHD53K0191).

I. Chaiya is with the Department of Mathematics, Faculty of Science,
Mahidol University, Thailand and the Centre of Excellence in Mathematics,
the Commission on Higher Education, Thailand (e-mail:
g5438789@student.mahidol.ac.th).

C. Rattanakul is with the Department of Mathematics, Faculty of Science,
Mahidol University, Thailand and the Centre of Excellence in Mathematics,
the Commission on Higher Education, Thailand (corresponding author,
phone: 662-201-5340; fax: 662-201-5343; e-mail: chontita.rat@mahidol
.ac.th).

S. Rattanamongkonkul is with the Department of Mathematics, Faculty of
Science, Burapha University, Thailand and the Centre of Excellence in
Mathematics, the Commission on Higher Education, Thailand (e-mail:
sahattay@buu.ac.th).

W. Panitsupakamon is with the Department of Mathematics, Faculty of
Science, Silpakorn University, Thailand and the Centre of Excellence in
Mathematics, the Commission on Higher Education, Thailand (e-mail:
wannapa@su.ac.th).

S. Ruktamatakul is with the Department of Mathematics, Faculty of
Liberal Arts Science, Kasetsart University, Thailand and the Centre of
Excellence in Mathematics, the Commission on Higher Education, Thailand
(e-mail: faasspr@nontri.ku.ac.th).

absorption and renal reabsorption [2]. Parathyroid hormone
(PTH) and vitamin D are two major regulators that are
responsible for normal calcium homeostasis [1]-[5].

The increase in serum level of PTH leads to the increase in
the mobilization of calcium from bone matrix through the
stimulating effect on the osteoclastic activity [1]. The initial
phase can be seen within 1-2 hours and more pronounced
phase becomes evident after about 12 hours [1]. PTH also
increases the serum level of calcium by acting on the kidney
through the promoting of the reabsorption of calcium in the
distal nephron and the promoting of the conversion of vitamin
D into its active form which results in the increase in the
intestinal uptake of calcium [1].

On the other hand, vitamin D in its active form mediates its
biological effects by binding to vitamin D receptors (VDR)
located on the target organs which are bone, intestine, kidney
and the parathyroid glands [1], [7]-[11]. Active vitamin D
increases calcium uptake at intestine. The result can be seen
within approximately 2 hours [1]. Due to the sequential
hydroxylation in liver and kidney, the longer duration is
needed when vitamin D is given [1]. Moreover, active vitamin
D also acts on bone to increase both the number and activity of
osteoclasts [1], [7]-[11].

In the next section, we then develop a delay-differential
equations model to investigate the change in the serum level of
calcium ion due to the change in the serum levels of
parathyroid hormone and vitamin D. The time delay observed
clinically in the stimulating effects of parathyroid hormone and
vitamin D on calcium release will also be incorporated in the
model.

II. MODEL FORMULATION

Let us denote the concentration of PTH above the basal
level in blood at time t by  P t , the concentration of PTH

above the basal level in blood at time t  by  P t  , the
concentration of the active form of vitamin D in blood at time
t by  D t , the concentration of the active form of vitamin D

in blood at time t  by  D t  , and the concentration of

calcium in blood at time t by  C t .
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Firstly, PTH secreted from the parathyroid glands is one of
the major regulators of calcium homeostasis. Parathyroid cells
are unusual in the respect that hormone synthesis and
degradation are adjusted due to physiological demand for
secretion [1]. As much as 90% of the hormone synthesized
may be destroyed within the chief cells, which degrade PTH at
an accelerated rate when serum level of calcium is high [1]. On
the other hand, the release of PTH is stimulated by the low
level of calcium in blood [1]-[6]. PTH increases the serum
level of calcium by various direct and indirect actions on bone,
intestine and kidney as discussed in the previous section in
order to maintain the normal range of calcium concentration in
blood. Moreover, in the absence of PTH, the serum level of
calcium decreases dramatically over a period of several hours
[1]. In addition, the chief cells of the parathyroid glands are
also targets for the active vitamin D and response to it in a
negative feedback manner [1]. The equation for the rate of
change of PTH concentration above the basal level in blood is
then assumed to have the form

1
1

1 2 3 4

   
( )( )

udP v
dT w w D w w C

P 
 

(1)

where the parameters 1 1 2 3 4, , , ,u w w w w and 1v are assumed to
be positive. The first term on the right hand side represents the
secretion rate of PTH from the parathyroid glands
corresponding to the serum levels of active vitamin D and
calcium. The last term represents the removal rate of PTH
from the system.

