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Contact of a shell and rigid body though the
heat-conducting layer temperature field

V.V. Zozulya

Abstract— A problem of heat conducting and unilateral contact
of a shell through the heat-conducting layer is formulated. An
approach consists in considering a change of layer thickness in the
process of the shell deformation. Three dimensional connected
equations of the thermoelasticity and the heat conductivity are
created. These equations take into account change of the conditions
of heat exchange between the shell and the rigid body during the
structure deformation and a possibility of close mechanical contact.
Three dimensional equations of thermoelasticity and heat coduction
are expanded into a polynomial Legendre series in terms of the
thickness. The first-approximations, Timoshenko's and Kirchhoff-
Love's equations have been studied. Numerical example of the
unilateral thermoelastic contact of the cylindrical shells and rigid
body through the heat-conducting layer is considered.

Keywords—Heat-conductivity, cylindrical shell, heat-conducting
layer, mechanical contact.

I. INTRODUCTION

any elements of machines and structures during their

exploitation are affected by high temperature and

mechanical loading. Contact interaction is the most
common way to transfer load from one body to another. In the
case if contacting bodies have different temperature between
them take place heat-contact interactions. Therefore not only
condition of the mechanical contact, but also conditions of the
thermal contact have to be considered. Usually perfect thermal
contact is supposed, i.e. it is supposed that the temperature
and the thermal flux of the contacting bodies in the contact
area are the same [1], [4]. In [6], [7] it was shown that in many
cases these contact conditions are not acceptable because they
can not take into account physical processes related to
deformation and heat exchange. In these publications it have
been considered the problem of thermoelastic contact of plates
and shells thought a heat-conduction layer with considering
change of the layer thickness during the plates and shells
deformation. Numerical examples presented there show that in
many important for science and engineering cases the result
obtained using a perfect thermoelastic contact conditions and
the conditions with considering change of the layer thickness
in the process of deformation are very different. In some cases
the difference is not only quantitative but also qualitative.
Therefore it is very important to consider contact conditions
introduced in [6], [7] in the problems were thin-walled
structures may have contact though the heat-conducting layer
in the intensive temperature field. Such kind of problems takes
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place in many important structures, equipment, and devices in
chemical, airspace, nuclear industries etc.

The approach developed in [6], [7] have been applied to the
plates and shells thermoelastic contact problems [11], [12], the
laminated composite  materials with  possibility  of
delamination and thermoelastic contact in temperature field in
[8], [9], and the pencil-thin nuclear fuel rods modeling [10].

In this paper some new results related to unilateral
thermoelastic contact of the thin-walled structures through the
heat-conducting layer are formulated. The connected
equations of thermoelasticity and heat conductivity are
created. These equations take into account change of the
conditions of heat exchange between the shell-like structures
and the rigid body during the structures deformation and
possibility of close unilateral mechanical contact. Numerical
example of the heat conductivity of the cylindrical shells
through the heat-conducting layer is considered. The
thermomechanical effects caused by contact interaction and
their influence on the thermomechanics parameters were
investigated.

Il. 3-DSTATEMENT OF THE PROBLEM

Let us consider an elastic homogeneous deformable and

rigid bodies in the temperature field situated in an initial,
undeformed state in a distance h,(x) apart. There is a heat-
conducting medium in the gap between the bodies. The
medium does not resist the body deformation, and heat
exchange between the bodies is due to the thermal
conductivity of the medium. We assume that gap h, is
commensurable with the body displacements and we assume
those displacements to be small.
The thermodynamic state of the deformable body and the
heat-conducting medium, is defined by the following
parameters: o (X), &;(X) and u; (x) are the components of
the stress and strain tensors and displacement vector, and
0(x), 7(X), 0°(X), x (x) are the temperature and specific
strength of the internal heat sources at the body and the
medium respectively.

We denote by V volume occupied by deformable body and
by &V its boundary. The body, boundary may be presented in
the forms

N=N, VN, VN, and N =N, VN, VAN, .

138



INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

On the parts &V,and &V, boundary conditions for

displacements and traction are prescribed. On parts &V, and
A, boundary conditions for temperature and heat flux are
prescribed. On the part of the boundary &V, contact of bodies

takes place. Different parts of the boundary do not intersect:
N, "N, "N, =@ and N, "N, "N, =D .

