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Abstract ⎯ Inspired by the self-organized behaviour of bird 
flocks, a new dynamic clustering approach based on Particle 
Swarm Optimization is proposed. This paper introduces a 
novel clustering method, the PSDC, a new Particle Swarm-like 
agents approach for Dynamically Adaptive data clustering. 
Unlike other partition clustering algorithms, this technique 
does not require initial partitioned seeds and it can 
dynamically adapt to the changes in the global shape or size of 
the clusters. In this technique, the agents have lots of useful 
features such as sensing, thinking, making decisions, 
parallelism and moving freely in the solution space. The 
moving swarm-like agents are guided to move according to a 
specific proposed navigation rules. These rules help every 
agent to find its new position in its navigation process and the 
clustering results emerge from the collective and cooperative 
behaviour of these swarm agents. If the swarm performance 
showed gradual improvements during a predefined number of 
cycles, then the current population could pass useful 
information to the next population in order to help further 
generations in reaching better solutions faster and enable the 
learning process to be reinforced. The distributed, adaptive 
and cooperative behaviour of these agents was so powerful to 
explore the solution space effectively. Through the 
cooperative behaviour, the generations of agents were able to 
build knowledge and the whole population could pass 
information to the next generation. Numerous experiments 
have been conducted using both synthetic and real datasets to 
evaluate the efficiency of the proposed model. Cluster validity 
approaches are used to quantitatively evaluate the results of 
the clustering algorithm. Experimental results showed that the 
proposed particle swarm-like clustering algorithm reaches 
good clustering solutions and achieves superior performance 
compared to others. 
 
Keywords ⎯ Agents, clustering, Ant clustering, k-means. 
 

I. INTRODUCTION 

lustering [1, 2] is a powerful, popular tool for 
discovering structure in data. Clustering analysis, 
which is the subject of active research in several fields 

such as statistics, pattern recognition, machine learning, and 
data mining, is to partition a given set of data or objects into 
clusters. It also has been applied in a large variety of 
applications, for example, image segmentation, object and 
character recognition, document retrieval, etc.  
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Data clustering is the process of identifying natural groupings 
or clusters, within multidimensional data, based on some 
similarity measures [2, 3]. Classical algorithms are static, 
centralized, and batch. They are static because they assume 
that the data and similarity function do not change while 
clustering is taking place. They are centralized because they 
rely on data structures (such as similarity matrices) that must 
be accessed, and sometimes modified, at each step of the 
operation. They are batch because they run their course and 
then stop. It is the unsupervised classification of patterns 
(observations, data items, or feature vectors) into groups 
(clusters). The clustering problem has been addressed in many 
contexts and by researchers in many disciplines; this reflects 
its broad appeal and usefulness as one of the steps in 
exploratory data analysis. However, clustering is a difficult 
problem combinatorially, and differences in assumptions and 
contexts in different communities have made the transfer of 
useful generic concepts and methodologies slow to occur [2]. 
A cluster is usually identified by a cluster center (or centroid). 
Data clustering is a difficult problem as the clusters in data 
may have different shapes and sizes. Furthermore, it is usually 
not known how many clusters should be formed. Most 
clustering algorithms are based on two popular techniques 
known as hierarchical and partitional clustering [2]. In 
hierarchical clustering, the output is "a tree showing a 
sequence of clustering with each clustering being a partition of 
the data set". Such algorithms have the following advantages 
[1]: 
• The number of clusters need not be specified a priori, and  
• They are independent of the initial conditions. 
However, hierarchical clustering techniques suffer from the 
following drawbacks: 
• They are static, i.e. data points assigned to a cluster 

cannot move to another cluster. 
• They may fail to separate overlapping clusters due to a 

lack of information about the global shape or size of the 
clusters. 
On the other hand, partitional clustering [1] algorithms 

partition the data set into a specified number of clusters. These 
algorithms try to minimize certain criteria (e.g. a square error 
function) and can therefore be treated as optimization 
problems. The advantages of hierarchical algorithms are the 
disadvantages of the partitional algorithms and vice versa.  
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Partitional clustering techniques are more popular than 
hierarchical techniques in pattern recognition, hence, this 
paper will concentrate on partitional techniques. Several 
researchers have applied the biological algorithm to 
engineered systems. These implementations fall into two 
broad categories: those in which the digital ants are distinct 
from the data objects being clustered, and those that eliminate 
this distinction. All of these examples form a partition of the 
data objects, without any hierarchical structure [4]. 

Particle swarm optimizers (PSO) [1] are population-based 
optimization algorithms modelled after the simulation of 
social behaviour of bird flocks. PSO is generally considered to 
be an evolutionary computation (EC) paradigm. Other EC 
paradigms include genetic algorithms (GA), genetic 
programming (GP), evolutionary strategies (ES), and 
evolutionary programming (EP). These approaches simulate 
biological evolution and are population-based. In a PSO 
system, a swarm of individuals (called particles) fly through 
the search space. Each particle represents a candidate solution 
to the optimization problem. The position of a particle is 
influenced by the best position visited by itself (i.e. its own 
experience) and the position of the best particle in its 
neighbourhood (i.e. the experience of neighbouring particles). 
When the neighbourhood of a particle is the entire swarm, the 
best position in the neighbourhood is referred to as the global 
best particle, and the resulting algorithm is referred to as a 
gbest PSO. When smaller neighbourhoods are used, the 
algorithm is generally referred to as lbest PSO. The 
performance of each particle (i.e. how close the particle is 
from the global optimum) is measured using a fitness function 
that varies depending on the optimization problem. 
 
