
Inversion of Complex Valued Neural Networks
Using Complex Back-propagation Algorithm

Anita S. Gangal, P.K. Kalra, and D.S.Chauhan

Abstract—This paper presents the inversion of complex valued

neural networks. Inversion means predicting the inputs for given
output. We have tried inversion of complex valued neural network
using complex back-propagation algorithm. We have used split
sigmoid activation function both for training and inversion of neural
network to overcome the problem of singularities. Since inversion is
a one to many mapping, means for a given output there are number
of possible combinations of inputs. So in order to get the inputs in the
desired range conditional constraints are applied to inputs.
Simulation on benchmark complex valued problems support the
investigation.

Keywords—activation function, back propagation, complex
valued neural network, inversion

I. INTRODUCTION
The complex valued neural networks are those neural
networks whose weights, threshold values, input and output
signals all are complex numbers. The complex valued neural
network is extending its field both in theories and
applications. Typically signal processing, image processing,
radar imaging, array antenna, and mapping inverse kinematics
of robots are the areas where such requirements exist. Neural
network inversion procedure seeks to find one or more input
values that produce a desired output response. For inversion
of real valued neural network researchers have worked with
many approaches. These inversion algorithms can be placed
into three broad classes:
1) Exhaustive Search
2) Multi-component Evolutionary Method
3) Single-element Search Method

In choosing among inversion techniques for real valued neural
networks, Exhaustive Search should be considered when both
the dimensionality of the input and allowable range of each
input variable are low. The simplicity of the approach coupled
with the swiftness in which a layered perceptron can be
executed in the feedforward mode makes this approach even
more attractive as computational speed increases.
Multicomponent Evolutionary method proposed by Reed and
Marks [1] on the other hand, seeks to minimize the objective
function using numerous search points in turn resulting in

Manuscript received November 29, 2008.
Anita S. Gangal is with Uttar Pradesh Technical University, Lucknow,

India. (Phone:+91-9450141454; email: anita.sethia@yahoo.co.in)
P. K. Kalra is Professor and Head of Electrical Engineering Department,

Indian Institute of Technology, Kanpur, India, (email: kalra@iitk.ac.in)
D.S.Chauhan is Vice Chancellor of J P University of Information

Technology, Waknaghat, Solan, India, (email: pdschauhan@gmail.com)

numerous solutions. This method results in population of
initial points in the search space at a time and new points are
generated in the input space to replace existing points so as to
explore all the solutions. Single element search method for
inversion of real valued neural network was first introduced
by Williams [2] and then Kinderman and Linden [3]. They
used this to extract codebook vectors for digits. This method
of inversion involves two main steps: first training the
network and the second step is inversion. During the training
neural network is trained to learn a mapping from input to
output with the help of training data. The weights are the free
parameters and by finding the proper set by minimizing some
error criterion, neural network learns a functional relationship
between the inputs and the outputs. All the weights are fixed
after training of neural network. After training, the network is
initialized with a random input vector. Output is calculated,
compared with the given output. Error is calculated. This error
is back propagated to minimize the error function and the
input vector is updated. This iterative process continues till the
error is less than the minimum set value. Eberhart and
Dobbins [4] applied it to invert the trained real valued neural
network for the diagnosis of appendicitis. Jordan and
Rumelhart [5] have proposed a method to invert the feed
forward real valued neural network. They tried to solve the
inverse kinematics problems for redundant manipulators.
There approach is a two-stage procedure. In the first stage, a
network is trained to approximate the forward mapping. In the
second stage, a particular inverse solution is obtained by
connecting another network with the previously trained
network in series and learning an identity mapping across the
composite network. Behera, Gopal, Chaudhary [6] used real
valued neural network inversion in the control of multilink
robot manipulators. They have developed an inversion
algorithm for inverting radial basis function (RBS) neural
networks which is based on an extended Kalman filter. Bio-
Liang Lu, Hajime, and Nishikawa [7] have formulated the
inversion problem as a nonlinear programming problem and a
separable programming problem or a linear programming
problem according to the architectures of the real valued
network to be inverted.

