

Abstract— Introduction of CMMI practices for Measurement

and Analysis Process Area into Scrum is described with the aim of
monitoring and improving software process performance. A meta-
model of Scrum is given first, followed by the specifications of base
and derived measures that can be used to monitor satisfaction of
different stakeholders. Points on the process timescale are defined
where the proposed measures are collected without harming the
agility of Scrum. Finally, a solution for measurement repository
design is described and attributes of the corresponding database
tables are specified.

Keywords—CMMI, measurement repository, Scrum, software
measures

I. INTRODUCTION

UMEROUS agile methods [1] have appeared in the last
decade that – in contrast to disciplined approach

advocated by the quality models like CMMI (Capability
Maturity Model Integration [7]) – value individuals and
interactions over processes and tools, working software over
comprehensive documentation, customer collaboration over
contract negotiation, and responding to change over following
a plan [16].

According to the research from March 2007 [2], 69% of
781 respondents work in companies that adopted one or more
agile techniques. The Standish Group 2006 research report
[28] states that 41% of agile projects succeeded as opposed to
16% of waterfall projects. Experience has also shown that
adopting agile methods improves management of the
development process and customer relationships [6], and
decreases the amount of overtime and increases customer
satisfaction [17].

According to [22] the most commonly used agile methods
are XP [3] and Scrum [21]. More than 14.500 ScrumMaster
certificates were issued since 2003 [23] and the list of
companies using Scrum includes IBM, Microsoft, SAP,

Manuscript received April 15, 2007; Revised version June 7, 2007
V. Mahnic is with the Faculty of Computer and Information Science,

University of Ljubljana, Trzaska 25, SI-1000 Ljubljana, Slovenia (phone:
386-1-4768-447; e-mail: viljan.mahnic@fri.uni-lj.si).

N. Zabkar is Ph. D. student at Faculty of Computer and Information
Science, University of Ljubljana Trzaska 25, SI-1000 Ljubljana, Slovenia (e-
mail: nzabkar@email.si).

Google and Yahoo [24]. In the last few years several
successful implementations of Scrum have been reported in
the literature ([20, 27, 17, 13]).

At first glance, agile concepts seem to be in conflict with
disciplined approach advocated by CMMI, but several authors
suggest that it is possible to build organizational software
process through a balance of agility and discipline ([4], [26]).
Synergy between CMMI and Scrum has been explored by
providing mappings between CMMI and Scrum practices [18]
and criteria for defining appropriate agile measurement have
been defined, pointing out that improper measures simply
adopted from plan-driven approach not only waste resources
but also skew team behavior in counter-productive ways and
undermine culture change inherent in agile work [11].

The aim of this paper is to demonstrate how CMMI
practices for Measurement and Analysis (MA) Process Area
can be introduced without harming the agility of a Scrum-
based software development process.

We focus on the following specific practices:
• SP 1.1 Establish Measurement Objectives
• SP 1.2 Specify Measures
• SP 1.3 Specify Data Collection and Storage Procedures
• SP 1.4. Specify Analysis Procedures.
After a short description of Scrum concepts and meta-

model we present mapping between CMMI and Scrum for the
aforementioned practices. Based on our previous research in
the Scrum usage and performance measurement ([13], [14],
[15]), we then propose a set of base and derived measures that
can be used to monitor satisfaction of different stakeholders
involved in the software development process. Points on the
process timescale are described where the proposed measures
are collected, and procedures for deriving appropriate
performance indicators are specified.

After measures definitions, a generic data model of
measurement repository for collecting and storing
measurement results is presented. Then a detailed description
of database tables structures is given. This is followed by the
directions for further research in the area of business
intelligence, especially performance dashboards.

Introducing CMMI Measurement and Analysis
Practices into Scrum-based Software

Development Process
Viljan Mahnic, Natasa Zabkar

N

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 1, 2007 65

II. SCRUM OVERVIEW

A. Process Description
Scrum [21] is an iterative and incremental software

development method driven by the Product Backlog list,
which contains all active product requirements. The Product
Backlog is managed by Product Owner, who is the only
person authorized to change priorities of the requirements.