   PSO was originally developed by Eberhart and Kennedy in 
1995 [5], and was inspired by the social behaviour of a flock 
of birds. In the PSO algorithm, the birds in a flock are 
symbolically represented as particles. These particles can be 
considered as simple agents “flying” through a problem space. 
A particle’s location in the multi-dimensional problem space 
represents one solution for the problem. When a particle 
moves to a new location, a different problem solution is 
generated. This solution is evaluated by performance 
indicators that provide a quantitative value of the solution’s 
utility. In this paper a new approach of data clustering using 
particle swarm-like agents will be introduced. In section 3 the 
PSDC model will be discussed. 

The remainder of this paper is organized as follows. 
section II presents some related work. In section III, an 
overview of ant clustering is introduced with an illustration of 
the modified ant-clustering algorithm. In section IV, we 
introduce the proposed Particle Swarm-Based Data Clustering 
(PSDC) algorithm with an illustration of the model 
description, the algorithm description, and agent decision rules 
and a brief pseudocode is illustrated. Experimental results are 
introduced in section V and, finally, conclusions are presented 
in section VI. 
 

II. RELATED WORK 

In recent years, it has been recognized that the partitioning 
techniques is well suited for clustering a large datasets due to 
their relatively low computational requirements. The time 
complexity of the partitioning technique is almost linear, 
which makes it widely used. The well-known partitioning 
algorithm is the K-means algorithm [2, 6, 7] and its variants. 

This algorithm is simple, straightforward and is based on the 
firm foundation of analysis of variances. The K-means 
algorithm clusters a group of data vectors into a predefined 
number of clusters. It starts with a random initial cluster center 
and keeps reassigning the data objects in the dataset to cluster 
centers based on the similarity between the data object and the 
cluster center. The reassignment procedure will not stop until a 
convergence criterion is met (e.g., the fixed iteration number 
or the cluster result does not change after a certain number of 
iterations). The main drawback of the K-means algorithm is 
that the cluster result is sensitive to the selection of the initial 
cluster centroids and may converge to the local optima. 
Therefore, the initial selection of the cluster centroids decides 
the main processing of K-means and the partitioning result of 
the dataset as well. Another limitation of the K-means 
algorithm is that it generally requires a prior knowledge of the 
probable number of clusters for a data collection. To deal with 
the limitations that exist in traditional partition clustering 
methods a number of computer scientists in recent years have 
proposed several approaches [3] inspired from biological 
collective behaviors to solve the clustering problem, such as 
Genetic Algorithm (GA) [8], Particle Swarm Optimization 
(PSO), Ant clustering and Self-Organizing Maps (SOM) [9]. 
Within these clustering algorithms, Ant clustering algorithm is 
a partitioning algorithm that does not require a prior 
knowledge of the probable number to clusters or the initial 
partition. The Ant clustering algorithm was inspired by the 
clustering of corpses and eggs observed in the real ant colony. 
Deneubourg et al. proposed a ‘‘Basic Model’’ to explain the 
ants’ behavior of piling corpses and eggs. In their study, a 
population of ant-like agents randomly moved in a 2D grid. 
Each agent only follows one sample rule: randomly moving in 
the grid and establishing a probability of picking up the data 
object it meets if it is free of load or establishing a probability 
of dropping down the data object if it is loading the data 
object. After several iterations, a clustering result emerges 
from the collective activities of these agents. Lumer, Faieta 
and other researchers extended this ‘‘Basic Model’’ and 
applied it to numerical data analysis. Wu and Handl proposed 
the use of Ant clustering algorithms for document clustering 
and declared that the clustering results from their experiments 
are much better than that from K-means algorithm. However, 
in Ant clustering algorithm, the clustered data objects do not 
have mobility themselves. The data objects’ movements have 
to be implemented through the movements of a small number 
of ant agents, which will slow down the clustering speed. 
Since each ant agent that is carrying an isolated data object 
does not communicate with other ant agents, it does not know 
the best location to drop the data object. The ant agent has to 
move or jump randomly in the grid space until it finds a place 
that satisfies its data object dropping criteria, which usually 
consumes a large amount of computation time. 

Among the many bio-inspired techniques, ant-based 
clustering algorithms have received special attention from the 
community over the past few years for two main reasons. 
First, they are particularly suitable to perform exploratory data 
analysis and, second, they still require much investigation to 
improve performance, stability, convergence, and other key 
features that would make such algorithms mature tools for 
diverse applications. In [10] the Ant Clustering algorithm, 
have been explained, defined its key components, the main 
branches in its field of research, and its perceived 
characteristics.  
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In [11], a number of modifications have been introduced that 
improve the quality of the clustering and, in particular in 
assigning short memory to each agent so it remembers the last 
few carried data items and their respective dropping positions, 
increasing radius of perception of agents to employ larger 
neighbourhoods in order to improve the quality of the 
clustering and sorting on the grid, spatial separation of clusters 
in order for individual clusters to be well-defined, settings 
parameters to be a set as a function of the size of the data set. 
Unlike other static and centralized clustering techniques, our 
proposed model can dynamically adapt to the changes and 
does not require a prior knowledge of the number of clusters 
in the datasets. It is more adaptive towards problems with 
dynamic changed information. 