We denote by V"~ volume occupied by the heat-conducting

medium and by A" its boundary. The boundary of the
medium may be presented in the forms

N =N, N, U, .
On parts &V,
temperature and heat flux are prescribed.

and &V, boundary conditions for

A. Equations of thermoelasticity

We assume that displacements of the body points and their
gradients are small and relations between deformations, stress
and temperature are linear. In this case thermodynamic state of
the deformable body is defined by linear equations of
thermoelasticity. The stress-strain state is described by small
strain deformation tensor&; (x). The strain tensor and

displacement vector are connected by Cauchy relations
1
& :E(aiuj +0,U;) 1)

The components of the strain tensor must also satisfy the
Saint-Venant’s relations

aE|5ij _aﬁgkj = aEjgil _asgkl 2

From the balance of impulse and moment of impulse lows
follow that the stress tensor is symmetric one and satisfy the

equations of equilibrium
0,0y +b, =0, vXxeV. (3)

Here and throughout the article the summation convention
applies to repeated indices.
The stress o (x) tensor, tensor of deformation &;(x) and

temperature are related by Hook’s law
=Cjin =Cuij» By =B; (4)

where 0, = 0/0x; are partial derivatives with respect to the

O =Ciw0ou + 550 . Ciy

space variables x;, c;, and g; are elastic modulus and the
coefficients of linear thermal expansion. In the isotropic case

Cija = 4004 + (6305 +6,64), By = (1 +3)ad; 5)
o are the

where A and u are the Lame constants,

coefficients of linear thermal expansion.
The differential equations of equilibrium for the
displacement vector components may be presented in the form

Issue 2, Volume 1, 2007

Aijuj+Aic9+bi =0, (6)
with
A =Cwdid A =50, , (7)
A =(u+3)ad;, A = luzé‘ijé,ké)k +(A +u )o oy,
in anisotropic and isotropic case respectively.

B. Mechanical boundary and contact conditions

On the parts &V, and &V,
displacements and traction have the form

boundary conditions for

U =@ VXedV, ®)
pi =0o.N. :PIJ[UJ(X)]:V/l ,VXEWp

i
where ¢, and w,; prescribed displacements and tractions on

the boundary respectively.

The differential operator P, :u; — p; is called stress

operator. It transforms the displacements into the tractions.
For homogeneous anisotropic and isotropic body they have
the forms

P, = Cin0, and P, = nd, +ul5,0, +nd,) (9)

i
respectively. Here n, are components of the outward normal
vector, 0, = n;0; is a derivative in direction of the vector n(x)
normal to the surface oV, .

In the area &V, unilateral mechanical contact with friction

may occur. Therefore boundary conditions have form of
inequalities [2]

u, =xh, ,qnzo,(un—ho)qn =0

n (10)
=0;

<k, p, = du

pr p’[ :k1 pn _>é,tu1 :_irp

T T

where p,, u,, p, and u, are the normal and tangential
components of the contact force vector and the displacement
vector respectively, k, and A_are coefficients which depend
upon the properties of the contact surfaces.

C. Equations of heat conductivity

We assume that heat distribute in the body and in the media
according to Fourier low

q; = 4,00 (11)

Here g; is a vector of thermal flow, Z; is the tensor of
coefficients of thermal conductivity of the body. In the
isotropic case

ﬁ“ij :é‘ijﬂ’T’ (12)

where A, is the coefficients of thermal conductivity of the
body
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Then linear equations for heat conductivity for the body
have the form

2,6,0,0-1=0, YxeV (13)

The temperature distribution within the heat-conducting
medium is described by the equations of heat conductivity

X6,0,60.— 2.=0, ¥xeV"

ij<i

(14)

Here /1U is the tensor of coefficients of thermal conductivity
of the body. In the isotropic case

1 =5, (15)

where A; is the coefficients of thermal conductivity of the
body
D. Thermal boundary and contact conditions

On the parts &V, and &V,
temperature and heat flux have the form

boundary conditions for

0=0",VxedN,,q, =0 ,VXxed, (16)

where 6° and @ prescribed temperature and thermal flux on

the boundary respectively.
Boundary conditions on the lateral sides of the heat-
conducting medium will be considered in the form

n4,0,0+pl0-0")= (17)

where coefficient £ depends on thermal properties of
surroundings.