II. INVERSION OF REAL VALUED NEURAL NETWORK USING
BACK-PROPAGATION ALGORITHM

Inversion is finding a set of input vectors for given output;
which when applied to a system will produce the same output.
The search is initialized with a random input vector . The
iterative inversion algorithm consists of two passes of
computation first, the forward pass and second, the backward

0
ix

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 3, 2009 1

mailto:kalra@iitk.ac.in

pass. In the forward pass the output is calculated for the
randomly initialized inputs using trained network. The error
signal between the given output and the actual output is
calculated. In the backward pass, the error signal is back
propagated to the input layer through the network layer by
layer, and the input is adjusted to decrease the output error.
If is the ith component of the input vector after ‘t’
iterations, then gradient descent suggests the recursion

t
ix

 t
i

t
i

t
i x

Exx
∂
∂

−=+ η1
 (1)

Where, η is the learning rate constant. Iteration for inversion
can be solved as

 ,i
ix

E δ=
∂
∂

 (2) Ii ∈

Where, for any neuron

 ()()jjjj doo −= 'φδ ; (3)

Oj ∈

 () mj
OHm

mj wo ∑
∈

=
,

' δφ ; HIj ,∈

I,H,O number of input, hidden and output neurons
wjm synaptic weight from neuron m to neuron j

'
jφ

jo

jd

 derivative of the jth
 neuron activation function

 actual output of the jth neuron

 desired output of the jth neuron

The neuron derivative jδ in “(3)” is solved in a backward

order from output to input similar to the standard back
propagation algorithm.

III. COMPLEX VALUED NEURAL NETWORK
The complex plane is very much different from real line.
Complex plane is two dimensional with respect to real
numbers and is one dimensional with respect to complex
number. The order that existed on the real numbers is absent
in the set of complex numbers hence, no two numbers can be
compared as being big or small with respect to each other but
their magnitudes can be compared which are real values. The
complex numbers have a magnitude associated with them and
a phase that locates the complex number uniquely on the
plane. The generalization of real valued algorithms cannot be
simply done as complex valued algorithm. Complex version
of back-propagation (CVBP) algorithm made its first
appearance when Widrow, McCool and Ball [8] announced
their complex least mean squares (LMS) algorithm. Kim and
Guest [9] published a complex valued learning algorithm for
signal processing application. Georgiou and Koutsougeras
[10] published another version of CVBP incorporating a
different activation function and have shown if real valued
algorithms be simply done as complex valued algorithm then

singularities and other such unpleasant phenomena may arise.
In the complex back propagation algorithm suggested by
Leung and Haykins [11], the nonlinear function maps the
complex value without splitting it into the real and imaginary
part

ze
zf −+

=
1

1)((4)

 Where,

iyxz +=

The function f(z) is holomorphic complex function. But
according to the Liouville’s theorem, a bounded holomorphic
function in the complex plane C is a constant. So the attempt
to extend the sigmoidal function to complex plane is met with
the difficulty of singularities in the output. To deal, with this
difficulty A Prashanth [12] suggested that the input data
should be scaled to some region in complex domain. Although
the input data can be scaled but there is no limit over the
values the complex weights can take hence it is difficult to
implement it. To overcome this problem split activation
function is used both for training and inversion of complex
valued neural network (CVNN). An extensive study of CVBP
was reported by Nitta [13]. Decision boundary of a single
complex valued neuron consists of two hyper-surfaces which
intersect orthogonally, and divide a decision region into four
equal sections. If both the absolute values of real and
imaginary parts of the net inputs to all hidden neurons are
sufficiently large, then the decision boundaries for real and
imaginary parts of an output neuron in three layered complex
valued neural network intersect orthogonally. The average
learning speed of complex BP algorithm is faster than that of
real BP algorithm. The standard deviation of the learning
speed of complex BP is smaller than that of the real BP.
Hence the complex valued neural network and the related
algorithm are natural for learning of complex valued patterns.
The complex BP algorithm can be applied to multilayered
neural networks whose weights, threshold values, inputs and
outputs all are complex numbers. In split activation function,
nonlinear function is applied separately to real and imaginary
parts of the aggregation at the input of the neuron

