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Abstract—In this paper, we propose a system of ordinary

differential equations in order to describe calcium homeostasis by
considering parathyroid hormone and calcitonin as two major
regulating hormones. Geometric singular perturbation is utilized in
order to obtain the conditions on the system parameters that
differentiate various kinds of dynamic behavior. Numerical
simulations are also carried out to confirm our theoretical
predictions.
Keywords—Calcitonin, calcium homeostasis, mathematical

model, parathyroid hormone.

I. INTRODUCTION

AINTAINING the normal level of calcium ion in
extracellular fluid is essential for human. Calcium in its

ionized form plays very important role in regulating of
enzymatic activities and fundamental cellular events such as
muscular contraction, secretion and cell division [1]-[4]. Too
high or too low of serum levels of calcium indicate
hypercalcemia or hypocalcemia, respectively [1]-[4]. Hence,
the understanding of calcium homeostasis, the process that
controls the normal level of serum calcium, is needed.

Many factors involve in calcium homeostasis including
parathyroid hormone (PTH), calcitonin (CT) [1]-[5]. To
maintain the serum level of calcium in the normal range, PTH
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acts directly on bone to stimulate bone resorption activity. It
also acts directly on kidney to stimulate the reabsorption of
calcium from urine and acts indirectly on intestine to enhance
the conversion of vitamin D into its active form resulting in the
increase of calcium absorption from diet [1]-[5]. CT, on the
other hand, acts directly on bone to inhibit bone resorption
activity. In this paper, a mathematical model is then developed
in order to get the better understanding of calcium homeostasis
based upon the effects of two hormones, PTH and CT.

II. MODEL DEVELOPMENT

Calcium homeostasis is the process that keeps the serum
level of calcium in the normal range. The factors that will be
taken in to account here are PTH and CT.

When the serum level of calcium falls below the normal
range, PTH is then released from the parathyroid glands and
binds with its receptors at the target organs which are bone,
kidney and intestine [1]-[5]. The serum level of calcium is then
raised to the normal level. On the other hand, when the serum
level of calcium raises above the normal range, CT is then
secreted from the parafollicular cells of the thyroid gland and
inhibits bone resorption activity. The serum level of calcium is
then decreased to the normal range [1]-[5].

Let us denote the concentration of PTH above the basal
level in blood at time t by  X t , the concentration of CT in

blood at time t by  Y t and the concentration of calcium ion

in blood at time t by  Z t . The following system of
nonlinear ordinary differential equations is then use to
investigate calcium homeostasis based upon the effects of
parathyroid hormone and calcitonin:

1

1
1    adX b X

dt k Z
 


(1)

2 3 2( )  dY a a Y YZ b Y
dt
   (2)

6 32
4 5

2

    a a XdZ a Y Z b Z
dt k X

 
    

(3)

Note that all parameters in the system are assumed to be
positive.

The rate of change of the serum level of PTH above the
basal level at time t is described by (1). On the right hand side,
the first term represents the secretion rate of PTH from the
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parathyroid glands in response to the serum level of calcium.
When the serum calcium level is high the secretion rate of
PTH will be decreased in order to counter balance the high
level of calcium in blood. The last term represents the removal
rate of PTH from the system.

The rate of change of the serum level of CT at time t is
described by (2). On the right hand side, the first term
represents the secretion rate of CT in response to the level of
calcium. When the serum level is high, the secretion of CT will
be increased in order to counter balance the high level of
calcium in blood. The last term represents the removal rate of
CT from the system.

The rate of change of the serum level of calcium at time t is
described by (3). On the right hand side, the first term
represents the rate of change in calcium level due to the effects
of PTH and CT. The last term represents the removal rate of
calcium from the system.

III. ANALYSIS OF THE MODEL

Assuming that the dynamic of PTH is fast, the dynamic of
CT is intermediate and the dynamic of calcium is slow. We
then scale the dynamics of the three components and
parameters of the system (1)-(3) in term of small positive
parameters 0 1  and 0 1  as follows.

Letting 32
1 1 2 3,   ,   ,   ,   ,   ,aax X y Y z Z c a c c

 
     
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4 1 1 2
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system (1)-(3) becomes
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The system (4)-(6) can then be analyzed by using the
geometric singular perturbation method [6], [7].

Note that the shapes, directions and speeds of the solution
trajectories of the system are determined by the shapes and the
relative position of the manifold    0 , 0 ,F G  and

 0H  . Therefore, we shall investigate each manifold in
detail.