All work is done in Sprints. Each Sprint is an iteration of 30
consecutive calendar days and is initiated with a Sprint
planning meeting, where the Sprint Backlog is agreed. This is
a subset of Product Backlog requirements that defines
functionality to be developed in the current Sprint. Every
requirement is further broken into tasks that each takes
roughly 4 to 16 hours to finish.

Functionality is developed by the Team, i.e. a group of
developers that are collectively responsible for the success of
each iteration and of the project as a whole. Teams are self-
managing, self-organizing, and cross-functional, and they are
responsible for figuring out how to turn Product Backlog into
an increment of functionality within an iteration.

The ScrumMaster is responsible for managing the Scrum
process so that it fits within an organization’s culture and still

delivers the expected benefits, and for ensuring that everyone
follows Scrum rules and practices. Every day ScrumMaster
leads a 15-minute Daily Scrum meeting where every Team
member answers three questions: What have you done on this
project since the last Daily Scrum Meeting? What will you do
before the next meeting? Do you have any obstacles?
ScrumMaster is also responsible for resolving impediments
encountered during the Sprint in order to assure smooth
running of the development process.

At the end of the Sprint, a Sprint review meeting is held at
which the Team presents Sprint results to the Product Owner.
After the Sprint review and prior to the next Sprint planning
meeting, the ScrumMaster also holds a Sprint retrospective
meeting in order to ensure continuous improvement.

B. Meta-model of Scrum
For the purpose of introducing appropriate measures we

present a meta-model of Scrum using the entity-relationship
notation. The meta-model is further expanded in Section IV in
order to describe the design of the measurement repository
that serves for storing project data and measurement results
obtained during the development process. In Section V the
suggested structure of the database tables is presented.

Product owner

ScrumMaster
Employee

Team Member Team

Task

Sprint

Product Backlog Item
Release

Project

Product Backlog

PBI Work Remaining

Sprint Backlog

Sprint Planning Meeting

Sprint Review Meeting

Sprint Retrospective Meeting

Daily Scrum Meeting

Task Work Remaining

Fig. 1 Meta-model of Scrum

In Fig. 1, we see that for each Project a Product Backlog

must exist that contains several Product Backlog items (PBI).
For each PBI one or more estimates of work remaining are
provided. The Project is implemented through several Sprints.

For clarity reasons, the events associated with each Sprint

(viz. the Sprint planning meeting, the Sprint review meeting,
the Sprint retrospective meeting, and the Daily Scrum
meetings) are shown as separate entities. For each Sprint a
Sprint Backlog must be maintained that corresponds to PBIs
the Team committed to implement during the Sprint. Each PBI

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 1, 2007 66

is split into several tasks and for each task the estimates of
work remaining are provided on daily basis. The
implementation of a Sprint is appointed to a Team that
consists of several members each of them being responsible
for several tasks. For each project a Product Owner must be
assigned (either being an employee or a customer
representative) and for each Team a ScrumMaster must exist.
Several Sprints can be combined into a release; however, the
experience of the developers of some tools that support Scrum
process [e.g., 8] has shown that a mandatory relationship
between Sprints and a release represents a problem when a
Team works on multiple releases within the same Sprint.
Therefore, the relationship between Sprint and release entities
is only provided through PBIs.

III. CMMI PRACTICES IMPLEMENTATION

A. Establish Measurement Objectives
CMMI provides examples of different measurement

objectives like reduce time to delivery, reduce total lifecycle
cost, deliver specified functionality completely, improve prior
levels of quality, improve prior customer satisfaction ratings,
etc. Achievement of all these objectives can be measured
through continuous monitoring of the software process
performance. Therefore, the implementation of CMMI
Measurement and Analysis practices described in this paper is
based on the assumption that the main measurement objective
is to monitor and improve software process performance.

Kueng [12] defines process performance as “the degree of
stakeholder satisfaction”; consequently, in order to monitor
and evaluate process performance we must consider views of
different stakeholders that take part in the process. The best
performance is achieved when the goals of all stakeholders are
satisfied. The achievement of goals should be measured
quantitatively and qualitatively, thus giving a comprehensive
view of the process performance. Based on our previous
research [15], we have identified four stakeholders for Scrum
process: IT management, Team members, ScrumMaster and
Customers. Their goals are shown in Table I.