 (5) cφ = Rφ +
Where,

aR e
a −+

=
1

1)(φ (6)

Here sigmoid activation function is used separately for real
and imaginary part. This arrangement ensures that the
magnitude of real and imaginary part of f(z) is bounded
between 0 and 1. But now the function f(z) is no longer
holomorphic, because the Cauchy-Riemann equation does
not hold i.e.

)y ()()(i Rφ z x

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 3, 2009 2

0)())(1()())(1()()(
≠−+−=

∂
∂

+
∂

∂ yfyfixfxf
y
zfi

x
zf

RRRR (7)

So, effectively the holomorphy is compromised for
boundedness of the activation function.

We have tried the inversion of a three layered complex valued
neural network shown in Fig. 1

Fig. (1) complex valued neural network

In this complex valued neural network:
L number of input layer neurons
M number of hidden layer neurons
N number of output layer neurons
xi output value of input neuron i (input)
zj output of hidden layer neuron j
ok output of the output neuron k
wji weight between input layer neuron i and hidden layer

neuron j
vkj weight between hidden layer neuron j and output layer

neuron k
 θj threshold / bias of hidden layer neurons
 γk threshold / bias of output layer neurons

Training is done with a given set of input and output data to
learn a functional relationship between input and output.

Internal potential of hidden neuron j :

]Im[]Re[)(
1

jjji

L

i
jij uiuxwu +=+= ∑

=

θ (8)

Output of hidden neuron j:

]Im[]Re[
1

1
1

1)(]Im[]Re[jjuujj ziz
e

i
e

uz
jj

+=
+

+
+

== −−φ (9)

Internal potential of output neuron k:

]Im[]Re[)(
1

kkkj

M

j
kjk siszvs +=+= ∑

=

γ (10)

Output of output neuron k:

]Im[]Re[
1

1
1

1)(]Im[]Re[kkSSkk yiy
e

i
e

so
kk

+=
+

+
+

== −−φ (11)

Error (12) kkk doe −=
 Sum squared error for the outputs

2

12
1 ∑

=

−=
N

k
kk doE (13)

For real time application the cost function of the network is
given by

)]Im[](Re[
2
1

2
1

2
1 22

1

2

1
k

N

k
kkk

N

k
k eeeeeE +=== ∑∑∑

=

∗

=

(14)

∗(.) denotes the complex conjugate.
 x1 w21 v11 o1
‘E’ is a real-valued function, and we are required to derive the
gradient of Ep w.r.t. both the real and imaginary part of the
complex weights

w22 v21

x2 o2 .

]Im[]Re[jiji
w w

Ei
w

EE
ji ∂

∂
+

∂
∂

=∇ (15)
ok wji vkj xi

Fig 2 weight update during training

The training process of neural network is shown in Fig. 2.
During training the network cost function E is minimized by
recursively altering the weight coefficient based on gradient
descent algorithm, given by

Etwtwtwtw
jiwjijijiji �ή)()()()1(η−=Δ+=+ (16)

 Where ‘t’ is the number of iterations and ‘η’ is the learning
rate constant. Once the network is trained for the given
training data, all the weights are fixed.

IV. INVERSION OF COMPLEX VALUED NEURAL
NETWORK

Once the network is trained, the weights are fixed. Inversion
is the procedure that seeks to find out the inputs which will
produce the desired output. We have used complex back-
propagation algorithm for inversion. The input vector x0 is
initialized to some random value. The output of this trained
network is calculate with this initialized input vector and is
compared with the desired output. The error between actual
output and the desired output is calculated. This error is back
propagated to minimize the error function and the input vector
is updated as shown in Fig. 3.

