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The F.E.M. study concerning the influence of
air humidity about the dynamical flow around

the spatial petroleum coke plant

Mihai D.L. Talu, Stefan D.L. Talu and Marin Bica

Abstract— The goal of this study was to investigate the influence of
air humidity variation concerning the dynamical flow around of a
petroleum coke plant. A finite element program was used for
numerical analysis and partial results was exposed and compared
with the experimental measurements. The 3D model of plant can be
adapted for appropriate CAD applications.

Keywords - Dynamical air flow, Finite element method (F.E.M.),
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I. INTRODUCTION

N the Romanian petrochemistry industry the production of

the petroleum coke plant through the tardy method is
usually metting. In this sense as example is given the
installation built on the petrochemistry industrial platforms of
Onesti.

This plant works from 1996 in continuous regime, in cycles
by forty-eight hours, with three hundred eighty-five tones
production on cycle, [12].

A direction from the design activity takes into consideration
the influence of the aerodynamically flow around the spatial
body of plant which engendering the stress and deformation of
structure beside the other important loadings.

In present paper the influence of air humidity variation
concerning the dynamical flow is scrupulously theoretical
investigated and partial results was exposed comparative with the
experimental measurements.
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The theoretical method to study this problem is the Finite
Element Method.

II. THE SPATIAL MODEL OF PLANT

The 3D model of plant is in detail presented in paper [15]
and this is made with aid of Solid Works 2007 software [18].

The real dimensional sizes of plant are big 28 x 6 x 6 m’
and the structure is also complex. In Fig. 1 is given the
isometric view of the installation on is marked the important
elements of installation.

| the reinforcing ring |

the spherical
bottom
the body
of plant
— | the taper

bottom

the support

Fig. 1. The isometric view of the petroleum coke plant

1. THE EXPERIMENTAL MEASUREMENTS

To investigate the fields of physical properties of air in the
dynamical flow was placed in the adjacent surface of plant a
numbers of twenty-three sensors connected to a Multilyzer
analyzer.

These sensors are mounted in two planes at levels of the
reinforcing rings in concordance with Fig. 2:

- on points Py, .., P53, in Plane 1 placed in front of plant;
- on points Py, .., P»3, in Plane 1 placed behind of plant;
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- on points Py, .., Pig, in Plane 2 placed on lateral of plant; —the deviation of temperature in plots from Fig. 9 to Fig. 11;

Plane 1 @\

- the deviation of density in plots from Fig. 12 to Fig. 14.
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Fig. 3. The deviation of velocity calculated in points P; to Py
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Fig. 4. The deviation of velocity calculated in points P, to Pg
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The study of the dynamical flow as consequence of ‘“l
humidity variation is made with aid of Cosmos Flow 2007 08 e

software, [19]. —F% —FI0  FI —PI11—F3 )

The initial data of external flow used in simulation are:

_ the incident angle of the air with structure, o = 90°; Fig. 5. The deviation of velocity calculated in points P9 to Py;

—the physical parameters which characterize the initial L
front of air: p = 90330 [Pa], T = 16 [°C], v = 34,5 [m/s], G
¢ =0+ 100 [%]. T
g o —
i i T L . B
4.2. The results of simulation 5 oS — =“_"'-_'=1_—_:i= —
4.2.1. The graphical results obtained with the F.E.M. ‘E om =i
To compact the numerical results of study at levels of ® aps
points P; to P,; is determined the value of deviation for
physical parameters with humidity variation comparative with e p——
the case of no humidity. Each label attached of plots gives the —P1 —FZ P73 —PF4—P5 —Ff —77 —F8 —F3

detailed specifications concerning the results presented, thus:
—the deviation of velocity in plots from Fig. 3 to Fig. 5;
—the deviation of pressure in plots from Fig. 6 to Fig. §;

Fig. 6. The deviation of pressure calculated in points P to Py
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Fig. 11. The deviation of temperature calculated in points Pq to Py;
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The 3D fields of physical sizes calculated through
numerical simulation at ¢ =40 [%], (which can be comparated
with the experimental measurements presented in this paper),
on surfaces of plant are given in Fig.15 to Fig.18.
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Fig. 16. The 3D field of pressure on surfaces of plant
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Fig. 17. The 3D field of temperature on surfaces of plant
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Fig. 18. The 3D field of density on surfaces of plant

In Fig. 19 to Fig. 26 are given the fields contours and
isolines of distributions for velocity, pressure, temperature and
density on plane P, and P,.
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Fig. 20. The 3D field of pressure in Plane 1
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Fig. 23. The 3D field of velocity behind of plant in Plane 2 Fig. 26. The 3D field of density behind of plant in Plane 2
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The 3D distributions fields contours and isolines of %
velocity, pressure, temperature and density in horizontal plane ; <] T [
through points: P, , Ps and P, are given in Fig. 27 to Fig. 38. e
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Fig. 28. The 3D velocity’s field in horizontal plane through point Ps
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Fig. 32. The 3D pressure’s field in horizontal plane through point P,