TABLE I

STAKEHOLDERS’ GOALS

Stakeholder Goal

IT management Timely information on project performance
 Quality improvement

Team members Job Satisfaction
ScrumMaster Efficient Impediments Resolution
Customers Customer Satisfaction

IT management is mainly concerned with traditional aspects

of software development performance considering time, cost,
and quality. The main goal of Team members is “Job
satisfaction”. Team members are most productive if they have
good working conditions enabling a sustainable pace of
progress without excessive workload and working overtime.
The ScrumMaster’s main role is facilitating the use Scrum and

creating conditions for smooth running of the development
process; therefore, his main goal is “Efficient impediments
resolution”. From the perspective of a software development
organization the main goal regarding customers is “Customer
Satisfaction”.

B. Specify Measures
According to CMMI, measures may be either “base” or

“derived”. While data for base measures are obtained by direct
measurement, data for derived measures come from other
data, typically by combining two or more base measures.
Derived measures serve as performance indicators showing
the achievement of particular goals. In this subsection only
base measures are described. Derived measures will be
presented in subsection III.D.

Originally, Scrum had only one base measure: the estimate
of the amount of work remaining that needs to be done in
order to complete a Product Backlog item or a task in the
Sprint Backlog (SB). At the task level, this measure is
collected every day for each task in the Sprint Backlog
separately. At the PBI level, the amount of work remaining for
each PBI is estimated at the beginning of each Sprint. Using
this measure, burndown charts can be developed showing
work remaining over time. The Scrum books define a Sprint
Burndown chart as a place to see daily progress, and a Product
Burndown chart as where to show monthly (per Sprint)
progress.

In order to measure the achievement of stakeholders’ goals
identified in III.A, we have defined some additional measures
as shown in Table II. The proposed measures can be
introduced stepwise giving each software development
organization freedom to adapt the measurement plan to its
specific needs. Nevertheless, we suggest the amount of work
spent metric to be introduced first since it fits to the concept of
Daily Scrum meetings and is analogue to the estimate of the
work remaining metric already proposed by Scrum.

TABLE II

BASE MEASURES

Goal: Timely information on project performance

Work remaining on day d for each task in the SB
Work spent on day d for each task in the SB

Goal: Quality improvement

The number of errors found during the Sprint review meeting (for each
PBI separately)
The number of errors reported by the user in a fixed period after release
(for each PBI separately)
The size of the code (for each PBI separately)
Total number of PBIs committed in the release/Sprint
The number of PBIs completed in the release/Sprint
Total number of tasks in the Sprint
The number of tasks completed during the Sprint

Goal: Job satisfaction

Administrative days
Results of the survey (Job Satisfaction) conducted at the Sprint
retrospective meeting. Each question is marked between 1 and 5, where 1
is the worst and 5 is the best mark.

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 1, 2007 67

Goal: Efficient Impediments Resolution

The number of impediments that refer to the given Task/Sprint/Team
The date the impediment was encountered
The date the impediment was resolved

Goal: Customer Satisfaction

Results of the survey (Customer Satisfaction) conducted at the end of
each Sprint/release. Each question is marked between 1 and 5, where 1 is
the worst and 5 is the best mark.

C. Specify Data Collection and Storage Procedures
All base measures proposed in the Table II (including some

basic parameters that must be established at the beginning of
each Sprint) can be easily collected during meetings already
prescribed by Scrum. The only exception is the number of
errors reported by the user after release. Base measures
collected at each type of meeting are shown in Table III.

TABLE III

DATA COLLECTION POINTS

Sprint planning meeting

Sprint length (number of working days in the Sprint)
The number of Team members (the size of Team)
Percentage of Team member’s engagement in the project
Cost of each Team member’s engineering hour

Daily Scrum meeting

Work remaining on day d for each task in the SB
Work spent on day d for each task in the SB
Administrative days
Impediment data

Sprint Review meeting

The number of errors found during the Sprint review meeting (for each
PBI separately
Results of the survey (Customer Satisfaction) conducted at the end of
each Sprint/release

Sprint Retrospective meeting

The size of the code (for each PBI separately)
Total number of PBIs committed in the release/Sprint
The number of PBIs completed in the release/Sprint
Total number of tasks in the Sprint
The number of tasks completed during the Sprint
Results of the survey (Job Satisfaction)

At the Sprint planning meeting the values of the basic

parameters must be established: the Sprint length, composition
of the Team (the number of the Team members, percentage of
each Team member’s engagement in the project), and costs of
each Team member’s engineering hour.