One or
more
hidden
layer
neurons

 Output neurons Σ

Desired outputs

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

)n(ji
)n(E

)n(ji ω∂
∂

η−=ωΔ

Input
vector

Actual
outputs

 n
ji

n
ji

1+n
ji ωΔ+ω=ω

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 3, 2009 3

Fig 3 input update for inversion

This iterative process is continued till the error becomes less
then the minimum defined error according to the following
equation

t
i

t
i

t
i x

Exx
∂
∂

+=+ η1 (17)

Cost function E is a scalar quantity which is minimized by
modifying input.

[] []⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=Δ

ii
i x

Ei
x

Ex
Im�έ
�έ

Re�έ
�έη

[]
[]
[]

[]
[]
[]

[]
[]
[]

[]
[]
[]

∑
=

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂

∂

∂

∂
+

∂

∂

∂

∂

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂

∂

∂

∂
+

∂

∂

∂

∂

η−=
m

1j

i

i

i

i

i

i

i

i

i

i

i

i

xIm

uIm

uIm

E
xIm

uRe

uRe

E

i

uRe

uIm

uIm

E
uRe

uRe

uRe

E

 (18)

From “(8)” internal potential of hidden neuron j:

[] [] [] []()
[] [] [] []()∑

= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++

−
=

L

i ijiiji

ijiiji
j xwxwi

xwxw
u

1 ReImImRe

ImImReRe
 (19)

From “(18)" the input update is given by,

[] [] [] []

[] []() [] []
∑

=

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+−

∂
∂

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

−=Δ
M

j
ji

i
ji

i

ji
i

ji
i

i

w
u

Ew
u

Ei

w
u

Ew
u

E

x
1

Re
Im

Im
Re

Im
Im

Re
Re

η

[]

[] []()

[]
[] []()

∑
=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

∂

∂

η−=
M

1j

jiji

i

jiji

i

wReiwIm
uIm

E

wImiwRe
uRe

E

[]
[] []()

[]
[] []()

[] []∑

∑

=

∗

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
η−=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

∂

∂

η−=

M

1j ii

ji

M

1j

jiji

i

jiji

i

uIm

Ei
uRe

Ew

wImiwRe
uIm

Ei

wImiwRe
uRe

E

(20)

The partial derivative of the cost function w.r.t. Re [ui] is:

[] []
[]
[] []

[]
[]i

j

ji

j

ji u
z

z
E

u
z

z
E

u
E

Re�έ
Im�έ

Im�έ
�έ

Re�έ
Re�έ

Re�έ
�έ

Re�έ
�έ

+= (21)

From “(9)” we get

[]
[] 0

Re
Im

=
∂

∂

i

j

u
z

[]
[]

[] [](){ }jj

j

j zRe1zRe
uRe

zRe
−=

∂

∂

[] []
[]
[]

[]
[]
[]∑

∑

=

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

=
∂

∂

N

k j

k

k

N

k j

k

kj

z
e

e
E

z
e

e
E

z
E

1

1

Re
Im

Im

Re
Re

ReRe

[] []
[] [] []

[]⎟⎟⎠
⎞

⎜
⎜
⎝

⎛

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

= ∑∑
== j

k
N

k
k

j

k
N

k
k z

e
e

z
e

e
Re
Im

Im
Re
Re

Re
11

 (22)

[]
[]

[]
[]

[]
[]

[]
[]

[]
[]j

k

k

k

j

k

k

k

j

k

zRe

sIm

sIm

eRe

zRe

sRe

sRe

eRe

zRe

eRe

∂

∂

∂

∂
+

∂

∂

∂

∂
=

∂

∂

From “(11)”and “(12)” we get

[]
[]

0
sIm

eRe

k

k =
∂

∂

[]
[]

[] []()kk

k

k yRe1yRe
sRe

eRe
−−=

∂

∂

One or
more
hidden
layer
neuron
s

 Output neurons Σ

Desired outputs

Input update

() ()
i

i x�έ
pE�έ

ηmi=pxΔ

Input
vector

Actual
output

Error function

E=f(ek)

