
 

 

  
Abstract— This work presents numerical algorithms for 

simulation of distributed-parameter systems with direct applications 
in electrical engineering. The algorithms are developed in the context 
of the finite element method. Many works in the professional 
literature present coupled models for the electromagnetic devices and 
this work is toward this direction with emphasis on the development 
of efficient algorithms in numerical computation of the coupled 
models. 

Our work describes the solution of coupled electromagnetic and 
heat dissipation problems in two dimensions and cylindrical-
coordinates system for devices with cylindrical symmetry.  

The purpose of the work is to define both conventional algorithms 
and parallel algorithms for coupled problems in context of the finite 
element method. The mathematical models for electromagnetic field 
are based on potential formulations. Some numerical results are 
presented. 

  
Keywords— Coupled fields, Finite-element method, Domain 

decomposition.  

I. INTRODUCTION 
he reality forces us to deal with complex coupled systems 
where two or more physical systems interact. Two or 

more fields coexist in the same geometry, in the same 
electromagnetic device. These fields interact. For example, 
induction heating is used for surface treatment of materials. In 
this practical application, the eddy currents generated by an 
electromagnetic inductor are used as the thermal heat sources 
through the Joule effect. More, any change in the physical or 
geometric parameters of an electromagnetic device will affect 
both magnetic and thermal fields. In our target examples the 
physical phenomena are electromagnetic and thermal. The 
physical properties of the materials are strongly dependent on 
the temperature, especially the following characteristics: 
electric conductivity, magnetic permeability, and specific heat 
and thermal conductivity. 

In this work we limit our discussion to coupled 
electromagnetic and thermal fields. Mathematical models for 
the problems in which the electromagnetic field equations are 
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coupled to other partial differential equations, such as those 
describing thermal field, fluid flow or stress behaviour, are 
described by equations that are coupled [1]. The coupling 
between the fields is a natural phenomenon and only in a 
simplified approach the field analysis can be treated as 
independent problem.  

 In several cases, it is possible a decoupling and a cascade 
solution of the coupled equations. Another attractive and 
efficient approach of solving coupled differential equations is 
to consider the set as a single system. In this way a single 
linear algebraic system for the whole set of differential 
equations is obtained after discretization, and is solved to a 
single step. If one or more equations are non-linear, non-linear 
iterations of the whole system are required. 

The equations of the electromagnetic fields and heat 
dissipation in electrical engineering are coupled because the 
most of the material properties are temperature dependent and 
the heat sources represent the effects of the electromagnetic 
field [1]. 

The thermal effects of the electromagnetic field are both 
desirable and undesirable phenomenon. Thus, in conducting 
parts of some electromagnetic devices (coils of the large-
power transformers, current bars, cables conductors, 
conductors of the electric machines etc) the heating is an 
undesirable phenomenon. The heat is generated by ohmic 
losses of the driving currents and eddy currents induced in 
conducting materials. But in induction heating devices for 
welding the heating is a desirable phenomenon. The thermal 
effect of the electromagnetic field is the treatment base for 
many electric materials in industry [5]. 

With the terminology of the system theory, we identify two 
kinds of the heat sources (and commands in an inverse 
problem): 

• Distributed sources (electrical currents) 
• Boundary sources (Dirichlet's condition, Neumann's 

condition, convection and radiation) 
In the heating of the electromagnetic devices, the internal 

heat sources are represented by [2]:  
• Ohmic losses from driving (source) currents 
• Ohmic losses from eddy currents induced in 

conducting materials of the time variable magnetic 
field 

• Dielectric losses due to friction in the molecular 
polarisation process in solid dielectrics that form the 
insulation of the high-voltage apparatus 
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• Hysteresis loss in magnetic problems. It is due to 
magnetic domain friction in ferromagnetic materials. 

The boundary sources  (commands) can be [2]: 
• Dirichlet command, that is, an imposed temperature 

on the boundary of the spatial domain  
• Neumann command that involves an imposed flux 

temperature on the boundary of the spatial domain  
• Convective command (the temperature of the ambient 

medium or a cooling fluid, a parameter of the cooling 
fluid as the speed etc)  

• Radiation commands (the temperature of the ambient 
medium or other parameters that are outside the spatial 
domain of the field problem and influences the 
temperature of a device by radiation phenomenon).  