 
 

III. ANT IN CLUSTERING ANALYSIS 

A. Overview of Ant Clustering 

Applying ant colony system in clustering analysis is still a 
novel research area.  Tsai and his colleges [12] employed the 
ant system with differently favourable strategy for data 
clustering. It is named ant colony optimization with different 
favour (ACODF). ACODF algorithm has the following 
desirable strategies. It first uses differently favourable ants to 
solve the clustering problem. Then, the proposed ant colony 
system adopts simulating annealing concept for ants to 
decreasingly visit the amount of cities and get the local 
optimal solutions. Finally, it utilizes tournament selection 
strategy to choose a path. Every ant only needs to visit few 
cities instead of all cities. Thus, the ant will reduce visiting the 
cities every iteration. After several iterations, the trail intensity 
close between nodes of trails will be increased. On the other 
hand, the trail intensity far between nodes of trails will be 
decreases. Therefore, ants will favour to visit the close nodes 
and then reinforcing the trail with their own pheromone. 
Finally, a number of clusters will be built. 

In [13], they applied the ant colony system (ACS) for 
clustering problem. Based on ACS, it treats the data (objects 
or elements) as the ants. Thus, each ant has different 
properties. Basically, the process of data clustering is the 
process of ant looking for food. 

The basic ant algorithm starts with an initialization 
phase, in which (i) all data items are randomly scattered on the 
grid, (ii) each agent randomly picks up one data item; and (iii) 
each agent is placed at random position on the grid. 
Subsequently, the sorting phase starts, in which (i) one agent is 
randomly selected; (ii) the agent performs a step of a given 
stepsize (in a randomly determined direction); and (iii) the 
agent probabilistically decides whether to drop its data item. In 
a case of "drop-decision", the agent drops the data item at its 
current grid position if this grid cell is not occupied by another 
data item, or in the immediate neighbourhood of it (it locates a 
nearby free grid cell by means of a random search). It then 
immediately searches for a new data item to pick up. This is 
done using an index that stores the positions of all "free" data 
items on the grid; the agent randomly selects one data item i 
out of the index, proceeds to its position on the grid, evaluates 
the neighbourhood function f and probabilistically decides 
whether to pick up the data item. It continues this search until 
a successful picking operation occurs. Only then the loop is 
repeated with another agent. A number of modifications have 
been introduced that improve the quality of the clustering and, 

in particular, the spatial separation between clusters on the 
grid, which is essential for the scheme of cluster retrieval. 
 
B. A Modified Ant-Clustering Algorithm 

In the basic ant algorithm [11], the agent performs a step of a 
given stepsize in a randomly determined direction on the grid. 
This consumes more time for the algorithm to converge. In 
this paper, a modification to the basic algorithm is dedicated to 
bias the agent's movement towards the right solution 
preventing them from moving away from the solution. Instead 
of moving randomly, the swarm agent senses the 
neighbourhood and a decision is made to move to one of its 
free neighbours in case of popping operation. Two operations 
have been defined; the "Popping" operation and the "Pushing" 
operation. 
 
The behavior of an agent through the clustering operation is as 
follows: If the agent is not holding any object, it tries to pop 
one of the available objects, one at a time with probability 
given by equation 1 (Popping operation). Once it decides to 
pop up one object, the agent is moved into that position. Then 
it starts a random walk under some constraints over the 
workspace, looking for a place with high local similarity to 
push down the object with probability given by equation 2 
(Pushing operation). 
 
The following equations have been used and represent the 
main operations in the algorithm: 
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Equation 1 gives the probability of popping up an object. kp is 
a pop up threshold parameter. Equation 2 gives the probability 
of pushing down an object. kp is a drop threshold parameter. 
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Where x s  is an object within the neighbourhood radius of i, 

M d  is the maximum distance between any two objects, and 

S t  is the total number of objects in the neighborhood of i. We 
then calculate the crowdness factor, c(i) by the following 
equation shown below: 
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The pseudo-code of the mechanism can be illustrated as 
shown below in Fig. 1. 
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BEGIN 
Initialization phase 
For every agent do 
    - Select random item 
    - Pop up the item to the agent 
    - Place the busy agent in a free location randomly 
End for 
For counter=1 to maximum No. of iterations do 

- Select random agent 
- Move the agent a unit step according to a 

defined constraints (within a range towards the 
neighbourhood) 

- If it is possible to push down the item according 
to (eq. 2) then 

While (no pop up for an item) do 
 Select a free item randomly (within 
a range) 
 Pop up the item according to (eq. 
1)  
End while 

       End if 
End for 
END  

 
Fig. 1 A brief pseudo-code of a modified Ant-Clustering Algorithm 

 
 

IV. THE PROPOSED PARTICLE SWARM-BASED 
CLUSTERING ALGORITHM (PSDC) 

This section describes the proposed model and presents the 
phases of the proposed technique. 
 