() () ()pxΔ+px=1+p iii
 x

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 3, 2009 4

From “(10)”, we get
[] [] [] []()

[] [] [] []()∑
= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++

−
=

M

1j jkjjkj

jkjjkj
k zRevImzImvRei

zImvImzRevRe
s

From “(10)” “(11)”and “(12)” we get
[]
[]

[] []() []kjkk

j

k vReyRe1yRe
zRe

eRe
−−=

∂

∂

[]
[]

[]
[]

[]
[]

[]
[]

[]
[]j

k

k

k

j

k

k

k

j

k

zRe

sIm

sIm

eIm

zRe

sRe

sRe

eIm

zRe

eIm

∂

∂

∂

∂
+

∂

∂

∂

∂
=

∂

∂

[]
[]

0
sRe

eIm

k

k =
∂

∂

[]
[]

[] []() []kjkk

j

k vImyIm1yIm
zRe

eIm
−−=

∂

∂

Substituting these values in “(22)" we get

[]
[] [] []() []

[] [] []() []kjkk

N

1k
k

kjkk

N

1k
k

j

vImyIm1yImeIm

vReyRe1yReeRe
zRe

E

−−

−=
∂

∂

∑

∑

=

=

Hence from “(21)”

[] []
[] [](){ }jj

ji

zRe1zRe
zRe

E

uRe

E
−

∂

∂
=

∂

∂

 (23) [] []()
[] [] []() []

[] [] []() []
⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−

−
−=

∑

∑

=

=

kjkk

N

k
k

kjkk

N

k
k

jj

vyye

vyye
zz

ImIm1ImIm

ReRe1ReRe
Re1Re

1

1

Similarly, the partial derivative of the cost function w.r.t.

Im[ui] is

[] []
[]
[] []

[]
[]i

j

ji

j

ji uIm

zIm

zIm

E

uIm

zRe

zRe

E

uIm

E

∂

∂

∂

∂
+

∂

∂

∂

∂
=

∂

∂

 (24)
Once again from “(9)” we get

[]
[]

0
uIm

zRe

i

j =
∂

∂

[]
[]

[] []()jj

i

j zIm1zIm
uIm

zIm
−=

∂

∂

[] []
[]
[]

[]
[]
[]∑

∑

=

=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂

∂

∂
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂

∂

∂
=

∂

∂

N

1k j

k

k

N

1k j

k

kj

zIm

eIm

eIm

E

zIm

eRe

eRe

E

zIm

E

[] []
[] [] []

[]⎟⎟⎠
⎞

⎜
⎜
⎝

⎛

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

= ∑∑
== j

k
N

k
k

j

k
N

k
k z

e
e

z
e

e
Im
Im

Im
Im
Re

Re
11

 (25)

[]
[]

[]
[]

[]
[]

[]
[]

[]
[]j

k

k

k

j

k

k

k

j

k

zIm

sIm

sIm

eRe

zIm

sRe

sRe

eRe

zIm

eRe

∂

∂

∂

∂
+

∂

∂

∂

∂
=

∂

∂

From “(11)” and “(12)”, we get

[]
[]

0
sIm

eRe

k

k =
∂

∂

[]
[]

[] []() []{ kjkk

j

k vImyRe1yRe
zIm

eRe
−−−=

∂

∂ } (26)

 [] []() []kjkk vImyRe1yRe −=

[]
[]

[]
[]

[]
[]

[]
[]

[]
[]j

k

k

k

j

k

k

k

j

k

zIm

sIm

sIm

eIm

zIm

sRe

sRe

eIm

zIm

eIm

∂

∂

∂

∂
+

∂

∂

∂

∂
=

∂

∂

 [] []() []kjkk vReyIm1yIm −−= (27)

Substituting these values from “(26)”, “(27)” in “(25)” we

get

[]
[] [] []() []

[] [] []() []kjkk

N

1k
k

kjkk

N

1k
k

j

vReyIm1yImeIm

vImyRe1yReeRe
zIm

E

−−

−=
∂

∂

∑

∑

=

=

Therefore from “(24)”