II. MATHEMATICAL MODELLING OF THE COUPLED FIELDS 
For numerical simulation of the coupled systems we must 

have in mind some practical aspects: 
• Mathematical models of electromagnetic field and 

thermal field 
• Mathematical tools for field problems 
• Mathematical methods for coupled problems 
A complete mathematical model for coupled 

electromagnetic-thermal fields involves Maxwell’s equations 
and the heat conduction equation. Combining these equations 
yields a coupled system of non-linear equations. 

A complete physical description of electromagnetic field is 
given by Maxwell’s equations in terms of five field vectors: 
the magnetic field H, the magnetic flux density B, the electric 
field E, the electric field density D, and the current density J. 
In low-frequency formulations, the quantities satisfy 
Maxwell’s equations [4]: 

JH =×∇            (1) 

t

B
E

∂

∂
−=×∇           (2) 

0=Bdiv           (3) 

cDdiv ρ=          (4) 
with ρc the charge density, σ – the electric conductivity, and 

μ the magnetic permeability. For simplicity we give up to the 
bold notations for vectors. 

The second set of relationships, called the constitutive 
relations, is for linear materials: 

EJEDHB σεμ === ;;  
The B-H relationship is often required to represent non-

linear materials. The current density J in Eq. (1) must 
represent both currents impressed from external sources and 
the internally generated eddy currents.  

The formulation with vector and scalar potentials has the 
mathematical advantage that boundary conditions are more 
often easily formed in potentials than in the fields themselves. 
The magnetic vector potential is a vector A such that the flux 
density B is derivable from it by the operator curl or  ( ×∇ ). 

The mathematical models for the electromagnetic field 

problems may be included in the following formulations: 
• Integral equation formulations (Fredholm integral 

equations) 
• Differential equation formulations (partial differential 

equations of elliptic or parabolic type) 
• Hybrid formulations  
The complexity of the mathematical model for 

electromagnetic field was one of the main reasons to find and 
develop new computational methods. All methods can be 
included in one of the following classes [4]: 

• Manipulation of the equations so that some unknowns 
are eliminated 

• Definition of some potential functions from where the 
field unknowns can be obtained by simple processing 

• Finding of some assumptions that simplifies the 
computation for practical problems 

The potential formulations seem attractive because of their 
computational advantages. One of these consists in the fact the 
boundary conditions are easily framed in the potentials than in 
the field themselves. 

A. The eddy-current problems 
The time-varying magnetic field within a conducting 

material causes circulating currents to flow within the 
material. These currents called eddy-currents can be unwanted 
or desirable phenomena. Thus, the eddy-currents in electrical 
machines give rise to unwanted power dissipation. On the 
other hand the induction heating is a wanted phenomenon in 
industry of the metal treatment.  

Industrial equipment in which the eddy currents are 
essentially can be included in one of the following classes: 

• long structures, in which the electric field and the 
current density posses only one component 

• complex structures in which we use models 3D 
In the long structures, the currents are generated by an 

electric field applied at the terminals of the conductor, or by a 
time-varying magnetic field linking the loop formed by the 
conductors. These structures belong to electric transmission 
network or the distribution networks (bus bars, large-power 
cables etc). In these problems the applied voltage of the bar or 
cable is known and we seek to compute the current density 
distribution within the conductor in order to determine some 
electromagnetic quantities of interest (the electrodynamic 
forces, mutual inductances, local heating etc). 

The complex structures create difficulties in simulation and 
computation of their characteristics although these structures 
possess construction simplicity. One of these structures is the 
device for electric heating by electromagnetic induction. In 
this type the applications it is necessary to compute accurately 
the eddy currents. If the eddy-currents distribution is non-
uniform, the resulting high-temperature gradients may crack 
the workpiece. 

The problems are different in the two different types of 
applications but for any given application the presence of the 
saturable iron sheets introduces saturation phenomena and the 
problem becomes non-linear. 
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For each class we can apply general mathematical methods 
but it is more efficient to develop a particular algorithm for 
each kind of classes. 

The effects of the eddy currents are: 
• The time-varying magnetic flux density is non-

uniform within the conductor. The alternating 
magnetic flux is concentrated toward the outside 
surface of the material (phenomenon known as the skin 
effect). 