We assume that on the part of the body boundary that is in
thermal contact with media classical thermal contact
conditions take place. It means that temperature and thermal
flux of the body and media on contact area equals. Therefore
conditions of heat conductivity through the heat-conducting
medium have the form

0.=0,2,0,0.=14,6,0 ,VxedV, (18)

In the area of close mechanical contact the thermal
conditions are transformed into the form

a, :ae(e—ﬁb) , VX eodV, 19)

where g, is the heat flux passing across the close mechanical
contact area, «, is the coefficient of the contact surface
thermal conductivity.

Now problem consists in join solution of the equations of
themoelasticity (6) with boundary conditions (8) and
unilateral contact conditions with friction (10), equations of
heat conductivity for shell (13) and heat conducting medium
(14) and thermal boundary and contact conditions (16)-19).
Analysis of the problem encounters mathematical difficulties
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caused by the dimension of the problem, as well as by its non-
linearity. The problem can be partially simplified considering
thin-walled bodies. In this case we can reduce the dimension
of the problem

I1l. 2-D STATEMENT OF THE PROBLEM

Let a deformable body be an elastic homogeneous shell of
arbitrary geometry with 2h thickness. In this case the region
V occupied by the body and its boundary 6V may be
represented as

V =Qx[-h,h]Jand oV =SUQ " LQ".

Here Q is the middle surface of the shell, 6Q is its boundary,
Q" and Q" are the outer sides and S = dQ x[-h, h] is a sheer
side.

Let it be assumed that the component parameters, which
describe the stress-strain state of a deformable body as a three-
dimensional body are sufficiently smooth functions of X,

coordinate and may be expanded into Legandre's polynomial
series. Using the approach developed in [3], [5], they can be
expressed as

U (9= S U5 (X, )P (@), 3 (0 =S ok (x, )P (@),

6300 =Y e (€, )R (), 6() =Y 0" (x,)P, (@), (20)
6.()=36! (x,)P, (@)
where
0t ()= [ 6 )P s
oy(x,)= 2 [ xR o,
B0, =20 [ xR @, (@D
“h
0 (x,) = 2 j 0., X5 )Py ()0,
0r (x,) = 2 je (X, X)P (@)K,

® = Xz /h is a dimensionless coordinate.

Then we will get the equations of the problem in terms of
the coefficients of this expansion. As a result, we obtain a 2-D
system of equations for coefficients of Legandre's polynomial
series.

A. Equations of thermoelsticity

In order to obtain 2-D equations of thermoelasticity we
have to substitute expansion (20) into 3-D equations (1)-(6).
Expansion of the corresponding derivatives gives us
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2k +1 )dx, = 3,ut

o 2k+1_[

aOij 1

I 2,0 P a))dx3

2k +1 2k +17 .
e

h I§3Gispk(w)dx3: i3 _2k+1
h

(|3+-3+)

2k +1 2k+1( (. .

2k+l 2k+1

ja P, (o)dx, =2,60", ja 0P, (e)dx, = QX

Then the differential equations of thermoelasticity (3) are
transformed into its 2-D form

(Ll + Lu + Ll )- 8,4, (0% —0f )+ pt =0

(Lol + Lsul + Ll )- 8.6, (0" - 08 )+ pk =0 (21)

NMe I DD

(Lglul + ng“? + L'§|3u|3)+(k1 +k2)ﬂr (ek _9(;( )+

]
o

where pf =H[ =(-1)f Pf]‘bik'

As the result instead of 3-D system of the differential
equations we get infinite system of 2-D differential equations.
For some specific types of shells geometry and for plates

analytical expressions for differential operators Lj' may be
found in [3], [5], [6].
B. Mechanical boundary and contact conditions

The boundary conditions at the sheer side (4) and (7) easy
can be transformed into 2-D form. Applying expansion into
Legandre's polynomial series we obtain boundary conditions
for coefficients of the expansion in the form

Pl =y Vxeduf =¢f ,VXxed, (22)

Surface forces and displacements on upper and lower sides

of the shell are calculated in the form

ip.—p.,i ui =uf,

VxeQ® (23)

=
T\_MS I
o o
|
=

=p;, Zui“ =u , VXxeQ"
k=0

We used here relations for Legandre's polynomial
P@=1, P(-2)=(-D"

The contact conditions (10) can not be formulated for the
coefficients of Legandre's polynomial series because of their
nonlinearity. They are transformed into 2-D form with
considering the representations for surface forces and
displacements on contact surface using (23).