A. Model Description 

The dataset to be clustered are represented as a set of vectors X 
= {x 1 ,x 2 , x 3 ,….., x N } where the vector x i corresponds to a 

single data object in the D-dimension space and x i is the 
feature vector of the ith data object.  N represents the total 
number of data objects in the dataset. In the proposed model, a 
population P of swarm agents is modelled as a set of agents S 
= {s 1 , s 2 , s 3 , ….., s M } where M is the total number of 
agents, where M ≤ N. Each agent is modelled as a moving 
object s i of a circular sensing range of radius r i , it has the 
ability to move freely in the solution space according to the 
proposed agents’ rules (as will be explained in next 
subsection). Each independent agent can cooperate with its 
competitors in the neighbourhood to accelerate the discovery 
of the right clusters. More than one agent can share the same 
place or data object without any collision or fighting. In 
addition none of the agents could be lost in the space.  
The similarity between two data objects needs to be measured 
in clustering analysis. In order to group similar data objects, 
proximity metric has to be used to identify data objects that 
are similar. Over the years, two prominent ways have been 
proposed to compute the similarity between data objects. The 
first method is the Euclidean distance [2, 3], the other one is 
the cosine correlation measure [3]. The last method is used in 
case of real data. In the proposed mechanism, one population 

passes information to the next one depending on how fitted 
clustering solutions it reached in their past navigation. (as will 
be explained in next subsection).  
 
B. Algorithm Description 
The proposed PSDC algorithm passes through the following 
phases. 
 
B.1 Starting phase 
M agents are randomly generated in the solution space where 
M ≤ N and N is the total number of data objects. Every agent is 
assigned to a data object randomly to be dedicated to it. The 
sensing range also must be initialized. 
 
B.2 Decision phase 
Every agent in the solution space moves according to guiding 
rules from which it decides the new updated position for it.  
The PSDC model consists of three simple steering rules based 
on the flocking model rules [3]. These rules need to be 
executed at each instance over time, for each individual agent. 
These basic rules are listed below. 
 
Rule 1: Separation, steering to avoid collision with other boids 
nearby. The separation rule acts as an active boid trying to pull 
away before crashing into each other. 
 
Π = (s n  – s a ) / dist (s n , s a )            (5) 
 
Where s n  is the position of agent's neighbor, s a is the current 

position of the agent, dist (s n , s a ) is the distance between the 
current agent and the selected neighbor. 
 
Rule 2: Alignment, steering toward the average heading and 
speed of the neighboring flock mates. The alignment rule, acts 
as the active boid trying to align its vector with the average 
vector of the flock in its local neighborhood. The degree of 
locality of this rule is determined by the sensor range of the 
active flock boid. 
 
µ = (s n  – s a ) / G            (6) 
 
Where s n  is the position of agent's neighbor, s a is the current 
position of the agent, G is the total number of neighbors within 
the current agent's sensor range. 
 
Rule 3: Cohesion, steering to the average position of the 
neighboring flock mates. The cohesion rule acts as an active 
boid trying to orient its vector in the direction of the centroid 
(average spatial position) of the local flock. 
 
ß = (s n  – s a )                   (7) 
 
Where s n  is the position of agent's neighbor, s a is the current 
position of the agent. We found in case of geometric datasets 
the separation rule is not suitable, but in the distributed form it 
is recommended. To achieve comprehensive flocking 
behavior, the actions of all the rules are summed to give a net 
vector required for the active flock boid producing a new 
position for the agent. 
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B.3 Movement phase 
In this phase the agent updates its position by adding a delta 
value to its current position. The delta value is measured as 
follows: 
 
V net  = Π + µ + ß.           (8) 

 
Where the parameters Π, µ and ß were calculated in equations 
5, 6 and 7 respectively. 

After calculating the V net  then the agent is able to 
find its new position for the next iteration using the following 
equation 
 
s new  = s current + V net        (9) 
 
The previous scenario will be repeated within the same cycle 
for all agents until convergence occurs. The population 
decides to stop navigating in the solution space if the 
maximum difference in change in its position is less than a 
defined threshold, this means that all the agents are stable and 
almost stopped moving. The fitness value is measured every 
complete cycle to decide if the population made a good 
solution or a new population must be generated to get better 
results. The convergence obtained if the fitness measure has 
the same value for a number of cycles without any change, the 
convergence window is set to 20 cycles. 

In case of stigmergy, useful information is passed to 
the next population in the form of virtual points added to the 
input datasets to helps the new population to find the right 
clusters in less time and with better performance results. The 
virtual points are the positions of old centers of the last 
discovered clusters.  
 
B.4 Checking New Clusters Solution ( ) 
The previous agents iteration-phases are repeated until 
approximately no agent movements are detected or a 
maximum number of iterations are reached for one population. 
Correspondingly, groups of agents will appear to be 
accumulated on centroids of the clusters of a new predicted 
solution of the ith generation. 
 