• Power losses are increased in the material 
Eddy current computation appears in two types of 

problems: 
• Stationary problems where the structures are fixed and 

source currents are time varying 
• Motion problems where the field source is a coil in 

moving 
Many practical engineering problems involve geometric 

shape and size invariant in one direction. Let z denote the 
Cartesian co-ordinate direction in which the structure is 
invariant in size and shape. This is the case of a plane-
parallel field or translational field problem, where A has one 
component, namely Az. This component is independent of the 
z co-ordinate and the Coulomb gauge is automatically 
imposed and V is independent of x and y.  In such a case both 
the magnetic vector potential and the source current JS reduce 
to a single component oriented entirely in the axial direction 
and vary only with the co-ordinates x and y [4].  

Consequently, the component Az (for simplicity we give up 
the subscript z) satisfies the diffusion equation in fixed bodies: 

sJ
t

A
A −=

∂

∂
−∇∇ σν )(        (5) 

or, in cartesian co-ordinates: 
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t
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∂

∂
   (6) 

The boundary conditions are set-up for the single 
component A and can be Dirichlet and/or Neumann’s 
condition. The interface conditions between two materials 
with different properties are: 

N

A

N

A
AA

∂

∂
=

∂

∂
= 2

2
1

1;21 υυ  

where n is the normal at the common surface of the two 
regions with different material properties. 

B. Modelling of time-dependent fields 
The time dependent electromagnetic field problems are 

usually solved using differential models of diffusion type. 
Many practical problems of great interest in electromagnetics 
involve time-harmonic fields and this case will be considered 
in this work. 

In general, computer software for time-varying problem can 
be classified into two classes [2]: 

• time-domain programs 
• frequency-domain programs 
Time-domain programs generate a solution for a specified 

time interval at different time moments. Frequency-domain 
programs solve a problem at one or more fixed frequencies. 

The first class has some disadvantages. One of these 
consists in the large amount of data that must be stored to 
recover the field behaviour. Although the second class has an 
essential advantage (a compact and a cheap program in terms 
of the computer resources), the area of problems that can be 
solved is limited. It is applicable only to linear problems (all 
phenomena are sinusoidal). 

The usual mathematical model for time dependent 
electromagnetic field problems is with Maxwell’s equations in 
their normal differential form. For low frequency the 
displacement current term in Maxwell’s equations can be 
neglected. At a surface of a conducting material the normal 
component of current density Jn can be assumed to be zero. 

III. MATHEMATICAL MODELLING OF THE THERMAL FIELD 
The thermal field is described by the heat conduction 

equation [4]: 

qTTkTT(c
t

=∇⋅−∇+⋅
∂

∂
])([]))([ γ    (7) 

where:  T (x, t) is the temperature in the spatial point x at 
the time t; point k is the tensor of thermal conductivity; γ is 
mass density; c is the specific heat that depends on T; q is the 
density of the heat sources that depends on T. In the coupled 
problems we use the formula: 

2)( JTq ⋅= ρ                   (8) 
with ρ the electrical resistivity of the material. Equation (7) 

is solved with boundary and initial conditions. The boundary 
conditions can be of different types: Dirichlet's condition for a 
prescribed temperature on the boundary; Neumann's 
condition; convection condition; radiation condition, and 
mixed condition [1]. These boundary conditions have the 
following form on different parts of the boundary surface S: 

Dirichlet's condition: 
),,,(

1
),,,( tzyx

D
T=StzyxT  

Neumann's condition: 

0=|S2]
n

q+
n

T
[k

∂

∂
 

Convection: 

0=|S3)]T-h(T+
n

T
[k ∞

∂

∂
 

Radiation: 

0=|S4]T-T 4
B

+
n

T
[k )4(

∞∂

∂
εσ  

where the boundary surface S is: 

4321 SSSSS ∪∪∪=  

The significances of the quantities that appear in the 
boundary conditions are: TD is a known function defined on 
the boundary S1; h is the convection coefficient; T∞ is the 
ambient temperature; qn is the normal heat flux; σB is 
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Boltzman's constant in radiation and ε is the emissivity 
coefficient. The coefficients of the heat transfer as h and ε 
depend on the temperature and the surface quality. For these 
we use empirical formulas based on the experiments. 

For many eddy-current problems the magnetic flux 
penetration into a conductor without internal sources of the 
magnetic field is confined mainly to surface layer. This is the 
skin effect. The skin depth δ depends on the material 
properties μ, ω and σ so that for the small depths all effects of 
the magnetic field are confined to a surface layer.  