Secondly, vitamin D is another principal regulator of
calcium homeostasis. The body itself produced vitamin D
when it is exposed to the sun. Vitamin D is then synthesized in
to an active form so that it can mediate its biological effects.
Active vitamin D then binds to vitamin D receptors expressed
on the target organs. It enhances calcium absorption in the
intestine and increases calcium mobilization from bone [1],
[7]-[11]. On the other hand, PTH also stimulates the synthesis
of the active form of vitamin D [1], [7]-[11]. The equation for
the rate of change of serum level of active vitamin D is then
assumed to have the form
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where the parameters 2 3 4 5 5 6 7 8, , , , , , ,u u u u w w w w and 2v are
assumed to be positive. The first term on the right hand side
represents the synthesis rate of active vitamin D corresponding
to the serum levels of PTH, calcium and active vitamin D
itself. The last term represents the removal rate of active
vitamin D from the system.

Finally, the rate of change of serum level calcium is then
assumed to have the form

   6 7 3   dC u P t u D t v
d

C
T

      (3)

where the parameters 6 7,u u and 3v are assumed to be
positive. The first term on the right hand side represents the
delay effect in the increase of serum level of calcium due to
the increase in the concentration of PTH. The second term
represents the delay effect in the increase of serum level of
calcium due to the increase in the serum level of active

vitamin D. The last term represents the removal rate of
calcium from the system.

III. MODEL ANALYSIS

In order to investigate the possibility of periodic dynamics
in our system of (1)-(3), we scale the variables and the

parameters in the model as follows:
0 0 0
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P D C
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2 2 0 ,d v T 3 3 0d v T . The system (1)-(3) can then be written as
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   6 7 3
dZ a X t a Y t d Z
dt

      (6)

Assuming that  , ,S S SX Y Z is a non washout steady state of
the system (4)-(6). Letting Sx X X  , Sy Y Y  ,

Sz Z Z  , we will be led to the following linearized system
of (4)-(6)

S
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z z
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(7)

where SJ is the corresponding Jacobian matrix evaluated at

 , ,S S SX Y Z , namely

1 1 1
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The characteristic equation of SJ can then be written as

     3 2 0F a b d c e e             (9)

where
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According to the Hopf bifurcation theorem, it is necessary
that (9) has a pair of purely imaginary complex roots i  
for some value of  so that a periodic solution exists. In order
that such a pair can be found, one must have   0F i  , that
is,

          3 2 0ii a i b i d c i e e            (10)

Equating real and imaginary parts on the left of (10) to
zero, we obtain the following equations:

   2 cos sina d e c      (11)
   3 cos sinb c e       (12)

By squaring both sides of (11) and (12), and then adding,
we obtain

  0   (13)
where

       6 2 4 2 2 2 2 22 2a b b ad c d e           

Letting 2  , (13) can be written as

  3 2 0U V W         (14)

where 2 2 2 2 22 , 2 ,U a b V b ad c W d e       .

Therefore, if (14) has a positive real solution 2 0  
then (9) will have a pair of complex solutions, i   .

According to the work of Ruan and Wei [12], for a
polynomial in the form of (14), the following lemmas are
obtained and so we state them without proofs.

Lemma 1
(a) If 0W  , then (14) has at least one positive root.

(b) If 0W  , then the necessary condition for (14)  to have a
positive real root is that 2 3 0.U V   

Lemma 2 If
0W  and 0  (15)

then (14) has a positive root if and only if

1 0  and  1 0   (16)

where 1 3
U   

 .

Therefore, by the above lemmas, we assume that either
0W  or (15) and (16) hold so that (14) has positive roots.

Assuming that it has three positive roots denoted by 1 , 2
and 3 . Then, (13) has three positive roots

 ,    1,2,3.k k k  

Now, let 0 0  be the smallest of such  for which¸
.i   Substituting k into (11)-(12) and solving for  ,

we obtain

       3

2 2 2

1 21 arcsin
2

j k k
k

k k k

ac e be cd j
c e
  


  

    
  

 
(17)

where 1,2,3,k  and 1,2,...j 

Theorem 1 Suppose that

0,  0a d e   and    a b c d e   (18)

(a) If 0W  and 0 , then all roots of (9) have nonzero
real parts for all 0. 