[] []
[] [](){ }jj

ji

zIm1zIm
zIm

E

uIm

E
−

∂

∂
=

∂

∂

[] []()
[] [] []() []

[] [] []() []
⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−

−
−=

∑

∑

=

=

kjkk

N

1k
k

kjkk

N

1k
k

jj

vReyIm1yImeIm

vImyRe1yReeRe
zIm1zIm

 (28)

Substituting the values of []iuRe�έ

E�έ
 from “(23)” and

[]iumI�έ

E�έ
 from “(28)” in “(20)” we get

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 3, 2009 5

[] []∑
=

∗

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
η−=Δ

M

1j ii

jii
uIm

Ei
uRe

Ewx

[] []()

[] [] []() []
[] [] []() []

[] []()
[] [] []() []

[] [] []() []

∑

∑

∑

=

=

=∗

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−−

−

−

−

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−+

−

−

−=
M

j

N

k kjkkk

kjkkk

jj

N

k kjkkk

kjkkk

jj

ji

vyye

vyye

zz

i

vyye

vyye

zz

w
1

1

1

ReIm1ImIm

ImRe1ReRe

Im1Im

ImIm1ImIm

ReRe1ReRe

Re1Re

η

 (29)

∆xi is the input update. Hence new inputs are calculated at

each iteration by the following relation

xinew = xiold + ∆xi (30)

With these new values of inputs the outputs are calculated.
This output is compared with desired output and error is
calculated. When this error is less than the minimum set error
value, iterative process is stopped and the inversion is
completed. This final value of the input vector ‘x’ is the actual
value of input by inversion of complex valued neural network.

EXPERIMENT 1
We have a taken 3 layered neural network with 2 inputs, 5
hidden layer neurons and one output neuron. First we trained
the network for the input and output data of complex valued
XOR gate given in table I. Once the network is created by
training on the given data, the functional relationship between
inputs and outputs is set. The complex valued target outputs
are given in table II for which we have done inversion. We
predicted the inputs by inversion of complex valued neural
network. For this trained network the inputs are initiated to
some random values. The outputs are obtained for these
random input values. These actual outputs are compared to the
target outputs and the error is calculated. This error is back-
propagated and the new values of inputs are calculated by
updating the inputs using “(29)” and “(30)”. With these new
input values once again the outputs are calculated, compared
with the target outputs, and then the error is calculated and
back-propagated to correct the inputs to further new values.
This process is repeated till the error is minimized and
becomes less then the assumed minimum value of the error.
Finally with these predicted inputs we found the actual
outputs as given in table III. The actual outputs obtained from
the predicted inputs are nearly the same to the target outputs.

Table I

Training data for experiment 1 (Complex XOR gate)
Input

x1; (a1+ib1)
Input

x2:(a2+ib2)
output

0 0 1
0 i i
i 0 0
i i 1+i
i 1 i
1 1 1+i

1+i i i
1+i 1+i 1
0 1 i
0 1+i 0
i 1+i 0
1 0 0
1 i i
1 1+i 0

1+i 0 0
1+i 1 i

Table II

Target outputs, desired inputs and corresponding actual inputs
from inversion

Desired
 inputs

Actual Inputs
by inversion

X1

X2

X1

X2

Targe
t

output

i 0 0.9731i 0.056 0

0 1 0.2345 0.8834 i

1+i 1+i 0.9834+0.8765i 0.8976+0.9821i 1
i i 0.8976i 0.9231i 1+i

Table III

Target outputs and actual outputs calculated from
inputs obtained by inversion

Target outputs Actual outputs

0 0.1381+0.0671i

i 0.0057+0.8405i

1 0.8692+0.1094i
1+i 0.8979+0.9014i

The main problem in inversion using complex back
propagation algorithm is to find the inverse solution lying
nearest to a specified point. For this we have used nearest
inversion approach which is a single element search method.
Given a function f(i), a target output level t, and an initial base
point i0. We try to find the point i* that satisfies f(i*)=t and is
closest to i0 in some sense. Nearest inversion is a constrained
optimization problem. This constrained problem is solved by
minimizing E=i-i0 subject to f(i)=t.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 3, 2009 6