In steady-state low-frequency eddy current problems in 
magnetic materials, the mathematical model is the diffusion 
equation defined by Eq. (6). 

The skin effect can be exploited in two directions: 
To reduce the space domain in analysis with a fine mesh 

close to conductor surfaces 
To reduce the material volume since a significant 

proportion of the conductor is virtually unused  
The penetration depth is given by the formula [4]: 

ωσμ
δ

2
=         (9) 

For example, in a semi-infinite slab of conductor with an 
externally applied uniform alternating field, parallel to the 
slab, the amplitude of flux decays exponentially. In other 
words for problems with the skin depth very small all the 
effect of the field is confined to a surface layer. In a numerical 
model based on finite element method (FEM) this effect can 
be exploited by the use of domain decomposition at the level 
of the problem. In this way we reduce the run-time of a 
program based on FEM. 

Designer engineers use the formula (9) considering the 
permeability and the conductivity as numbers. In reality the 
two physical parameters change during heating. The changes 
in the value of δ affect the loss in the material and depend on 
the process (conduction or induction). For example, if the 
conductivity decreases by x, the depth increases by √x, that is 
the current penetrates deeper into the metal.  If the magnetic 
material heats, its resistivity (the inverse of the conductivity) 
rises but its relative permeability remains substantially 
constant up to the Curie point. In this point it drops suddenly 
to unit. 

Another simplifying assumption for the designer engineers 
is based on that all heat enters at the surface of the conductor. 
In reality, this is only true if the frequency of the magnetic 
field source is very high and the depth of heating is small 
compared with the geometrical dimensions of the conductor. 
This fact can be exploited in numerical simulation of these 
devices by reduction of the analysis domain. 

For an accurate computation of the penetration depth of the 
magnetic field we must consider two practical conditions: 

• The heat is distributed in the conducting part 
• There is an important heat lost by radiation at the 

conductor surface 
Radiation can be regarded as a simple surface loss 

subtracting from the surface power input.  The Stefan-

Boltzmann's law gives the radiation loss. If the body is 
radiating to a surface at absolute temperature T∞ Kelvin, the 
radiation loss is defined by: 

)44(
0 ∞−= TTcrrP ε  

where εr  is the emissivity coefficient of the surface 
(dimensionless), and T is the absolute surface temperature in 
grades Kelvin (K). The constant c0 is 5.67.10-8 W/m2K4.  For 
low temperatures, the radiation loss is negligible but in the 
induction-heating device it must be considered. 

Consequently, it is convenient to use coupled models and 
accurate methods for computation of the heat penetration in 
the conductors, especially in the induction heating devices. 

A. Transient problems 
Many engineering applications are described by parabolic 

partial derivatives equations. When applying the FEM to time 
dependent problems, the time variable is usually treated in one 
of two ways: 

• Time is considered as an extra dimension and shape 
functions in space and time are used 

• The nodal variables are considered as functions of time 
and the shape functions in space are used. 

A common approach for transient problems is to solve time 
dependent differential equations by finite differences 
approximation of time derivative terms, combined with some 
weighted residual method in space. 

A widely used finite difference scheme for the first-order 
equations is the so-called θ. Certain values of θ correspond to 
known methods for time stepping: 

• θ =0  the forward difference method; 
• θ =1/2  Crank-Nicholson’s method; 
• θ =2/3 central difference method; 
• θ =1 the backward difference method. 

B. θ-rule combined with Galerkin’s method  
We illustrate the method by applying the θ-rule in time and 

Galerkin’s method in space to the following heat conduction 
equation [4]: 

0,)( ftxqTk
t

T
Ω∈+∇∇=

∂

∂
   (10) 

 
Ω∈= xxfxT )()0,(         (11) 

0,),( ftxtxg
n

T
k Γ∈=

∂

∂
−     (12) 

We shall present the numerical models obtained by two 
strategies.  

Applying the θ-rule to the heat equation (10) results in the 
following spatial problem: 

)()0( xfT =  
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where the superscript m denotes the iteration number, that 
is T(m)=T(x,tm).  