The manifold  0F 
This manifold is given by the equation

 
1

1
1

1

   
( )

cx
d k z

zA 


(7)

We can see that this manifold is independent of the variable
y and hence it is parallel to the y  axis. In addition, it

intersects the x  axis at the point where

1

1
1

1

 cx x
d k
  (8)

Note that  1A z is an decreasing function of z and

 1 0  asA z z  .

The manifold  0G 
This manifold consists of two sub-manifolds. One is the

trivial manifold 0y  . The other one is the nontrivial manifold
given by the equation

 
3

2
2

2

 d y
c c y

z A


(9)

We can see that the nontrivial manifold is independent of
the variable x and hence, it is parallel to the x -axis. In
addition, its intersects the z-axis at the point where
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Note that  2A y is an decreasing function of y and

 2A y  as 1y y  where 2
1

3

cy
c
 .

Moreover, the manifold  0F  intersects the manifold

 0G  along the curve
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1

1 1

, 0cx y
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and the curve,

 
1 2

1 1 2 3

,  c dx
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z
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The manifold  0H 
This manifold consists of two sub-manifolds. One is the

trivial manifold 0z  . The other one is the nontrivial manifold

 4 5
3 32
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(13)

We can see that the nontrivial manifold is independent of
the variable z and hence it is parallel to the z-axis.  3A x
attains its relative maximum at the points where
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Note that 0My  if and only if

 2
4 3 2 5M Mc d k x c x   (16)

Moreover, the nontrivial manifold  3y A x intersects the
y  axis at the point where

4
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6 2

1 cy d y
c k
 
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(17)

Note that 2 0y  if and only if

4 3 2c d k (18)
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In addition, the nontrivial manifold  3y A x intersects the
x  axis at the point where
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  
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Note that if 2 0y  then 2 0x  .
The manifold  0F  intersects the manifold  0H 

along the line
 1, 0x x z 

and the curve

 
4 51

32
1 1 6 2

1, c c xcx y d
d k z c k x

               
which attains its relative maximum at the points where
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Note that 0Mz  if and only if

1Mx x (21)
On the other hand, the manifold  0F  intersects the

manifold  0G  and the manifold  0H  at the points
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2Sx is a positive solution of
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Note that
2Sx exists in the first octant provided that

0D  (24)
and

2
0Sy  if

 2 2

2
4 5 3 2S Sc c x d k x   (25)

and
2

0Sz  if

2 1Sx x (26)

Case 1 If  and  are sufficiently small, and
1 2Mx x x  (27)

2S Mz z (28)
provided that the inequalities (16), (18) and (24)-(26) are
satisfied where all parametric values are defined as above, then
a periodic solution exists for the system of (4)-(6).

If all inequalities identified in Case 1 hold, then the
manifolds    0 , 0F G  and  0H  are positioned as
in Fig. 1. Starting from the point A in front of the manifold
 0F  . Since  0F  here, a fast transition will bring the

system to the point B on the manifold  0F  in the direction

of decreasing x . Here,  0G  and a transition at intermediate
speed will be made in the direction of decreasing y until point
C on the curve  0F H  is reached. An intermediate
transition then follows along this curve to some point D on the
other stable part of  0F H  followed by an intermediate
transition in the direction of decreasing y until the point E is
reached since  0G  here. Once the point E is reached the
stability of sub-manifold will be lost. A jump to point F on the
other stable part of  0F H  followed by an intermediate

transition in the direction of increasing y since  0G  here.
Once the point G is reached the stability of sub-manifold will
be lost. A jump to point H on the other stable part of
 0F H  . Consequently, an intermediate transition will
bring the system back to the point E, followed by flows along
the same path repeatedly, resulting in the closed orbit EFGHE.
Thus, limit cycle in the system for  and  are sufficiently
small exists.

Case 2 If  and  are sufficiently small, and
1 2Mx x x  (29)

2M Sz z (30)
provided that the inequalities (16), (18) and (24)-(26) are
satisfied where all parametric values are defined as above, then
a stable equilibrium point exists for the system of (4)-(6).