B.5 Passing Information Process ( ) 
If the performance indicators’ values showed through the 
iterations gradual improvements during a predefined number 
of cycles, then the current population could pass useful 
clustering information to the next population in order to help 
further generations in reaching better solutions faster and 
reinforce learning process. The centroids of good clusters 
solutions will be reinforced by biased virtual points 
proportional to the fitness of previous solutions. This results in 
overall performance improvement and supports the 
cooperative and the adaptive features of the agents.   
 
According to the previous section, the pseudocode of the 
proposed PSDC mechanism can be summarized as shown 
below in Fig. 2. 
 
 
 
 
 

 
 
 Parameters’ Initialization 
 Repeat  
    - Generate new population of agents. 
   Repeat  
      For every agent 
          -  Find agent’s neighbors (data points) 
             within its range. 
          -  Apply agent thinks and decision rules ( ). 
          -  Calculate the agent’s new (position) according  
             to  position equations. 
      End  
       - Increment iteration number. 
       - Check for a new clusters solution for the current   
          Population ( ). 
   - Evaluate the performance indicators ( ). 
   - Pass useful information to next generation ( ). 
   - Increment Cycle number.  
 
 Until convergence criteria is met. 
 

Fig. 2 A brief pseudo-code of the proposed PSDC mechanism 
 

 
V. EXPERIMENTAL RESULTS 

Experiments have been carried out to validate the efficiency of 
the proposed model. In this section we illustrate the 
characteristics of the proposed technique with several artificial 
and real data sets. The performance of the PSDC algorithm 
has been compared with both the modified ant clustering 
algorithm and the k-means algorithm [10]. Moreover, the 
performance of the PSDC will be compared with the 
hierarchical agglomerative average-link clustering and the 
one-dimensional self-organising maps applied on three real 
data sets. All the experiments were run on Pentium 3.2 GHZ 
processor with 1 GB RAM. Experiments have bee conducted 
on various synthetic and real multidimensional data sets 
containing different number of clusters. Results are compared 
using different validity indices [14, 15, 16, 17] (as will be 
defined in the next secion). Comparative results are presented 
for synthetic datasets and two real data collections taken from 
the Machine Learning Repository [18]. 
 
A. Performance Indicators 

The main subject of cluster validation [14] is "the evaluation 
of clustering results to find the partitioning that best fits the 
underlying data". Hence, cluster validity approaches are 
approaches used to quantitatively evaluate the result of a 
clustering algorithm. These approaches have representative 
indices, called validity indices [14]. The traditional approach 
to determine the "optimum" number of clusters is to run the 
algorithm repetitively using different input values and select 
the partitioning of data resulting in the best validity measure. 
Two criteria that have been widely considered sufficient in 
measuring the quality of partitioning a data set into a number 
of clusters: 
• Compactness: samples in one cluster should be similar to 

each other and different from samples in other clusters. 
An example of this would be the variance of a cluster. 

• Separation: clusters should be well-separated from each 
other. An example of this criterion is the Euclidean 
distance between the centroids of clusters. 
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In this section several validity indices are introduced. These 
indices are used for measuring “goodness” of a clustering 
result comparing to other ones which were created by other 
clustering algorithms, or by the same algorithms but using 
different parameter values. 
 
A.1 The Dunn Index 

The Dunn Index [14, 15, 16, 17] determines the minimal ratio 
between cluster diameter and inter cluster distance for a given 
partitioning. Thus, it captures the notion that, in a good 
clustering solution, data elements within one cluster should be 
much closer than those within different clusters. It is defined 
as 

 
 
Where the diameter diam(c) of a cluster c is computed as the 
maximum inner cluster distance, and ),( dc uuδ is the distance 
between the centroids of clusters c and d. It is to be 
maximized. If the dataset contains compact and well-separated 
clusters, the distance between the clusters is expected to be 
large and the diameter of the clusters is expected to be small. 
Thus, based on the Dunn’s index definition, we may conclude 
that large values of the index indicate the presence of compact 
and well-separated clusters.  
 
A.2 The Davies-Bouldin Index 

Davies and Bouldin [14, 15, 16, 17] proposed the following 
index that is known as Davies-Bouldin measure. It is a 
function of the ratio of the sum of within-cluster scatter to 
between-cluster separation. 
 
Let C = {C1, . . . ,Ck} be a clustering of a set D of data 
objects. 

 
,             with 
 
 

 
 
where s : C → Rmeasures the scatter within a cluster, and δ : 
C ×C →R is a cluster to cluster distance measure.  
 
Given the centroids c i  of the clusters C i , a typical scatter 
measure is  
 

 
 
 and a typical cluster to cluster distance measure is the 
distance between the centroids, ||c i  − c j  ||. Because a low 
scatter and a high distance between clusters lead to low values 
of R ij  , a minimization of DB is desired. 

The Dunn index and the Davies-Bouldin index are 
related in that they have a geometric (typically centroidic) 
view on the clustering. The measures work well if the 
underlying data contains clusters of spherical form, but they 
are susceptible to data where this condition does not hold. 
 