Discretizing Eq. (13) by the method of weighted residuals, 
with T(n) approximated by [7] 

∑
=

=
r

i
xiNm

iTmT
1

)()()(  

gives an algebraic equations system: 

{ } { } )1()(])[]([ −
=+

mbmTKM  
where the matrices [M] and [K] have the entries: 

∫
Ω

Ω= djNiNijM  

∫
Ω

Ω∇⋅∇⋅⋅= djNiNktijK δθ  

Instead of first discretizing in time by a finite difference 
method, first we can apply the discretizing in space by the 
weighted residual method, with T approximated by: 

∑
=

=
r

i
xiNtiTtxT

1
)().(),(  

By this procedure a first order differential equations system 
is obtained in the form: 

{ } { } { }fTA
dt

Td
=+ ].[  

The θ-method for the time integration leads to [4]: 

)(}{)1(}]){)[1(]([

)(}]){[]([
mgmTAtI

mTAtI

+−−−

=⋅⋅+

θδ

δθ
 

))1(}){1()(}{()(}{ −−+⋅= mfmftmg θθδ  
For θ=0 the forward Euler's scheme is obtained and we can 

get T(m) explicitly; otherwise, a linear system must be solved 
at each time step. When θ>1/2 there is no stability restriction 
on time step δt, which can be convenient for the simulation 
algorithm. The choice of θ=1/2 leads to an optimal 
combination of stability and accuracy. 

IV. COUPLED MODELS FOR MAGNETIC AND THERMAL FIELDS 
With a correct formulation of the mathematical models and 

a good selection of the mathematical tools for a specified field 
problem, we must select the method for the numerical solution 
of the field problem. Ones of these methods for field problems 
are moment’s method, finite element method (FEM), 
boundary element method (BEM), hybrid method BEM-FEM, 
finite volume method (FVM), and edges element method 
(EEM). 

In our works we considered the FEM [6]. This method can 
be viewed as a particular case of the general method of 

moments, or a case of the Rayleigh-Ritz method. 
When applying the FEM to time dependent problems, the 

time variable is usually treated in one of two ways: 
• Time is considered as an extra dimension and shape 

functions in space and time are used 
• The nodal variables are considered as functions of time 

and the shape functions in space are used. 
For magnetic field we consider the A-formulation, that is 

we define the magnetic vector potential A by B = curl A.  
More, the domain is the same for temperature and the 
electromagnetic field although in practice the interest is for 
different field domains.  

In order to solve the transient coupled set of equations a 
numerical model can be developed using the finite element 
method [7]. The finite element discretization in space is used, 
leading to a system of first-order differential equations: 

{ } { } 0][][ =++
∂

∂

⎭
⎬
⎫

⎩
⎨
⎧

JfAAK
t

A
AS      (14) 

{ } { } 0][][][ =++
∂

∂

⎭
⎬
⎫

⎩
⎨
⎧

AATKTTK
t

T
TS     (15) 

where the matrices have the entries defined in accordance 
the FEM. The subscripts A and T refer to the magnetic and 
thermal field respectively. The vector {fJ} is generated by the 
heat source. 

HHJq ×∇⋅×∇== ρρ
2

 
The two equations are coupled and non-linear. Finally, the 

two models can be considered as a coupled system defined in 
matrix form [1]: 
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In a discrete form the unknowns are the nodal values of the 
temperature T and the magnetic vector potential A. The non-
linear equations for T and A are straightforwardly obtained by 
a Galerkin's finite element method. For the case of 2D steady-
state problems we do the following approximations at the 
element level [1]: 

∑
=

=
r

j jTyxjNyxT
1

),(),(  

∑
=

=
r

j jAyxjNyxA
1

),(),(  

where the interpolation functions Nj are basis functions in 
the mesh over Ω, and r is the number of nodes of an element.  

The usual procedure for the FEM applications leads to a 
system of 2p equations where p is the total number of the 
unknowns in each field problem. Finally, the coupled problem 
is described by a system of algebraic systems in the form [2]: 

0),...,1,,...,1( =pTTpAAAf     (16) 

0),...,1,,...,1( =pTTpAATf     (17) 

where the subscript denotes the original problem (A – for 

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2,Volume 1, 2007 171



 

 

the magnetic field in the magnetic vector potential 
formulation; T – for the thermal field). 