If all inequalities identified in Case 2 hold, then the
manifolds    0 , 0F G  and  0H  are positioned as
in Fig. 2. Starting from point A in front of the manifold
 0F  . Since  0F  here, a fast transition will bring the

system to the point B on the manifold  0F  in the direction

of decreasing x . Here,  0G  and a transition at intermediate
speed will be made in the direction of decreasing y until point
C on the curve  0F H  is reached. An intermediate
transition then follows along this curve to some point D on the
other stable part of  0F H  followed by an intermediate
transition in the direction of decreasing y until the point E is
reached since  0G  here. Once the point E is reached the
stability of sub-manifold will be lost. A jump to point F on the
other stable part of  0F H  followed by an intermediate
transition in the direction of increasing y until the steady state

2S where  0F G H   is reached since  0G  here.
Thus, the solution trajectory is expected in this case to tend
toward this stable equilibrium point 2S as time passes.
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0F 

0H 

0F H 

0F G 

0F G 

0F H 

1x

Mx

2x

0

2y

My

2S

Mz

Fig. 1 The three equilibrium manifolds    0 , 0F G  and  0H  in ( , , )x y z  space in Case 1 . Segments of the trajectories
with one, two, and three arrows represent slow, intermediate, and fast transitions, respectively.
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0F 

0H 

0F H 

0F G 

0F G 

0F H 

1x

Mx

2x

0

2y

My

 , ,M M Mx y z

2S

Fig. 2 The three equilibrium manifolds    0 , 0F G  and  0H  in ( , , )x y z  space in Case 2 . Segments of the trajectories
with one, two, and three arrows represent slow, intermediate, and fast transitions, respectively.
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Case 3 If  and  are sufficiently small, and
2 1Mx x x  (31)

2M Sz z (32)
provided that the inequalities (16), (18) and (24)-(26) are
satisfied where all parametric values are defined as above, then
a stable equilibrium point exists for the system of (4)-(6).

If all inequalities identified in Case 3 hold, then the
manifolds    0 , 0F G  and  0H  are positioned as
in Fig. 3. Starting from point A in front of the manifold
 0F  . Since  0F  here, a fast transition will bring the

system to the point B on the manifold  0F  in the direction

of decreasing x . Here,  0G  and a transition at intermediate
speed will be made in the direction of decreasing y until point

C on the curve  0F G  is reached. A slow transition then
follows along this curve in the direction of increasing z until
the steady state 1S where  0F G H   is reached since

 0H  here. Thus, the solution trajectory is expected in this

case to tend toward this stable equilibrium point 1S as time
passes.

0F 

0H 

0F H 

0F G 

0F G 

0F H 

1x

Mx

2x

0

2y

My

 , ,M M Mx y z

A

B

x

z

y

2S

1S

C

Fig. 3 The three equilibrium manifolds    0 , 0F G  and  0H  in ( , , )x y z  space in Case 3 . Segments of the trajectories
with one, two, and three arrows represent slow, intermediate, and fast transitions, respectively.
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IV. NUMERICAL INVESTIGATION

A numerical result of the system (4)-(6) is presented in
Fig. 4, with parametric values chosen to satisfy the
inequalities identified in Case 1. The solution trajectory,

shown in Fig. 4a project onto the  ,x y -plane, tends to a
limit cycle as theoretically predicted. The corresponding
time courses of the PTH, CT, and calcium concentration are
as shown in Fig. 4b, 4c, and 4d respectively.

Fig. 4 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 60.5,  0.4,  0.1,  0.4,  0.9,  0.3,c c c c c c     

1 2 1 2 30.4,  0.6,  0.5,  0.03,  0.25,  0.7,  0.5,  (0) 0.5,k k d d d x         (0) 1,  (0) 1.y z  (a) The solution trajectory projected onto the
(x,y)-plane. (b) The corresponding time courses of PTH concentration (x), (c) CT concentration (y), and (d) calcium concentration (z),
respectively .

a)

c) d)

b)
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A numerical result of the system (4)-(6) is presented in
Fig. 5, with parametric values chosen to satisfy the
inequalities identified in Case 2. The solution trajectory,
shown in Fig. 5a project onto the  ,x y -plane, tends to a

stable equilibrium as theoretically predicted. The
corresponding time courses of the PTH, CT, and calcium
concentration are as shown in Fig. 5b, 5c, and 5d
respectively.

Fig. 5 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 60.2,  0.4,  0.1,  0.4,  0.9,  0.3,c c c c c c     

1 2 1 2 30.4,  0.6,  0.5,  0.3,  0.25,  0.2,  0.5,  (0) 0.5,k k d d d x         (0) 1,  (0) 1.y z  (a) The solution trajectory projected onto the
(x,y)-plane. (b) The corresponding time courses of PTH concentration (x), (c)  CT concentration (y), and (d) calcium concentration (z),
respectively .

a)

c) d)

b)
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A numerical result of the system (4)-(6) is presented in
Fig. 6, with parametric values chosen to satisfy the
inequalities identified in Case 3. The solution trajectory,
shown in Fig. 6a project onto the  ,x y -plane, tends to a

stable equilibrium as theoretically predicted. The
corresponding time courses of the PTH, CT, and calcium
concentration are as shown in Fig. 6b, 6c, and 6d
respectively.