(b) If either
0W  (19)

or 10,  0, 0W     and  1 0   (20)

then all roots of (9) have negative real parts when  00, , 

where
    0 1 3, 1

min , 0j j
k kk j

  
  

  (21)

with  j
k defined in (17).

Proof
(a) By contradiction, if (9) has a root with zero real part for
some 0  which implies that (14) has a positive real root. By
Lemma 1(b), the necessary condition for (9) to have a positive
real root is that 0 which contradicts the fact that 0 .
Therefore, all roots of (9) have nonzero real parts for all

0  .

(b) For 0  , equation (9) is reduced to
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   3 2 0a b c d e        (22)

Since the conditions in (18) hold, the Routh-Hurwitz criterion
then implies that all roots of (9) have negative real parts and
hence, all roots¸    of (9) have negative real parts at the

point 0  . From the continuity of    , all roots of (9) will
have negative real parts for values of  in some open interval
containing 0  . Therefore, all roots of (9) have negative real
parts for positive values of  0, c  for some 0.c 

However, c is defined by (21) to be the minimum of all

the positive  j
k  where  j

k is defined as in (17). Hence,

0 is the minimum of such positive  's for which the real
parts of some roots of (9) vanish, provided that (19) or (20)
holds. Thus, 0c  , which completes the proof.

Theorem 1 implies that if either (19) or (20) are satisfied
and (18) holds, the steady state  , ,S S SX Y Z of our system of

(4)-(6) is stable for some values of  00,  . At 0  ,

  Re 0   by the definition of 0 and hence the stability

of the steady state  , ,S S SX Y Z is lost at 0  . In order for a
Hopf bifurcation to occur, and hence a periodic solution of our
system of (4)-(6) may be expected, we still need to show that

  
 

0

Re
0

d
d

 

 






which is done in the next theorem.

Theorem 2 Suppose that conditions (19) or (20) in Theorem 1
hold, then i   is a pair of purely imaginary roots of (9).
Moreover,

  
 

0

Re
0

d
d

 

 




 (23)

provided that
 0 0   (24)

where
0

2
0 0 0,  .k       

Proof
The first part of this theorem is an immediate consequence of
Theorem 1 and the definition of 0 . In order to prove that
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 
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d
d
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 




 , let us consider (9),

   3 2 0F a b d c e e            
Then,

      23 2
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dF da b c e e c e e
d d

       
 

       



and hence,

   

1 23 2 0d a b c
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   
    




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Since    3 2c e e a b d         , then

   

1 2

3 2

3 2d a b c
d c ea b d
   
      

            

At 0 0, i     and thus,

   
   

  

0

21
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4 2 3
00 0 0 0
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
 

Therefore,

   
   

 

0

4 2 2 21
0 0

6 2 4 2 2 2
0 0 0

2
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0
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Re
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a b b add
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c
c e

 

 
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




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


(13)

implies that

   6 2 4 2 2 2 2 2 2
0 0 0 02 2a b b ad d c e         

then,
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 







         








Hence,
0

1

Re 0d
d

 








   
 

and the proof is complete. We thus

have the following result.

Theorem 3 If either (19) or (20) holds, then a periodic
solution occurs in our model equations (4)-(6) for a positive
time delay 0  given by (21) provided that (18) and (24) are
satisfied.

IV. NUMERICAL INVESTIGATION

A computer simulation of the system (4)-(6) is presented in
Fig. 1 and 2, with parametric values chosen to satisfy the
conditions in Theorem 3. The solution trajectory projected
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onto the  ,x y  plane,  ,x z  plane and  ,y z  plane are as
shown in Fig. 1a, 1b and 1c, respectively. The corresponding
time courses of the PTH concentration above the basal level,

the concentration of active vitamin D and the concentration of
calcium are as shown in Fig. 2a, 2b and 2c, respectively,
showing a periodic behavior as theoretically predicted.

Fig. 1 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 6 7 10.007, 0.1, 0.8, 0.5, 0.01, 0.02, 0.08, 0.08,a a a a a a a k       

2 3 4 1 2 30.01,  3.9,  0.06,  0.07, 0.145, 0.1, =12, (0) 1,k k k d d d x       (0) 1, (0) 1.y z  (a) The solution trajectory projected onto the
(x,y)-plane, (b) The solution trajectory projected onto the (x,z)-plane and (c) The solution trajectory projected onto the (y,z)-plane, respectively.