A.3 The Inner Cluster Variance 

The Inner Cluster Variance [11, 17, 19] computes the sum of 
squared deviations between all data items and their associated 
cluster centre, which reflects the common agreement that data 
elements within individual clusters must be similar. It is given 
by 

 
 
Where C is the set of all clusters, cu  is the centroid of cluster 
c and ),( cuiδ is the distance function employed to compute 
the deviation between each data item iand its associated 
cluster centre. It is to be minimised. 
  
A.4 The SD validity Index 

The bases of SD validity index [14] are the average scattering 
of clusters and total separation of clusters. The scattering is 
calculated by variance of the clusters and variance of the 
dataset, thus it can measure the homogeneity and compactness 
of the clusters. The variance of the dataset and variance of a 
cluster are defined in Equation 
 

 
 
The average scattering for clusters is defined as: 

 
 
The total separation of clusters is based on the distance of 
cluster centre points thus it can measures the separation of 
clusters. Its definition is given by Equation 
 

 
 
The SD index can be defined based on previous equations as 
follows 
 

SD =α ·Scatt + Dis         (18) 
 

where α is a weighting factor that is equal to Dis parameter in 
case of maximum number of clusters. Lower SD index means 
better cluster configuration as in this case the clusters are 
compacts and separated. 
 
A.5 Fitness Measure 

One particle in the swarm represents one possible solution for 
clustering the document collection. Therefore, a swarm 
represents a number of candidate clustering solutions for the 
document collection. Each particle maintains a matrix Xi = 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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(C 1 , C 2 , …, C i , .., C k ), where C i  represents the i th  cluster 
centroid vector and k is the number of clusters. According to 
its own experience and those of its neighbors, the particle 
adjusts the centroid vector’ position in the vector space at each 
generation. The average distance of data objects to the cluster 
centroid is used as the fitness value [5] to evaluate the solution 
represented by each particle. The fitness value is measured by 
the equation below: 
 

 
 
where m ij  denotes the j th  document vector, which belongs to 

cluster i; O i  is the centroid vector of the ith cluster; d(o i , 

m ij ) is the distance between document m ij  and the cluster 

centroid O i ; P i  stands for the number of documents, which 

belongs to cluster C i ; and N c  stands for the number of 
clusters. 
 
B. Using Syntactic Data Sets 

Data generator program has been implemented to generate 
datasets of different sizes and different distributions. The 
tables and figures below illustrate some examples of generated 
datasets showing comparisons among the PSDC, K-means and 
Modified Ant algorithms in the performance indicators. 
Different generated datasets of sizes: 1000, 1800, 2800, 3200 
and 3600 with different distributions and different number of 
clusters: 5, 9, 7, 8 and 9 respectively are used for comparisons. 
We used φ to represent the number of clusters, N to represent 
the number of the datasets, and itr to represent the number of` 
iterations for each algorithm. 
 

TABLE 1 
CPMPARING FITNESS'S VALUES FOR PSDC 

TECHNIQUE, K-MEANS AND MODIFIED ANT 
CLUSTERING ALGORITHM, FOR DATA SETS OF 
DIFFERENT SIZES AND DIFFERENT NUMBER OF 

CLUSTERS. 
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Fig. 3. Comparing fitness indicator results for PSDC technique, K-

means and Modified Ant algorithm for experimental datasets of 
different sizes and distributions. 

 
As observed from table 1 and Fig. 3, the values of the fitness 
measure in case of the PSDC is lower than both the K-means 
and the Modified Ant technique. As illustrated before, the 
lower values of the fitness measure indicates better 
performance. 
 

TABLE 2 
COMPARING DUNN INDEX'S VALUES FOR PSDC 

TECHNIQUE, K-MEANS AND MODIFIED ANT 
CLUSTERING ALGORITHM, FOR DATA SETS OF 
DEFFIRENT SIZES AND DIFFERENT NUMBER OF 

CLUSTERS. 
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Fig. 4. Comparing Dunn index results for PSDC technique, K-means 

and Modified Ant algorithm for experimental datasets of different 
sizes and distributions. 

 
As illustrated from table 2 and Fig. 4 we can observe that the 
Dunn Index remains high for the PSDC algorithm applied on 
all datasets of different sizes. As the data size increases, the 
improvement of the Dunn Index indicator is extremely higher 
than both the K-means and the Modified Ant technique. 
 

Fitness measure 
PSDC Kmeans Ant 

N φ itr 
Index 
value itr 

Index 
value itr 

Index 
Value 

1000 5 2 7.699 6 8.3131 10 7.7311 
1800 9 2 7.6075 12 8.778 10 7.6328 
2800 7 2 7.6408 12 8.861 10 7.7199 
3200 8 2 7.6353 10 9.046 10 7.7134 
3600 9 2 7.5968 14 8.769 10 7.788 

Dunn index 
PSDC Kmeans Ant 

N φ itr 
Index 
value itr 

Index 
value itr 

Index 
value 

1000 5 2 1.4699 6 1.0348 10 1.444 
1800 9 2 1.461 12 0.176 10 1.101 
2800 7 2 1.4752 12 0.1698 10 1.0123 
3200 8 2 1.4762 10 0.1671 10 1.1947 
3600 9 2 1.4666 14 0.1616 10 1.1589 

(19) 
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TABLE 3 
COMPARING DAVIES-BOULDEN INDEX'S VALUES 
FOR PSDC TECHNIQUE, K-MEANS AND MODIFIED 

ANT CLUSTERING ALGORITHM, FOR DATA SETS OF 
DEFFIRENT SIZES AND DIFFERENT NUMBER OF 

CLUSTERS. 
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Fig. 5. Comparing Davies-Boulden index results for for PSDC 

technique, K-means and Modified Ant algorithm for experimental 
datasets of different sizes and distributions. 