Issue 2, Volume 1, 2007

C. Equations of heat conductivity

In order to obtain 2-D equations of heat conductivity we
have to substitute expansion (20) into 3-D equation of heat
conductivity (13). Expansion of the second derivatives of the
temperature with respect to x, gives us

2k+1 2k+1[Q+ 2k+1
A

@ +q+.)

Then the 3-D differential equation of heat conduct|V|ty (13) is
transformed into 2-D form

ja 0P, (w)dx, =

2k+1 2k+1

[Qa Q3] [Q - 3---]+

+(k1+k2)Q3k + 5 —p
2'0

A 0% +
(24)

The 2-D equations of heat-conductivity for the layer have
more complicate form. It is because of the layer thickness is

variable, i.e. h"(x) and h™(x) are functions of coordinates.
Therefore expansion of the corresponding derivative gives us

.
2‘;;1 [a [Z 26, ] (e, Jx, = a{%ﬁﬁf}{ﬁ{%ﬁlhj’ff +

1 1 2k+1] (1 ...\, 1.\,
o”l(ﬁﬁlh*)ﬂk +H0”1hélT2k _T{ﬁ{ﬁﬁlh ja —(—1)kﬁl[ﬁﬁlh ]a }+

Lm0k s L anoa e
+ h 51h91 + h ohQ,} A

3_h* + - + -
Here o, = ,h=h"=h",h, =h" +h",

= (2K 1O+ 0 ) TE = (k+1)0 + (2K + 1)k 2+ 044+ )

Q" =(2k +1){510*“ +0,057° + .+ % o,hlkost +
+(3k—3)9° +...]+%0”lh[(2k ~1)057 + (4k - 6)0** + ]_

k-1 2k=5 L[, ... 9
_( . +2+...jh[ﬁlh 0; -(-1)ah-e, ]}

Q“=(k +1){¢910f + 2k2+1

> lonver - (-1 ﬁh0]+ AT +iath

+(2k + {5052 + 2,05 + ... +F51h[(k 102 +(3k—6)9F " + ]+
+ o J(2k - 3)93 + (ak —10)04 % + ] -
2k -3 2k-7 N P -
’[T+T +...jﬁ[alh 0 (1Y an 0, ]}
Then 2-D equations of heat-conductivity for the layer are
transformed into 2-D form

Aoft + ANTS +ANTE +(V,h-VT})+(V.h, - VT})-

_2k+1
2

[H:A*h* +(-12)f Q;A*h‘]+ (V*h-Q§)+

+(V.h-Q¥)+ 2“1[3 (-1 Qs]- (25)

141



INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

k
_ 2k+1( Qs +...)+(k1+k2)Q:,'§ +4 =0

where
A0:1[51A251+52A152] ,
AA, A A,
A*=ﬁa11al+ﬁaziaz ,V*:i &51+i52 ,
A h A, h h{ A A,

Voo, 40, Q! =[0".0!).0t =[0" ")

As the result instead of 3-D system of the differential
equations we get infinite system of 2-D differential equations.
The equations of heat conductivity for the layer (25) are
complicate because it contains information about deformation
of the shell.

The equations thermo-elasticity and heat conductivity are
written in coordinates related to the principal curvatures of the
shell surfaces. Here A, are coefficients of the first quadratic

form, and k, are principal curvatures.