V. ITERATIVE ALGORITHMS FOR COUPLED FIELDS 
The finite element method has three distinct logical stages: 

pre-processing, processing (solution) and post-processing.  
Each stage has an inherent parallelism that can be exploited 
for parallel computing. New algorithms for the parallel 
computers were developed and presented in the professional 
literature.  We shall limit discussion to one of them: domain 
decomposition [8]. This algorithm uses the subdomain-to-
subdomain iteration. Although the procedure is well known, 
we must modify it for coupled problems. 

A. Conventional algorithms  
The numerical model for coupled problem defined by Eq. 

(16) and Eq. (17), can be solved by two different basic 
strategies [1]: 

• Solving the equations for Ti and Ai simultaneously 
• Solving the equations for the two fields in sequence 

with an outer iteration, technique known as operator-
splitting technique (for example Newton-Raphson 
procedure) 

In the area of the first strategy, Gauss-Seidel and Jacobi 
methods are well known. We present these methods in brief.  

The Gauss-Seidel algorithm for coupled fields has the 
following pseudo-code [1]: 

For  m:=1 , 2, … until convergence DO 
Solve  

0))1(,...,)1(
1;)(,...,)(

1( =−− m
pTmTm

pAmAAf with 

respect to A1
(m), … Ap

(m) 
Solve 

0))(,...,)(
1;)(,...,)(

1( =m
pTmTm

pAmATf  

with respect to T1
(m) , … Tp

(m) 

 
In other words, the system is solved firstly with respect to 

A, using the values of T from the previous iteration. 
Afterwards, the equation derived from the thermal field model 
is solved using the computed values of A from the current 
iteration. The equations fA=0 or/and fT=0 are non-linear and 
must be solved by an iterative procedure (for example 
Newton-Raphson's method). 

The algorithm Jacobi-type is similar to Gauss-Seidel 
method, except that at the iteration m when we must solve the 
model for T, the values for A are from the previous iteration, 
that is A(m-1). The algorithm has the following pseudo-code: 
For m:=1 , 2, … until convergence DO 
Solve  

011
11 =−− ))(m

p,...,T)(m;T(m)
p,...,A(m)(AAf with respect to 

A1
(m), … Ap

(m) 
Solve 

0))(,...,)(
1;)1(,...,)1(

1( =−− m
pTmTm

pAmATf with respect 

to T1
(m) , … Tp

(m) 

 
This algorithm has an inherent parallelism so that can be 

implemented in a parallel program. Practically, we 
decomposed the coupled problem in two subproblems: one for 
the magnetic field, another for the thermal field.  At a time 
step of the algorithm, the numerical models for the two fields 
can be solved independently. 

B. Advanced algorithms  
The domain decomposition method is the best among three 

possible decomposition strategies for the parallel solution of 
PDEs, namely, operator decomposition, function-space 
decomposition and domain decomposition. This is one of the 
motivations to present the principles of the domain 
decomposition methods in this section [3]. 

The domain decomposition could be determined from 
mathematical properties of the problem (real boundaries or 
interfaces between subdomains), or from the geometry of the 
problem (pseudo-boundaries). For elliptic partial differential 
equations, there exists a mathematical approach based on the 
ideas given earlier in 1890 by Schwarz [8]. In Schwarz 
procedure there is an inherent parallelism with a data 
communication time for the passage of pseudo-boundary data 
between the subproblems.  

There is no general rule for the domain or/and operator 
decomposition. It is defined in a somewhat random fashion. 
The problems and solutions that appear in the decomposition 
techniques depend on the following aspects [3]: 

• If it is used domain decomposition or the operator 
decomposition 

• If the partition has disjoint or overlapping sub-domains 
• The type of boundary conditions that are set up on the 

pseudo-boundaries of the sub-domains 
• If the decomposition is static or dynamic 
A general criterion for the decomposition does not exist so 

that the experience of the engineer can be a useful reference 
for many algorithms and software products.  

C. Decomposition techniques  
The desire of the scientific community for faster processing 

on lager amounts of data has driven the computing field to a 
number of new approaches in this area. The main trend in the 
last decades has been toward advanced computers that can 
execute operations simultaneously, called parallel computers. 
For these new architectures, new algorithms must be 
developed and the domain decomposition techniques are 
powerful iterative methods that are promising for parallel 
computation. Ideal numerical models are those that can be 
divided into independent tasks, each of which can be executed 
independently on a processor. Obviously, it is impossible to 
define totally independent tasks because the tasks are so inter-
coupled that it is not known how to break them apart. 
However, algorithmic skeletons were developed in this 
direction that enables the problem to be decomposed among 
different processors. The mathematical relationship between 
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the computed sub-domain solutions and the global solution is 
difficult to be defined in a general approach. 