At Daily Scrum meetings the Sprint Backlog is maintained.
For each task Team members report the amount of work spent
and estimate the amount of work remaining. The amount of
work spent is obtained simply when each Team member
answers the question what he/she has done on the project
since the last Daily Scrum. If a new task is added, the type of
work performed and the cost of the engineering hour must be
defined. For Team members not present the administrative

days are recorded.
 During the Sprint review meeting the number of errors

reported by the user is recorded and a survey of customer
satisfaction can be done.

 During the Sprint retrospective meeting the code size of
each PBI is measured and the numbers of PBIs/Tasks
committed, but not completed are determined. However, these
numbers can be computed on spot by an appropriate project
management tool. At this meeting the survey of job
satisfaction can also be done.

The computation of indicators is best done by an
appropriate project management tool. Since tasks in the Sprint
Backlog emerge as the Sprint evolves (e.g., a task that was
only roughly defined at the beginning is split into several
smaller ones) the tool should maintain a list of active tasks and
keep history of all changes in order to compute the indicators
properly.

D. Specify Analysis Procedures
Base measurement data are grouped into derived measures

or indicators that serve for analyzing software process
performance in comparison to target values set by software
development organization.

Achievement of the goal “Timely Information on Project
Performance” is analyzed using the following indicators:

• Work Effectiveness,
• Schedule Performance Index (SPI), and
• Cost Performance Index of labor costs (CPI).
Work effectiveness refers to the ratio between the

decrement of work remaining and the amount of work spent.
Ideally, the decrement of work remaining between days d1
and d2 of a Sprint should be equal or greater to the amount of
work spent in the same interval. Therefore, the target value of
this indicator is 1 or more; however, values significantly
greater than 1 may be a sign of poor planning.

Schedule Performance Index (SPI) refers to the ratio
between the earned value (i.e., the value of all tasks
completed) and the planned value (i.e., the initial estimate of
value of all tasks to be completed till a certain point within the
project). The target value for SPI is 1 or more. SPI greater
than 1 means that the project is ahead of schedule.

Cost Performance Index of labor costs (CPI) refers to the
ratio between the earned value (measured in units of currency)
and actual costs. The target value for CPI is 1 or more,
indicating that the cost of completing the work is right on plan
or less than planned.

Indicators for goal “Quality Improvement” are:
• Error density, which refers to number of errors per

KLOC (kilo-lines of code),
• Costs of rework, which refers to the product of hours

spent on rework and cost of an engineering hour,
• Fulfillment of scope, which shows if all Product Backlog

Items (PBIs) and Sprint Backlog Tasks have been
implemented, and refers to the ratio between the number of
tasks completed in the Sprint and total number of tasks in the
Sprint Backlog or between the number of PBIs completed in

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 1, 2007 68

the release and total number of PBIs committed.
Achievement of the goal “Job Satisfaction” is measured

quantitatively and qualitatively through the following
indicators:

• The average amount of overtime at Sprint/release/project
level considering the expected hours, the amount of work
spent and administrative days,

• The average number of projects the employees work in
parallel,

• Qualitative evaluation of working conditions like
communication and teamwork, physical discomfort,
psychological well-being, workload, supervision,
opportunities for growth, etc.

ScrumMaster’s goal “Efficient Impediments Resolution” is
measured by computing the average number of impediments
per Task/Sprint/Team and the mean time for resolving an
impediment (at Task/Sprint/Team level).

Indicators for goal “Customer Satisfaction” are measured
quantitatively and qualitatively. The quality of product and the
completeness of product delivered at the end of each Sprint or
release can be expressed in terms of quality improvement
indicators “error density” and “fulfillment of scope”. Values
of qualitative indicators are gathered from the survey allowing
the customers expressing their subjective opinion regarding:

• price adequacy,
• reliability in terms of time and costs,
• flexible handling of changes in requirements,
• good collaboration with the development team,
• adequate training and documentation, etc.
In the subsection III.E we provide formulae for

computation of Schedule Performance and Cost Performance
indices. Detailed descriptions and formulae for evaluation of
other aforementioned indicators can be found in [15].