Fig. 6 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 60.2,  0.3,  0.1,  0.4,  0.9,  0.3,c c c c c c     

1 2 1 2 30.2,  0.7,  0.3,  0.1,  0.5,  0.8,  0.5,  (0) 0.5,k k d d d x         (0) 0.1,  (0) 0.1.y z  (a) The solution trajectory projected onto the
(x,y)-plane. (b) The corresponding time courses of PTH concentration (x), (c)  CT concentration (y), and (d) calcium concentration (z),
respectively .

a)

c) d)

b)
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V. CONCLUSION

A mathematical model in form of a system of nonlinear
ordinary differential equations is developed in order to
represent calcium homeostasis based on the effects of
parathyroid hormone and calcitonin. Nonlinear dynamic
behaviors of the model are investigated theoretically by means
of geometric singular perturbation method. We then obtain the
conditions on the model parameters that differentiate various
kinds of dynamic behavior. If all inequalities identified in Case
1 are satisfied, a periodic solution can be expected. In Case 2
and 3, if all inequalities in each case are satisfied, a stable
equilibrium solution can be expected. Moreover, numerical
investigations are also carried out by using the Runge-Kutta
method that has been widely used to find an approximation of
a solution for the system of ordinary differential equations [8]-
[11]. The results confirm our theoretical prediction. Therefore,
our model can exhibit the nonlinear behavior that has been
observed in the clinical evidence [12], especially in Case I.
The periodic behavior exhibited by the model corresponds to
the pulsatile patterns observed in the serum levels of PTH, CT
and calcium.

REFERENCES

[1] H.M. Goodman, Basic Medical Endocrinology, 3rd edition, Academic
Press, 2003.

[2] S.D. Boden, F.S. Kaplan, “Calcium homeostasis”, Orthop. Clin. North
Am., vol.21, no.1, pp. 31-42, 1990.

[3] G.R. Mundy, T.A. Guise, “Hormonal control of calcium homeostasis”,
Clin. Chem., vol.45, no.8 (B), pp. 1347-1352, 1999.

[4] G. Carmeliet, S.V. Cromphaut, E. Daci, C. Maes, R. Bouillon,
“Disorder of calcium homeostasis, best practice & research clinical
endocrinology & metabolism, vol.17,  no.4, pp. 529-546, 2003.

[5] E.M. Brown, “Extracellular Ca2+ sensing, regulation of parathyroid
cell function, and role of Ca2+ and other ions as extracellular (first)
messengers”, Physiol. Rev., vol.71, pp. 371-411, 1991.

[6] T.J. Kaper, “An introduction to geometric methods and dynamical
systems theory for singular perturbation problems. Analyzing
multiscale phenomena using singular perturbation methods”, Proc.
Symposia Appl. Math, vol.56, 1999.

[7] S. Rinaldi, S. Muratori, “A separation condition for the existence of
limit cycle in slow-fast systems”, Appl. Math. Modelling, vol.15, pp.
312-318, 1991.

[8] W. Sanprasert, U. Chundang and M. Podisuk, “Integration method and
Runge-Kutta method”, in Proc. 15th American Conf. on Applied
Mathematics, WSEAS Press, Houston, USA, 2009, pp. 232.

[9] M. Racila and J.M. Crolet, “Sinupros: Mathematical model of human
cortical bone”, in Proc. 10th WSEAS Inter. Conf. on Mathematics and
Computers in Biology and Chemistry, WSEAS Press, Prague, Czech
Republic, 2009, pp. 53.

[10] N. Razali, R. R. Ahmed, M. Darus and A.S. Rambely, “Fifth-order
mean Runge-Kutta methods applied to the Lorenz system”, in Proc.
13th WSEAS Inter. Conf. on Applied Mathematics, WSEAS Press,
Puerto De La Cruz, Tenerife, Spain, 2008, pp. 333.

[11] A. Chirita, R. H. Ene, R.B. Nicolescu and R.I. Carstea, “A numerical
simulation of distributed-parameter systems”, in Proc. 9th WSEAS
Inter. Conf. on Mathematical Methods and Computational Techniques
in Electrical Engineering, WSEAS Press, Arcachon, 2007, pp. 70.

[12] K. N. Muse, S. C. Manolagas, L.J. Deftos, N. Alexander, and S.S.C.
Yen, “Calcium-regulating hormones across the menstrual cycle”, J.
Clin. Endocrinol. Metab., vol.62, no.2, pp.1313-1315, 1986.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 7, 2013 465