 
As observed from table 3 and Fig. 5, the cluster solutions 
returned by the PSDC have showed better Davies-Boulden 
index over both the Modified Ant technique and the K-means 
algorithm. As illustrated in the previous sections, lower values 
for the Davies-Boulden index indicates better performance. 
 

TABLE 4 
COMPARING INNER CLUSTER VARIANCE'S VALUES 

FOR PSDC TECHNIQUE, K-MEANS AND MODIFIED 
ANT CLUSTERING ALGORITHM, FOR DATA SETS OF 

DEFFIRENT SIZES AND DIFFERENT NUMBER OF 
CLUSTERS. 
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Fig. 6. Comparing inner cluster variance results for PSDC technique, 

K-means and Modified Ant for experimental datasets of different 
sizes and distributions. 

 
As shown in Fig. 6 and table 4, we can observe how much the 
PSDC illustrates improvement in the inner cluster variance 
over both the Modified Ant technique and the K-means 
clustering. As illustrated in the previous sections, lower values 
for the Inner cluster variance index indicates better 
performance. 
 

TABLE 5 
COMPARING SD VALIDITY INDEX'S VALUES FOR 
PSDC TECHNIQUE, K-MEANS AND MODIFIED ANT 

CLUSTERING ALGORITHM, FOR DATA SETS OF 
DEFFIRENT SIZES AND DIFFERENT NUMBER OF 

CLUSTERS. 
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Fig. 7. Comparing SD validity index results for PSDC technique, K-

means and Modified Ant algorithm for experimental datasets of 
different sizes and distributions. 

 
As illustrated in table 5 and Fig. 7, we can observe better 
results for the PSDC over both the Modified Ant clustering 
algorithm and the K-means algorithm. As the data size 
increases, the improvement in the SD validity index is 

Davies-Boulden 
PSDC Kmeans Ant 

N φ itr 
Index 
value itr 

Index 
value itr 

Index 
value 

1000 5 2 0.412 6 0.5553 10 0.4146 
1800 9 2 0.4113 12 0.7541 10 0.5292 
2800 7 2 0.4066 12 0.7596 10 0.6431 
3200 8 2 0.4071 10 0.7403 10 0.5674 
3600 9 2 0.4068 14 0.7003 10 0.5819 

Inner cluster variance 
PSDC Kmeans Ant 

N φ itr 
Index 
value itr 

Index 
value itr 

Index 
value 

1000 5 2 333.041 6 448.4443 10 336.431 

1800 9 2 593.656 12 9.94E+02 10 648.782 
2800 7 2 459.152 12 908.7493 10 506.899 

3200 8 2 524.250 10 9.16E+02 10 569.200 

3600 9 2 549.000 14 937.0185 10 594.00 

SD validity 
PSDC Kmeans Ant 

N φ itr 
Index 
value itr 

Index 
value itr 

Index 
value 

1000 5 2 0.0688 6 0.1184 10 0.0866 

1800 9 2 0.0672 12 0.221 10 0.11332 
2800 7 2 0.0687 12 0.2063 10 0.15212 

3200 8 2 0.0684 10 0.2317 10 0.157067 
3600 9 2 0.067 14 0.2284 10 0.1786 
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considerably large. As illustrated in the previous sections, 
lower values for the SD validity index indicates better 
performance. 
 

Effect of agents' percentage on the Fitness value in case of 
1000 objects
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Fig. 8. Studying the effect of agent’s percentage on the fitness value 

in case of 1000 data objects. 
                                                 

Effect of agents' precentage on Fitness value in case of 3600 
objects 
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Fig. 9. Studying the effect of agent’s percentage on the fitness value 

in case of 3600 data objects. 
 
Fig. 8 and Fig. 9 show the effect of the generated number of 
agents (population size) on the fitness measure in case of 1000 
data objects and 3600 data objects, respectively. As shown in 
the figures, the fitness measure improves as the percentage of 
the generated number of agents per population increases up to 
an asymptotic point above which no further improvement is 
recognized. Setting the number of agents to 80% of the data 
size seems to be very reasonable. Any further increase in the 
generation size will not improve the results but may results in 
further delayed solutions. 
 
Fig. 10 illustrates an example of the clustering process using 
PSDC in 2D dimension & in geometric form. In fig 10a the 
data objects are generated while in fig 10b the agents were 
assigned randomly to the data objects with still no movement. 
In fig 10c the first iteration took place and the agents’ rules 
were applied and agents moved as shown. At the end of the 
iterations the agents decided that there are 3 clusters according 
to the guiding rules and reached the centers of the 
approximated clusters. Then, performance indicators will be 
calculated for the current cluster solution. 
 