E. Measuring Earned Value
Adapting the Earned Value Management method [19] for

Scrum projects is a challenge that has not been completely
resolved yet (e.g., [5], [25]). We propose to compute the
Schedule Performance and Cost Performance indices using
the work remaining and work spent measures defined in III.B.
Since Scrum does not prescribe the project schedule model,
we assume that the amount of tasks that must be accomplished
at a certain point in the Sprint is proportional to the time
elapsed from the beginning of the Sprint. The work remaining
and work spent measures allow a precise definition of the
earning rule ERd,j for each task j in the Sprint Backlog on the
day d of a Sprint. It can be computed as a ratio between the
amount of work already spent and all the work required (spent
and remaining) to accomplish the task:

WRWS

WS
ER

jd

d

i
ji

d

i
ji

jd
,

1

1
,

1

1
,

,
+∑

∑
= −

=

−

= . (1)

WSi,j denotes the amount of work spent for task j on day i,
i=1,2,…,d-1, and WRd,j denotes the amount of work remaining
for task j on day d.

Using the earning rule from formula (1), the SPI on day d is
computed as

DE
SL

WR

WRER
SPI n

j
jinit

n

j
jinitjd

d ⋅
∑

∑
=

=

=

⋅

1
,

1
,,

 (2)

where WRinit,j denotes the initial estimate of the work
remaining for task j, SL the Sprint length, and DE the number
of days elapsed.

While the computation of SPI allows the earned value to be
measured in any of the units (we use the initial estimates of
hours of the work remaining for each task j in the Sprint
Backlog) the computation of CPI requires the earned value
and actual costs to be expressed in units of currency. Using
the work spent measure, we can compute the actual labor costs
exactly by multiplying hours spent and the cost of an
engineering hour CEHj for all tasks in the Sprint Backlog.
Similarly, the earned value is computed by multiplying the
earned hours and CEHj. CPI for labor costs is then computed
as a ratio between earned value and actual labor costs as
shown in formula (3):

∑∑

∑
=

= =

=

⋅

⋅⋅

DE

i

n

j
jji

n

j
jjinitjd

CEHWS

CEHWRER
CPI d

1 1
,

1
,,

. (3)

IV. REPOSITORY DESIGN
In this section we present data model of the measurement

repository for storing data that arise during the software
development process (see Fig. 2). The data model is derived
from the meta-model in Fig. 1 by adding entity types that
describe appropriate measures and enable the accommodation
of measurement results. Beside, some new entity types are
introduced in order to enable impediments tracking,
describing the classification of tasks (regarding the type of
work performed and current status), and keeping records of
administrative days when a Team member is not at work. The
model serves as a logical data model of the repository
database, each entity type representing a corresponding
database table. Detailed structure of database tables is
presented. in Section V.

 The model is generic and does not prescribe in advance
the kind and number of measures, thus enabling a stepwise
introduction of the measurement program. New measures can
be simply added and the measures that are no more needed or
proved to be useless can be simply removed. The only
prerequisite is that all measurement results are of the same
type (viz. numeric). Each measure is represented as an
instance of the Measure entity type (i.e., as a row of the
corresponding relation containing measure key, name,
description and other attributes), while the measurement
results are stored in different tables, depending on the level
and point in the process they are collected. E.g., values that
are measured at the Task/PBI/Sprint/Release level are stored
in the Task/PBI/Sprint/Release Measurement
Result table. Each row of these tables contains a compound

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 1, 2007 69

primary key (a part of which is the measure key) and the
measurement result.

 Impediments tracking is introduced in order to provide data
required for the computation of the average number of
impediments per Task/Sprint/Team and the mean time for
resolving an impediment (at Task/Sprint/Team level). Each
impediment is described within the Impediment table
containing the impediment key, description, the dates when
the impediment occurred and when it was resolved, and
foreign keys providing relationship with the Team that
encountered the impediment, the Sprint in which the
impediment was encountered, and the Employee who was

responsible for the resolution.
 The classification of the type of work performed is

necessary if we want to track the amount of different kinds of
work during each Sprint, e.g., development, testing, rework
due to error reported by the customer, rework due to the
change in requirements, etc. Each row of the Task Type
table defines one of the aforementioned types of work, thus
allowing each organization to specify the classification that
best suits its needs. For the proper functioning of the
measurement system it is necessary that each task in the Sprint
Backlog is assigned the corresponding task type.