EXPERIMENT 2

In this experiment we have tried the inversion for similarity
transformation. We have taken a three layered neural network
with architecture (1-5-1). The complex input pattern is scaled
down by 0.5. The scaling is in terms of magnitude only the
angle is preserved. The training input pattern consists of a set
of complex values represented by star signs and
corresponding output pattern data points are represented by
diamond sign as shown in Fig.5. Once the network is created
by training on the given data, the functional relationship
between inputs and outputs is set. This trained model of
CVNN for similarity transformation is used for inversion. The
network is presented with the target output points shown by
diamond symbols arranged in the shape of a rectangle as
shown in Fig. 6. For this trained network the inputs are
initiated to some random values. The outputs are obtained for
these random input values. These actual outputs are compared
to the target outputs and the error is calculated. This error is
back-propagated and the new values of inputs are calculated
by updating the inputs using (29) and (30). This iterative
process is continued till the error is minimized and becomes
less then the assumed minimum value of the error.

Fig. 5: similarity transformation: training input
points (star signs) and training output points
(diamond signs)

Fig. 6 inversion results for similarity
transformation showing target outputs by
diamonds expected inputs by stars actual
inputs obtained from inversion by plus signs

In Fig. 6 desired inputs are indicated by stars and the
plus signs denote the actual inputs obtained from the
inversion of the network. As seen in the figure the
inputs from inversion are very close to the expected
inputs. Thus inversion of complex valued neural
network is successfully done.

EXPERIMENT 3
 In this experiment we have taken (1-7-1) neural network. The
network is trained for rotational transformation data in counter
clockwise direction. The training input data points are
represented by stars and the corresponding output data points
are represented by diamonds in Fig. 7. After training the
weights of the neural network are fixed. We have tried the
inversion on some different values of outputs in the same
range.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

real part

im
ag

in
ar

y
pa

rt

Fig. 7 training data for rotational transform in complex
plane: stars showing inputs and diamond symbols
showing corresponding outputs

Fig. 8 showing target outputs by plus sign, desired
inputs by star symbols and the inputs predicted by
inversion by diamond symbols for rotational transform
in complex plane

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 3, 2009 7

For inversion the target output points are shown in Fig. 8 by
plus signs. These target data points are arranged in the shape
of English letter ‘z’. Inputs are initiated with some random
values. Then the inversion of this neural network is done by
using complex back-propagation algorithm. Inputs obtained
by the inversion of the trained neural network are represented
by diamond signs and the expected inputs are represented by
the star signs as shown in Fig. 8. As clear from the figure that
the inputs obtained from inversion are nearly the same as to
the expected inputs. Hence inversion is done successfully for
rotational transformation.

V. CONCLUSIONS
Inversion of complex valued neural network is still a
relatively low explored field and there are many aspects which
can be further studied and explored. Some other inversion
algorithms of real domain can be expanded to complex
domain. In most researches conducted on the complex valued
neural networks, the learning constant used is real valued. In
principle a complex learning constant could be employed. In
this approach, we have used complex Quadratic error function
for optimization. The other real domain error functions
extended to complex domain can be applied for optimization
during inversion.

REFERENCES
[1] R. D. Reed and R. J. Marks, II, “An evolutionary algorithm for function

inversion and boundary marking,” in Proc. IEEE Int. Conf. Evolutionary
Computation (ICEC’95), Perth, Western Australia, pp. 794-797, 1995 .

[2] T. J. Williams, “Inverting a connectionist network mapping by
backpropagation of error,” in Proc. 8th Annu. Conf. Cognitive Science
Society. Hillsdale, NJ: Lawrence Erlbaum, pp. 859-865, 1986

[3] J. Kinderman and A. Linden, “Inversion of neural networks by gradient
descent,” Parallel Comput., pp.277-286, 1990.