Fig. 29. The 3D velocity’s field in horizontal plane through point P,
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Fig. 35. The 3D temperature’s field Fig. 38. The 3D density’s field
in horizontal plane through point P, in horizontal plane through point P,
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Also the plots of deviation concerning the pressure,
temperature, density and velocity, in points P; to Py at
constant humidity ¢ = 40 [%], are given in Fig. 43 to Fig. 45.

4.2.2. The numerical results obtained with the F.E.M

In present paper the numerical results of simulation are
calculated starting at the initial conditions of the experimental
measurements for the air front which attacks the plant structure
with: p=90330 [Pa], T =16 [°C], v = 34,5 [m/s] , ¢ =40 [%].

The numerical results of simulation are given in Table 1.

Table 1. The numerical results of simulation concerning
the physical sizes of air in points P; to Py;.

points| p[Pa] | T[’C] |p [kg/m’]| v [m/s]
with ¢ =40 [%] constant

P, [ 90386.25 | 16.2199 | 1.08708 | 4.293
P, | 9041025 | 16.2242] 1.08761 | 3.413
P, | 90373.01 | 16.2256 | 1.08741 | 2.898
P, | 90372.57 | 16.2272 | 1.08766 | 2.591
Ps | 90359.35 | 16.2264 | 1.08776 | 2.564
Ps | 90334.28 | 16.2259 | 1.08771 | 2.851
P; | 90360.48 | 16.2255 [ 1.08829 | 3.178
Py | 90369.97 | 16.2229 | 1.08867 | 3.808
P, | 90319.90 | 16.1988 | 1.08857 | 7.379
P, | 88945.26 | 14.3631 | 1.07664 | 61.438
P, | 88664.41 | 14.1472 | 1.07430 | 64.839
P, | 88542.59 | 14.0449 | 1.07346 | 66.423
Pi; | 88477.79 | 14.0013 | 1.07310 | 67.145
P, | 88453.40 | 13.9900 | 1.07311 | 67.318
Pis | 88456.51 | 13.9998 | 1.07336 | 67.094
P, | 88497.79 | 14.0567 | 1.07391 | 66.265
P, | 88587.32 | 14.1500 | 1.07490 | 64.677
Pis | 88953.84 | 14.5083 | 1.07842 | 58.949
P, | 91307.75 | 16.1502 | 1.09800 | 17.180
Py | 91456.07 | 16.1769 | 1.10021 | 13.079
P, | 9145727 | 16.1671 ] 1.10077 | 12.796
Py, | 91399.12 | 16.1444 | 1.10067 | 12.946
Py; | 91052.55 | 16.0153 | 1.09760 | 20.801

V. THE EXPERIMENTAL MEASUREMENTS

The results of experimental measurements in points P; to
P,; concerning the aerodynamically flow are given in Table 2.

Table 2. The numerical results of experimental measurements
concerning the physical sizes of air in points P; to Py;.
points| p[Pa] | T[’C] |p [kg/m’]| v [m/s]
with ¢ =40 [%] constant
P, 89261.55 | 16.0497 | 1.06561 | 4.207
P, 88872.75 | 16.0397 | 1.06367 | 3.337
Py 88740.19 | 16.0284 | 1.06285 | 2.842
P, 88644.01 | 16.0379 | 1.05989 | 2.536
Ps 88518.17 | 15.9992 | 1.06455 | 2.503
Ps 88441.62 | 15.9829 | 1.06035 | 2.785

Issue 3, Volume 2, 2008 303

P; 88380.75 | 15.9574 | 1.0605 | 3.095
Pg 87686.76 | 15.9894 | 1.06513 | 3.716
Py 87825.65 | 15.9405 | 1.06243 | 7.207
Pio | 87613.53 | 14.1983 | 1.05397 | 60.274
Py 87062.46 | 13.9988 | 1.04953 | 63.492
P, | 87216.89 | 13.8893 | 1.05117 | 64.891
Pi3 86776.96 | 13.8188 | 1.04784 | 65.494
Py, | 86490.07 | 13.805 | 1.04754 | 65.727
Pis 86315.87 | 13.8051 | 1.04636 | 65.368
Pis | 86070.59 | 13.838 | 1.04628 | 64.453
P;; | 86057.23 | 13.9189 | 1.04308 | 62.677
Pis | 86012.22 | 14.2475 | 1.04437 | 57.082
Py | 90118.18 [15.97132| 1.07552 | 16.824
Py | 89697.98 | 15.9472 | 1.07421 | 12.815
Py, 89523.56 | 15.9187 | 1.07671 | 12.470
Py, | 89274.38 | 15.8558 | 1.06996 | 12.592
Py 88297.66 | 15.7228 | 1.07062 | 20.299

VI. THE ERROR OF THEORETICAL CALCULUS

The error of theoretical calculus concerning the physical
sizes calculated and measured in points P, to Py; are given in

Table 3. The formula of calculus error is:

E =

PS

theoretical

PS

where PS represents the physical size as: pressure. temperature,

density and velocity attach of air.