Product owner

ScrumMaster

Project

Product Backlog Item

PBI Measurement Result

Release PBI

Release

Release Measurement Result

Sprint PBI

Sprint

Task

Task Type

Task Measurement Result

Task Status

Sprint Measurement Result

Sprint Team
Team

Team Member

Employee

Impediment

Administrative Days

Absence Type

Measure

Fig. 2 Measurement repository design

In a similar way the classification of tasks according to their

current status is introduced. The rows of the Task Status
table describe all possible statuses of a Sprint Backlog task,
e.g., not started, in progress, completed, omitted, moved into
next Sprint, etc. Again, each organization is allowed to specify

different possible statuses according to its needs. The
ScrumMaster maintains the status of each task during the
Daily Scrum Meeting, at the same time when the amount of
the work spent and the estimate of the work remaining for the
task is entered.

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 1, 2007 70

Keeping records of administrative days (viz. sick days,
vacation, course days, compassionate leave etc.) when a Team
member is not at work enables exact calculation of overtime.
When a Team member is absent (and consequently does not
attend the Daily Scrum meeting), the ScrumMaster simply
records his absence as a new row in the Administrative
Days table. The Absence Type table is necessary if we
want to track different types of absence more in detail.

In order to calculate the labor costs precisely, the hourly
rate of each Team member must be provided. To avoid
problems with tracking history if the hourly rate changes
frequently, it seems to be the best solution to record this
attribute within the Task table at the time when the task is
created and a Team Member assigned to it.

A careful reader has also noticed that (in comparison to Fig.
1) all 1:1 relationships were removed and corresponding entity
types merged into a single entity type. Additionally, the 1:N
relationships connecting Product Backlog Item to
Release and Sprint were changed to M:N relationships in
order to accommodate peculiar situations when the
implementation of a Product Backlog Item requires more than
one Release or Sprint. The M:N relationships were removed
by the introduction of the Release PBI and Sprint PBI
entity types. Similarly, the Sprint Team entity type was
introduced in order to support the concept of Scrum of Scrums
that allows several Teams to work on the project within the
same Sprint.

V. DATABASE TABLES

In this section we present one possible solution for the more
detailed level of the previously introduced data repository
design. Entity types from Fig. 2 are presented in the group of
tables: Project Tables, Release Tables and Measurement
Tables, where the attributes are specified for each database
table.

First, the suggested attributes for the Project Tables (Table
IV) are presented. These tables describe relationships among
projects, teams and employees, and include recording of
administrative days and absence type. For each administrative
day the number of hours the employee was not at work is
recorded.

TABLE IV
PROJECT TABLES

Table Attributes

Project (Project ID#, Project Description)
Employee (Employee ID#, Employee Description)
Sprint Team (Sprint ID#, Team ID#)
Team (Team ID#, Team Description)
Team Member (Team ID#, Employee ID#, Percentage of

Engagement in the Project)
Administrative
Days

(Employee ID#, Date#, Hours Not Worked,
Absence Type ID#)

Absence Type (Absence Type ID#, Absence Type Description)

A possible structure of the Release Tables is proposed in

the Table V. These tables are related to release development
and include release, sprint and task level management of
product backlog items (PBI).

TABLE V

RELEASE TABLES

Table Attributes

Release (Release ID#, Release Description)
Release PBI (Release PBI ID#, PBI ID#)
Sprint (Sprint ID#, Sprint Description, Sprint Begin Date,

Sprint End Date, Sprint Length, Sprint Estimated
Date, Team ID#, Project ID#)

Sprint PBI (Sprint ID#, PBI ID#, Sprint PBI Priority, Sprint PBI
Status, Task ID#)

PBI (PBI ID#, PBI Description, PBI Priority, PBI
Category, PBI Status, Project ID#, Release ID#,
Sprint ID#)

Task (Task ID#, Task Description, Task Cost of
Engineering Hour, Task Date, Task Active, Task
Type ID#, Task Status ID#, PBI ID#, Sprint ID#,
Team ID#, Employee ID#)

Task Status (Task Status ID#, Task Status Description)
Task Type (Task Type ID#, Task Type Description)
Impediment (Impediment ID#, Impediment Description,

Impediment Occurrence Date, Impediment Resolution
Date, Sprint ID#, Team ID#, Employee ID#)

Finally, Table VI contains suggested attributes for the

Measurement Tables. The history aspect is provided through
the Date attribute, so that reporting can be performed using
the data that were active at the selected point in time. The
measurement results for the base measures form basis for the
calculation of the derived measurement results.