D. Thermal boundary and contact conditions

The boundary conditions (4) and (7) can be transformed
into 2-D form in the same way like it was done in (22). As
result we have

0" =6y ,Vxed&,;qf =Qf ,Vxedy, (26)

The thermal contact conditions are transformed into 2-D form
considering the surface temperature and heat flux on upper
and lower sides of the shell

0

Zek 0", Z )qf =Q/, vxeQ’

=0
> (1o =0, Zqik
k=0 k=0

Then contact conditions (18) will be presented in the form
2 (1o =3 or ;’IZ =4, ZQS(*)

k=0 k=0 k=0
iak i (—1) ox ,ﬂiQ /I*Zw:
k k=0

k=0 =0 k=0

(27)

0

=Q;, VxeQ~

(28)

Qa(*)

The coefficients of Legandre's polynomial series for
temperature and its derivative with respect to x, are related

by equation

29ik B Qikfl Qik+1

h  2k-1 2k+31

, (k=1,...,n)

Now instead of one 3-D boundary value problem for
equations of thermoelasticity and heat conductivity we have
infinite set of 2-D boundary value problems for coefficients of
the Legandre's polynomial series expansion. In order to
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simplify the problem we have construct approximate theory
and keep only finite set of members in (20).

IV. APPOXOMATE EQUATIONS

As it was mentioned earlier, we consider a deformable body
be an elastic homogeneous shell of arbitrary geometry with 2h
thickness. In developed here approach the shell is substituted
by its middle surface and it thermodynamical state is
described by infinite system of differential equations (21),
(24), (25). Using regular approximation theorem, we can use
only finite number of members in Legandre's polynomial
series (20). Order of the system of equations depends on
assumption regarding thickness distribution of the
thermodynamical parameters. The thickness is relatively small
in comparison with other dimensions of the shell. Therefore
following [3], [5] we can use only two members in polynomial
expansion (20). In this case we will get first approximation
equations of shell and heat conductivity.

We will consider here the first approximation shell
equations, which usually refer as Vekua’s shell theory,
Timosheko’s  shell equations, Kirchhoff-Love’s shell
equations, and equations of heat conductivity with linear
distribution of temperature along the thickness.

A. Vekua’s shell equations

In the first approximation, the shell theory considers only
the first two terms of the Legendre polynomials series [3], [5].
In this case the thermodynamic parameters, which describe the
state of the shell, can be presented in the form

O (x)= O-i(j) (X, )Py (o) + O"; (x, P (@)
u; (x)=uf (x, Py (@) +ui(x, P (@) ,
Eij (X): gi(j) (Xv )Po (a))+ ‘95 (Xv )Pl(a’) ;

Then the 2-D equations of thermo-elasticity for the shell
can be obtained substituting these parameters into 3-D
equations (1)-(6) or directly from (21). They have the form

(29)

LPu® + L0t +L0(0° -2 J+b? =

LPu® + Litut + L (0" — 62 )+b? = 0
[ [ 1 0 i

We obtain system of six differential equations for unknown
coefficients uf and uj of the displacements vector. The

LY, LY, LY and LY are second-order and first—

operators
order differential operators, the operators L) and L; are first-
order differential operators. Their expressions are given in [3],
[5] for some types of shell geometry.

B. Timoshenko’s shell equations

Timoshenko's theory of shells is based on assumptions
concerning the nature of the stress-strain state of the shell.

Thus, according to those assumptions o3, =0 and &5, =0.

In this theory the thermodynamic state of shells is determined
by quantities specified on the middle surface. The stress state
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is characterized by the normal n tangential n,; (o # £)

ao !
and shear n,; forces, as well as the bending m_, and
twisting m,; (o= B) moments. The components of the
stress tensor are given by the equations

ny(x,)  3m,,(x, )x
O-aﬁ (X) = ﬁ2h + ﬁh3 : ! (31)
n,,(x
0,5(X)= a32(h ) ,05(x)=0
The components of the stress tensor are
gzzﬂ (X): ezzﬂ (Xv)+ Ka/} (Xv )XS ’ (32)

5as(x):ea3(xv) L £5(X)=0,

where e, characterize the deformation that is uniform

throughout the thickness of the shell and is associated with the
extension and the compression at the middle surface and the
displacement in the perpendicular planes, while «,, is

associated with bending and twisting at the middle surface [3],

[5].
The components of the displacement vector are given by
the equations

Ua(x):Va(Xv)+7’a(Xv)X3 ' u3(x):v3(xv)

where v, is the displacement of the points on the middle

(33)

surface and y, is the angle of rotation of the middle surface.