Fig. 2 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 6 7 10.007, 0.1, 0.8, 0.5, 0.01, 0.02, 0.08, 0.08,a a a a a a a k       

2 3 4 1 2 30.01,  3.9,  0.06,  0.07, 0.145, 0.1, 12,  (0) 1,k k k d d d x        (0) 1, (0) 1.y z  (a) The corresponding time courses of the PTH

concentration above the basal level (x), (b) the concentration of active vitamin D (y) and (c) the concentration of calcium (z), respectively.

a) b) c)

a) b) c)
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A computer simulation of the system (4)-(6) is presented in
Fig. 3 and 4. The solution trajectory projected onto the
 ,x y  plane,  ,x z  plane and  ,y z  plane are as shown
in Fig. 3a, 3b and 3c, respectively, showing a solution
trajectory tends to a stable equilibrium solution. The

corresponding time courses of the PTH concentration above
the basal level, the concentration of active vitamin D and the
concentration of calcium are as shown in Fig. 4a, 4b and 4c,
respectively.

Fig. 3 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 6 7 10.007, 0.1, 0.8, 0.5, 0.01, 0.02, 0.08, 0.08,a a a a a a a k       

2 3 4 1 2 30.01,  3.9,  0.06,  0.07, 0.145, 0.1, 5,  (0) 1,k k k d d d x        (0) 1, (0) 1.y z  (a) The solution trajectory projected onto the
(x,y)-plane, (b) The solution trajectory projected onto the (x,z)-plane and (c) The solution trajectory projected onto the (y,z)-plane, respectively.

Fig. 4 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 6 7 10.007, 0.1, 0.8, 0.5, 0.01, 0.02, 0.08, 0.08,a a a a a a a k       

2 3 4 1 2 30.01,  3.9,  0.06,  0.07, 0.145, 0.1, 5,  (0) 1,k k k d d d x        (0) 1, (0) 1.y z  (a) The corresponding time courses of the PTH

concentration above the basal level (x), (b) the concentration of active vitamin D (y) and (c) the concentration of calcium (z), respectively.

a) b) c)

a) b) c)
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A computer simulation of the system (4)-(6) is presented in
Fig. 5 and 6. The solution trajectory projected onto the
 ,x y  plane,  ,x z  plane and  ,y z  plane are as shown
in Fig. 5a, 5b and 5c, respectively, showing a chaotic behavior

exhibited by our model. The corresponding time courses of the
PTH concentration above the basal level, the concentration of
active vitamin D and the concentration of calcium are as
shown in Fig. 6a, 6b and 6c, respectively.

Fig. 5 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 6 7 10.007, 0.1, 0.8, 0.5, 0.01, 0.02, 0.08, 0.08,a a a a a a a k       

2 3 4 1 2 30.01,  3.9,  0.06,  0.07, 0.145, 0.1, 80,  (0) 1,k k k d d d x        (0) 1, (0) 1.y z  (a) The solution trajectory projected onto the
(x,y)-plane, (b) The solution trajectory projected onto the (x,z)-plane and (c) The solution trajectory projected onto the (y,z)-plane, respectively.

Fig. 6 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 6 7 10.007, 0.1, 0.8, 0.5, 0.01, 0.02, 0.08, 0.08,a a a a a a a k       

2 3 4 1 2 30.01,  3.9,  0.06,  0.07, 0.145, 0.1, 80,  (0) 1,k k k d d d x        (0) 1, (0) 1.y z  (a) The corresponding time courses of the PTH

concentration above the basal level (x), (b) the concentration of active vitamin D (y) and (c) the concentration of calcium (z), respectively.

a) b) c)

a) b) c)
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V. CONCLUSION

A delay-differential equations model accounted for the
effects of PTH, vitamin D and time delay is developed in order
to investigate the calcium homeostasis. Hopf bifurcation
theorem is then utilized in order to derive the conditions on the
model parameters that guarantee the existence of a periodic
solution. Numerical investigation is then carried out by using
Runge-Kutta method [13]-[16]. The results indicate that our
model can exhibit nonlinear behavior corresponding to the
pulsatile patterns observed clinically in the serum levels of
parathyroid hormone, vitamin D and calcium [17]-[19].
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