TABLE VI

MEASUREMENT TABLES

Table Attributes

Measure (Measure ID#, Measure Name, Measure
Description)

Release Measurement
Result

(Release ID#, Measure ID#, Date#,
Measurement Result)

Sprint Measurement
Result

(Sprint ID#, Measure ID#, Date#,
Measurement Result)

PBI Measurement
Result

(PBI ID#, Measure ID#, Date#,
Measurement Result)

Task Measurement
Result

(Task ID#, Measure ID#, Date#,
Measurement Result)

The results of this paper present the basis for the research of

the use of modern concepts of business intelligence [10] in the
area of agile software development. Data described by the
proposed generic data model can be used as the main input to
a data warehouse and performance dashboards [9].

VI. CONCLUSION
In this paper we presented the design of measurement

repository that enables monitoring and continuous
improvement of the performance of a Scrum-based software
development process. Base and derived measures were
defined considering characteristics of Scrum and practices

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 1, 2007 71

prescribed by the Measurement and Analysis Process Area of
CMMI. In order to preserve agility, all measures have been
chosen in such a way that can be collected during meetings
already prescribed by Scrum, thus not requiring a substantial
additional effort of the Team. Derived measures serve as
indicators for measuring achievement of goals of different
stakeholders that are involved in software development
process.

The proposed measures are incorporated in the suggested
solution for data repository design. The more detailed data
repository design is presented including the database tables
and the most important attributes. Each measure is represented
as an instance of the Measure entity type while the
measurement results are stored in Release, Sprint,
PBI and Task Measurement Results tables.

The results of this paper can be used when developing data
warehouse containing all data pertaining to the software
development process organized in a way that enables detailed
analyses through drilling-down and reporting techniques of
business intelligence. Using indicators described in Section
III, performance dashboards can be developed, providing real-
time information of the software process performance and
thus enabling an immediate reaction in the case of deviation
from target values. We hope that the presented approach will
be helpful for the further research of the use of business
intelligence in the area of Scrum-based development process.

REFERENCES
[1] P. Abrahamsson, O. Salo, J. Ronkainen, J. Warsta, Agile software

development methods. VTT Electronic, Espoo, 2002.
[2] S. Ambler (2007, December 4). March 2007 Agile Adoption Survey

[Online]. Available: www.agilemodeling.com/surveys/
[3] K. Beck, Extreme Programming Explained. Addison-Wesley, 2000.
[4] B. Boehm, R. Turner, Balancing Agility and Discipline – A Guide for the

Perplexed. Pearson Education, 2004.
[5] A. Cabri, M. Griffiths, “Earned Value and Agile Reporting,” in

Proceedings of AGILE 2006 Conference (AGILE’06), pp. 17-22.
[6] M. Ceschi et al., “Project Management in Plan-Based and Agile

Companies,” IEEE Software, May/June 2005, pp. 21-27.
[7] CMMI, CMMI® for Development, Version 1.2. CMU/SEI-2006-TR-008,

Software Engineering Institute, Carnegie Mellon University, 2006.
[8] Danube (2008, February 9). ScrumWorks Basic User Guide [Online].

Available :
http://www.danube.com/docs/scrumworks/1.8.2/userguide.html

[9] W. Eckerson, Performance Dashboards. John Wiley & Sons, Inc., 2006.
[10] M. Golfarelli et al., “Beyond Data Warehousing: What's Next in

Business Intelligence?,” in Proc. DOLAP’04, Washington, DC, 2004.
[11] D. Hartmann, R. Dymond, “Appropriate Agile Measurement: Using

Metrics and Diagnostics to Deliver Business Value,” in Proceedings of
AGILE 2006 Conference (AGILE’06), pp. 126-134.