Differential equations of thermo-elasticity for shells
according to Timoshenko's theory have the form
00 01 0 0 0 h
L0V, + L%y, +L0(6° -6 )+bi =0 a

Lo, + Ly, + L% (0" =61 )+m, =0

where bi and m, are external loads acting on Q" and Q~
Ly . and L,

a !

and reduced to the middle surface, L}, Lj;

are second-order and first-order differential operators, L°
and L differential operators. Their

expressions are given in [3], [5] for some types of shell
geometry.

are first—order

C. Kirchhoff-Love’s shell equations

In the classical Kirchhoff-Love's theory of shells in addition
to the assumptions of the Timoshenko's theory it is assumed
thate , =0 and that the angles of rotation of the normal to the
middle surface vector become dependent and are given by the
equations

Pl )= ) b)) 9

The inconsistencies of the classical Kirchhoff-Love's theory
of shells resulting from these hypotheses are well known [3],
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[5]. Nevertheless differential equations of thermo-elasticity for
shells in this case have simple form

1
LypVy + LypVy + LygVg + D LY (9“ -0f )+ b, =0

k=0

1
LogVy +LogVy + LygVy + > L5 (0% =68 )+b, =0 (36).

k=0
1
LaaVy + LygV, + LoV + > L5 (6% =6 b, =0
k=0

where b, are external loads acting on Q" and Q~ and
reduced to the middle surface, L; are differential operators of

the order up to four, L* are differential operators of the order

up to two Their expressions are given in [3], [5] for some
types of shell geometry.

D. Equations of heat conductivity

In the first approximation approach it is assumed that
temperature linearly distributed along the thickness. Therefore
we considers only the first two terms of the Legendre
polynomials series. Temperature in the shell and heat-
conducting layer can be presented in the form

0@ (x)=0°(x, )P (@)+0*(x, P (@) . (37)
0. (x)= 02 (x, Py (@) + 62 (x, )P, (o)

Then the 2-D equations of heat-conductivity for the shell
have the form

l 0
Aoe0 +%(Q3+ _Q3_)+(k1 +kz)Qg +)/{T:0
’ (38)

1

A0¢91+2—3;](Q3+ +Q3‘)+(kl+k2)Q§+§—=0
0

where

+ - 3 + 360 0 1 +
Q; —Q ZE(H +Tk)+ﬁ . Qs :%(‘9 _Tk)’ (39)
3 56" 3 36"
++ —:794—_-'- - 1_ " (p* v
Q +Q Zh( k) 2h R Zh( k) 2h
o _ ol —u,)30" +60° ~100")+ A.h0"
‘ 94,(h, —U,)+ A,h (40)
We will consider only one term in the Legendre

polynomials series for &.. Then the 2-D equations of heat
conductivity for the layer have the form

Ay0° +Ah6Y + (V*th’f)—%(@IA*W oA
+(V*h.Qg)+%(Q*§—Q*§)+ (41)

0
+(k1+k2)Q*g+}/fT=O
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In this case the differential equation (41) is not depend on
(38) and also differential for shell (30), (34), (36). See [6] for
details.

V. NUMERICAL EXAMPLEs

Let us consider axisymmetrical cylindrical shell placed
inside of the cylindrical hole in the rigid body with gap

hy(X) . The heat is transferred from the body to the shell

though heat conducting layer. The possibility for unilateral
mechanical contact is also taken into account.

Differential equations of thermo-elasticity and heat-
conductivity for the axisymmetrical cylindrical shell in the
classic Kirchhoff-Love's theory have the form

2l
dw 0" -p " G =s(p-a). @
M—goé’o +F =0, Lgl—glﬁlJrF =0,
dx?
where
R B ﬂ4=3(1—v2) 5 v,
h2'™ h? 4h?r2 70 h2r

1+v)e, o 2ER’
h 31-v?)