Table 3. The error of calculus concerning the physical sizes

S .
exp erimental % 1 00 [%]

exp erimental

of air calculated in points P; to Py; .

points | &,[%] | er[%] | e [%] | e [%]
with ¢ =40 [%] constant
P, 1.26 1.06 2.01 2.04
P, 1.73 1.15 2.25 2.28
Ps 1.84 1.23 2.31 1.97
P, 1.95 1.18 2.62 2.17
P; 2.08 1.42 2.18 2.44
Ps 2.14 1.52 2.58 2.37
P, 2.24 1.68 2.62 2.68
Py 3.06 1.46 2.21 2.48
Py 2.84 1.62 2.46 2.39
P 1.52 1.16 2.15 1.93
Pn 1.84 1.06 2.36 2.12
P, 1.52 1.12 2.12 2.36
Pis 1.96 1.32 2.41 2.52
P4 2.27 1.34 2.44 2.42
Pis 2.48 1.41 2.58 2.64
Pis 2.82 1.58 2.64 2.81
P 2.94 1.66 3.05 3.19
Ps 3.42 1.83 3.26 3.27
P 1.32 1.12 2.09 2.12
Py 1.96 1.44 2.42 2.06
Py 2.16 1.56 2.23 2.61
Py, 2.38 1.82 2.87 2.81
Py 3.12 1.86 2.52 2.47
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VII. CONCLUSIONS

Through experimental measurements

and theoretical

calculus on finding that the 3D distribution fields of physical
size which characterize the dynamical flow around the plant

structure are no uniform.

The influence of humidity if @ = 0 + 100 [%] given the

results from Fig. 3 to fig.14 and the Table 4.

Table 4. The minimum and maximum deviation with

humidity of physical sizes of air in points P; to P

23

points maximum | minimum
pressure
P, to Py Py / 0.005 [%]; P; /- 0.0175 [%];
¢ =46[%] ¢ =90[%]
Pioto Py Py5/0.018 [%]; Py5/0.0025 [%];
¢ =94[%] ¢ =10[%]
Py to Py P37/ -0.028 [%]; Py, /- 0.034 [%];
¢ =10[%] ¢ =94[%]
temperature
P, to Py Py /0.009 [%]; P; /- 0.0013 [%];
¢ = 100[%] ¢ =90[%]
Pioto Py P13/0.47 [%]; Py7/0.020 [%];
@ = 82[%] @ = 68[%]
P]g to P23 P19 /0.82 [%]; P23 /-1 [%];
¢ =60[%] ¢ =100[%]
density
P, to Py Py /0.048 [%]; P; /- 0.018 [%];
@ = 43[%] @ =92[%)]
P]o to P]g P17/OOO7 [%], Pll/' 0016[%],
@ = 68[%] @ = 18[%]
P]g to P23 Pzz /-0.02 [%]; P19 /-0.17 [%];
¢ = 10[%] ¢ =86[%]
velocity
P, to Py P, /0.28 [%]; P; /- 0.5 [%];
¢ =90[%] ¢ =43[%]
Pipto Py Pyo/-0.08 [%]; P4 /- 0.78 [%];
@ = 10[%] @ = 94[%]
Plg to P23 Plg/-0.15 [%], Pzz /-0.44 [%],
¢ =10[%] ¢ = 100[%]

From Table 4 we can conclude:
- the maximum deviation of pressure Ap < 0.018 [%];

- the maximum deviation of temperature AT< 0.82 [%];

- the maximum deviation of density Ap < 0.048 [%];
- the maximum deviation of velocity Av < 0.28 [%];

The maximum deviations is A < 1[{%] so the influence of

humidity is small.

If we analyze the results from Table 4 concerning the error
of calculus in case with ¢ = 40 [%] we can concluded that the
maximum error is € < 3,5 [%] and the numerical simulation
made with aid of FEM gives a good results which can be used
with success in practical design, with condition if we make
the theoretical hypothesis of a constant uniform front of air

which collide with the structure of plant at a=90° constant.
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