 
 

Fig. 10. Three clusters of synthetic data in geometric form with 
agents discovering each cluster. 

 
 

 
 
Fig. 11. Four clusters of synthetic data in distributed form with agents 

discovering each cluster 
 
Fig. 11 illustrates an example the clustering process using 
PSDC in 2D dimension & distributed form In fig. 11a we 
observe the data objects before introducing the agents then in 
fig. 11b the agents are assigned randomly to the data objects. 
Fig 11c shows the situation after the first iteration and after 
applying the agents’ rule. Finally in fig. 11d we got the agents 
after the final iteration in which they decided that there are 4 
clusters according to the explained rules and found also each 
center and ready for indicators’ calculations.  
 
 
C. Using real data sets 

Three real data collections taken from the Machine Learning 
Repository to compare our results. The Iris data contains 150 
items described by 4 attributes. Its 3 clusters are each of size 
50. Two of them are linearly non-separable. The yeast data 
contains 1484 data elements described by 8 attributes. The 
Breast Cancer Wisconsin data contains 699 items described by 
9 attributes. Its 2 clusters are of size 458 and 241 respectively. 
The following table shows a clear comparison of well known 
clustering algorithms with the proposed algorithm, applied on 
real data sets. 
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TABLE 6 

COMPARING THE PERFORMANCE OF THE PSDC 
ALGORITHM WITH HIERARCHICAL 

AGGLOMERATIVE AVERAGE-LINK CLUSTERING, 
THE ONE-DIMENSIONAL SELF-ORGANIZING MAPS, 
AND THE K-MEANS, APPLIED ON REAL DATA SETS. 

 
Iris k-means average 

link 1D-SOM PSDC 

No. of 
clusters 
Dunn Index 
Variance 
Runtime 

3 
 

2.65 
0.92 
0.16 

3 
 

2.51 
0.9 

0.02 

3 
 

2.08 
0.89 
0.08 

3 
 

2.51 
0. 9   
2. 3 

Yeast k-means average 
link 1D-SOM PSDC 

No. of 
clusters 
Dunn Index 
Variance 
Runtime 

10 
 

1.7 
1.54 
1.7 

10 
 

1.56 
1.6 
14 

10 
 

1.22 
1.7 

12.16 

10 
 

1.8 
1.57 
13 

Breast 
Cancer 

WISCONSIN 
k-means average 

link 1D-SOM PSDC 

No. of 
clusters 
Dunn Index 
Variance 
Runtime 

2 
 

5.47 
1.61 
0.40 

2 
 

4.92 
1.63 
1.65 

2 
 

5.46 
1.61 
2.5 

2 
 

5.46 
1.62 
11.3 

 

Table (6) shows the results for K-means, hierarchical 
agglomerative average-link clustering, one-dimensional self-
organising maps and the proposed Particle Swarm-Based Data 
Clustering (PSDC), applied on three real datasets. The quality 
of the clustering is measured using the Dunn Index, Inner 
Cluster Variance and runtimes. The bold face indicates the 
best value. The two inseparable clusters in the iris data 
affected the results as shown and reflected in the performance 
indicators values and the runtime. But the PSDC identified the 
close second best result in both the Dunn Index and the Inner 
Cluster Variance. In the yeast data the clusters are identified 
successfully with better value in the Dunn Index and second 
best result in the Inner Cluster Variance. We can notice the 
runtime value is the main drawback of the PSDC algorithm in 
case of well separated clusters but results in a better 
performance over other algorithms.   

 
VI. CONCLUSION 

In this paper a new particle swarm-based data clustering 
technique had been introduced. The mechanism showed 
outstanding performance compared to other methods for 
clustering. Nonetheless, the mapping simultaneously provided 
by the algorithm is one of the most attractive features. The 
algorithm has a number of features that make it an interesting 
candidate for cluster analysis. First, its linear scaling 
behaviour, which make it suitable for use on large data sets. 
Also, the nature of the algorithm makes it fairly robust to the 
effects of outliers within the data. In addition, swarm-based 
clustering has the capacity to work with any kind of data that 
can be described in terms of symmetric dissimilarities, and it 
imposes no assumptions on the shape of the clusters it works 
with. Finally, an important strength of the algorithm is its 
ability to automatically determine the number of clusters 

within the data. The adaptation scheme proposed in the 
algorithm make it possible to tune with structures exist within 
the data. In addition, the guiding rules, which are alignment, 
cohesion and separation rule, led to better solutions. In each 
iteration, each single agent updates its position and its 
population could pass useful information to the next one 
resulting in reaching better clustering solution faster and in 
less time. These new features allow the algorithm to be highly 
dynamic. The proposed PSDC algorithm illustrated superior 
performance when compared with both the modified ant 
clustering algorithm and the k-means algorithm. Moreover, the 
performance of the PSDC showed comparative performance 
when compared with the hierarchical agglomerative average-
link clustering and the one-dimensional self-organising maps 
applied on real data sets. Our approach performs favourably 
selecting good partitioning decisions, and avoids being trapped 
in local optimal solutions by making use of the cooperative 
and adaptive behaviour of the agents. 
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