16y,

.3 3
—9 )+W(Tk+6' )'W

In [8], [9], [11] it was shown that the differential equations
(42) can be transformed into the integral equations of
Hammerstein's type

6. (Y. (yky =07

[wix y){é [p(y)-a(y)]- 5 Fa(y)}dy =w,

ﬁl =
and

Fy =056,(0 +T, )+

F, =0.5¢,(T, 6"

(43)

where the kernels in these integral equations are fundamental
solutions for corresponding differential operators of the form

G, (x y)= exp(— &lx— y\)/Zg. i=0,1, (44)

W(x,y)= exp( Bix— y\)[cos(ﬂ\x y\)+sm(ﬂ\x y\)]

8/)’D

and F, = 4,(F, +£20")- B,0° .
Stresses in the axisymmetrical
calculated by formulas

cylindrical shell are

E {dzw

i (1+V)at9122h}, (45)

Ew E d2w z
5= a,0°E 1—v2 {v e z-(1+v)a,0 Zh}
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Substituting expression for the second derivative of the
displacements into (45) we obtain

d? G(§ X)

o, (x)=b je @2 X) g (46)
b j G(&, )6 ()dE—b,0" (X) +b, j[p(g) g2 80 SN o
%(X)=VGX(X)+ELm—atE[6°(x)+el(x)z]
where
_ SEqzr® _30+v)Ea,rz | Ear'z
" @evihth, Tt an’hi TP @-v)hh,
_8r'z . 3aEn 3L-v)a,Er’z i
b3_2h3h0 Py = h?  Pr= h? , ﬂ3_8h3 .

Mizes stresses are calculated by the equations
= (0;)* +(0,)(05) + (07)?
o = ¥iplloi -~ +(o) ~0))" + (o7 +a)"

Algorithm for the problem solution consists in iterative
process of the integral equations of Hammerstein's type solution
and in the case if unilateral contact take place additional
iterative algorithm is used. Algorithm has been elaborated in
[6], [7]. In the problems under consideration algorithm is
convergent and convergence is enough fast.

We will consider here thermomechanical state of the shell
which arise due to two factors: a. no homogeneous distribution
of external temperature load; b. presence of macro roughness
on the rigid body, which can be described by no homogeneous
initial gap.

Calculation have been done for the data:, geometrical
parameters r=0.5m, h=001m, , h,=05h, I, =r,
material properties: E =25-10° MPa, v =0.25
a, =25-10°1/°C , 2, =2V/m°C , 4, =1V/m°C

Example 1. We consider axisymmentrical cylindrical shell
of infinite length placed into the rigid stirrup with

homogeneous initial gap.
Temperature on the stirrup surface of is equal to

T*(X)=T, +T,sinax/l,,T, =600°C T, =100°C.
On the shell surface act homogeneous load p(x) =10MPa ,

(47)

and temperature T~ =0° C.

In the Fig.1. are presented: Mizes stresses on external o

surfaces of the shell, force of contact
normalized bending W =w/h, and

temperature on contact surface T,. The dashed

correspond to solution for perfect thermal contact without
counting influence of the shell deformation on the heat
exchange and the solid lines correspond the presented here
solution.

and internal o
interaction g,
lines
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Fig 1.

Analysis of these data shows, that no homogeneous
temperature distribution cause significant shell deformations
and close mechanical contact with rigid stirrup. As result in
the shell significant stress occur. Calculations with
considering perfect thermal contact lead to significant
inaccuracy, which is not only quantitative but also qualitative.

Example 2. Here we consider axisymmentrical cylindrical
shell of infinite length placed into the rigid stirrup with no
homogeneous initial gap. The gap is given by the function

h.(x)=h, +h, sinzx/l, , h,=05h,h, =h, /2.
In the Fig.2. are presented: Mizes stresses on external o*

and internal o~ surfaces of the shell, , normalized bending
W =w/h, and temperature on contact surface T,. The
dashed lines correspond to solution for perfect thermal contact
without counting influence of the shell deformation on the

heat exchange and the solid lines correspond the presented
here solution.
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Fig 2.

Analysis of these data shows, that no homogeneous initial
gap cause significant shell deformations. As result in the shell
occur significant no homogeneous stress and temperature
distribution. Calculations with considering perfect thermal
contact lead to significant inaccuracy. Some values of
thermomechanical parameters differ twice.

Issue 2, Volume 1, 2007

VI. CONCLUSION

The results presented here and in previous our publications
show that the in thermoelastic contact problems for thin-
walled structures mutual influence temperature and
deformation may be significant and it have to be taken into
account in engineering design.
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