[12] P. Kueng, “Process performance measurement system: a tool to support
process-based organizations,” Total Quality Management, Vol. 11, No.
1, 2000.

[13] V. Mahnic, S. Drnovscek, “Agile Software Project Management with
Scrum,” in Proc. EUNIS 2005 Conference – Session papers and tutorial
abstracts, University of Manchester, 2005.

[14] V. Mahnic, S. Drnovscek, “Introducing agile methods in the
development of university information systems,” in Proc. 12th
International Conference of European University Information Systems
EUNIS 2006, Tartu, 2006.

[15] V. Mahnic, I. Vrana, “Using stakeholder driven process performance
measurement for monitoring the performance of a Scrum based software
development process,” Electrotechnical Review, Ljubljana, Vol. 74,
No. 5, 2007, pp. 241-247.

[16] Manifesto for Agile Software Development [Online]. Available
http://www.agilemanifesto.org/

[17] C. Mann, F. Maurer, “A Case Study on the Impact of Scrum on
Overtime and Customer Satisfaction,” in Proceedings of the Agile
Development Conference (ADC’05), pp. 70-79.

[18] A. S. Marcal et al., “Mapping CMMI Project Management Process Areas
to SCRUM Practices,” in Proc. SEW 2007, 31st Annual Software
Engineering Workshop, Loyola College, Baltimore, MD, 2007.

[19] F. Quentin, J. Koppelman, Earned Value Project Management. Third
Edition, Project Management Institute, 2005.

[20] B. Schatz, I. Abdelshafi, “Primavera Gets Agile: A Successful Transition
to Agile Development,” IEEE Software, May/June 2005, pp. 36-42.

[21] K. Schwaber, Agile Project Management with Scrum. Microsoft Press,
2004.

[22] C. Schwaber et al. (2007, December 3). The Truth About Agile
Processes [Online]. Available: www.forrester.com

[23] Scrum Alliance (2007, September 28). Scrum Alliance Membership
Survey Shows Growing Scrum Adoption and Project Success [Online].
Available: www.scrumalliance.org

[24] Scrum Alliance (2007, December 4). Firms Using Scrum [Online].
Available: http://scrumalliance.pbwiki.com/Firms-Using-Scrum

[25] Sulaiman, B. Barton, T. Blackburn, “AgileEVM - Earned Value
Management in Scrum Projects,” in Proceedings of AGILE 2006
Conference (AGILE’06), pp. 7-16.

[26] J. Sutherland et al., “Scrum and CMMI Level 5: The Magic Potion for
Code Warriors,” in Proc. AGILE 2007.

[27] B. Upender, “Staying Agile in Government Software Projects,” in
Proceedings of the Agile Development Conference (ADC’05), pp. 153-
159.

[28] T. Wailgum (2007, December 3). From Here to Agility [Online].
Available: http://www.cio.com

Viljan Mahnic received his B. Sc. Degree in Computer Science in 1978 at the
Faculty of Computer and Information Science at the University of Ljubljana in
Slovenia, where he got his M. Sc. Degree in 1981 and Ph. D. degree in 1990.
 He is currently an associate professor at the Faculty of Computer and
Information Science at the University of Ljubljana, where he teaches courses
on computer programming, software engineering and information systems. His
research interests include software engineering and information systems
development. He participated in several international projects within Tempus
and INCO Copernicus programs, published several books on programming (in
Slovene) and more than 70 papers in journals and scientific conferences.
 Dr. Mahnic is member of the Board of Directors of EUNIS (European
University Information Systems Association) since 2002.

Natasa Zabkar received her B. Sc. Degree in Computer Science in 1989 at
the Faculty of Computer and Information Science at the University of
Ljubljana in Slovenia and her M. Sc. Degree in Management and Organization
in 1998 at the Faculty of Economics at the University of Ljubljana.
 She is currently Ph. D. student at the Faculty of Computer and Information
Science at the University of Ljubljana. Her research interest is software
engineering and information systems auditing. She holds CISA (Certified
Information Systems Auditor) designation since 2001. She has published more
than 20 papers in different conferences.
 N. Zabkar is member of ISACA (Information Systems Audit and Control
Association) since 2000.

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 1, 2007 72