[4] R.C. Eberhart and R.W. Dobbins, “Designing neural network explanation
facilities using genetic algorithms,” in Proc.Int. Joint Conf. Neural
networks, vol.II, Singapore, pp.1758-1763, 1991.

[5] M.I. Jordan and D.E. Rumelhart, “Forward models: supervised learning
with a distal teacher,” Cognitive Sci., vol. 16 , pp.307-354, 1992.

[6] L. Behera, M. Gopal, and S. Chaudhary, “On adaptive trajectory tracking
of a robot manipulator using inversion of its neural emulator,” IEEE
Ttans. Neural Networks, vol. 7, no. 6, Nov. 1996.

[7] Bio-Liang Lu, Hajime Kita and Y. Nishikawa, “Inversion of feedforward
neural networks by separable programming,” in Proc. World Congr.
Neural networks (Portland), vol. 4, 1993, pp 415-420.

[8] B.Widrow, J. McCool, and M. Ball, “The Complex LMS algorithm,” Proc.
of the IEEE, April, 1975.

[9] M.S. Kim, and C.C. Guest, 1990, “Modification of back-propagation for
complex- valued signal processing in frequency domain,” IJCNN Int.Joint

onf. Neural Networks, pp. III-27-III-31,June. C
[10] G. M. Georgiou and C..Koutsougeras, “Complex domain back-

propagation,” IEEETrans. On Circuits and Systems – II: Analog and
Digital Signal Processing, Vol.39, No. 5., May1992.

[11] H. Leung and S. Haykins, “The complex back-propagation algorithm,”
IEEE Trans. On signal Processing, Vol. 39,No.9, September1991.

[12] A. Prashanth, “Investigation on complex variable based back-propagation
algorithm and applications,” Ph.D. thesis, IIT, Kanpur, India, 2003.

[13] Nitta, “An extension of the back-propagation algorithm to complex
numbers,” neural networks, Vol. 10, No. 8, 1997.

Anita S. Gangal She received B.Tech Degree in Electronics Engineering
from HBTI, Kanpur in 1992. She is pursuing her Ph. D. in Electronics
Engineering from Uttar Pradesh Technical University, India. She had worked

as lecturer in Electronics Engineering Department at HBTI, Kanpur, India and
C.S.J.M. University, Kanpur, India. She is member of IETE, India. Her major
fields of interests are Neural Networks, Computational Neuroscience and
Power Electronics.
P. K. Kalra He received his BSc (Engg) degree from DEI Agra, India in
1978, M. Tech degree from Indian Institute of Technology, Kanpur, India in
1982, and Ph.D. degree from Manitoba University , Canada in 1987. He
worked as assistant professor in the Department of Electrical Engineering,
Montana State University Bozeman, MT, USA from January 1987 to June
1988. In July-August 1988 he was visiting assistant professor in the
Department of Electrical Engineering, University of Washington Seattle, WA,
USA. Since September 1988 he is with the Department of Electrical
Engineering, Indian Institute of Technology Kanpur, India where he is
Professor and Head of Department. Dr. Kalra is a member of IEEE, fellow of
IETE and Life member of IE(I), India. He has published over 150 papers in
reputed National and International journals and conferences. His research
interests are Expert Systems applications, Fuzzy Logic, Neural Networks and
Power Systems.
D. S. Chauhan He received his BSc (Engg) degree from BHU Varanasi, India
in 1972, M.E. degree from Madras University, India in 1978, and Ph.D.
degree from Indian Institute of Technology Delhi, India in 1986. He is Former
Vice Chancellor of Uttar Pradesh Technical University, India. He is vice
chancellor of L.P. University, Jalandhar, India. Dr. Chauhan is Fellow of
IE(I), member of IEEE, USA, and member of National Power Working Group,
India. He has published over 70 papers in reputed National and International
journals and conferences. His research interests are Linear Controls, Power
Systems Analysis, Artificial Intelligence, Fuzzy Systems HVDC
Transmission, and Neural Networks.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 3, 2009 8