In the area of the coupled fields we define two levels of 
decomposition that is we define a hierarchy of the 
decompositions [1]:  

• One at the level of the problem 
• The other at the level of the field 
In other words, we decompose the coupled problem in two 

sub-problems: a magnetic problem and a thermal problem, 
each of them with disjoint or overlapping spatial domains. 
This is the first level of decomposition. At the next level, we 
decompose each field domain in two or more subdomains. 
The decomposition is guided both by the different physical 
properties of the materials, and the difference of the 
mathematical models. At this level of decomposition the 
Steklov-Poincaré's operator can be associated with field 
problem [8]. This operator reduces the solution of the coupled 
subdomains to the solution of an equation involving only the 
interface values. One efficient and practical solution of 
elliptical partial differential equations is the dual Schur 
complement method [3]. 

VI. SOFTWARE PRODUCTS 
A finite element (FE) program may be developed in a 

modular form (see the block diagram from the Fig. 1). FEM 
involves three stages:  

• Pre-processing 
• Solution (or processing) 
• Post-processing 

 
 

Fig. 1– Block diagram for software CAD 
 
Each stage involves more steps that are not shown in the 

block-diagram. The details of the finite element programs are 
presented in a large professional literature so that it is not the 
purpose to present them in this work. 

The influence of the temperature on the material properties 
can be used in development of efficient programs in terms of 
the computing resources: memory and the execution time. 
Some relevant aspects in the design of the CAD software for 
coupled magneto-thermal problems are: 

The thermal source in the heat equation can be defined by 
the time-mean of the ohmic power loss. The motivation is 
simple: the time constant of the magnetic phenomenon is 
small compared to the diffusion time of the heat transfer. 

A cascade solution may be more efficient than a fully 
coupled model. In some applications there is a strict coupling 
between magnetic and thermal equation at each time instant, 
but in many situations we can do separate analyses of the 
magnetic field and the thermal field. 

It can be used a predefined temperature profile of a material 
for updating the magnetic field at specified temperatures. For 
example, at Curie temperature the material properties change 
dramatically [1]. After this critical point the magnetic field 
equation must be updated. The material characteristics are 
shown in the Fig. 2 

 

 
 

Fig.2 - Characteristics vs. temperature 
 
The analysis domain can be divided in more subdomains 

with different solvers for each subdomain. In other words we 
can divide the analysis domain in accordance with the 
mathematical model of the problem. 

The numerical model can be obtained by θ-rule combined 
with the Galerkin’s method. 

We must have a measure of confidence in the numerical 
solution. An approach for this requirement is a control of the 
solution accuracy.  In adaptive mesh generation, the mesh is 
refined iteratively on the basis of error estimates. Advantages 
of this approach are: 

• The solution is accompanied by an error estimate that 
is a measure of the confidence 

• The solution is cheap because the nodes are added only 
where the accuracy is necessary 

• The uninitiated can use complex programs without any 
fore-knowledge of the refinement strategies 

The disadvantages are: 
• The matrix size is increased 
• The software complexity is increased 
• The CPU time increases with the estimating errors  
There are basically the following methods of refinement 

[3]: 
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• h - refinement (subdividing elements) 
• p - refinement (increasing the polynomial order p) 
• r – refinement (nodal positions are moved) 
• hp–refinement  (a combination of h- and p-

refinements) 

VII. STRESS ANALYSIS 
Stress analysis problem is the utmost one that imports the 

temperature field from the heat transfer problem and the 
magnetic forces from the time-harmonic magnetic problem. 
The conducting medium is subjected to both temperature 
change and Lorenz force. Due to this magnetic and thermal 
loading the device components become deformed. The 
electrodynamic force is a vector normal to the magnetic 
induction B  and the electrical current I according to the 
formula F = I  X  B.  

In a stress analysis problem the displacement, strain and 
stress are of great importance. The physical quantities for 
stress analysis are: 

• Displacement vector δ 
• Strain vector ε and its principal values 
• Stress vector σ and its principal values 
• Some relevant criteria (Tresca criterion, Drucker-

Prager criterion, Mohr-Coulomb criterion, Von Mises 
stress) 

For axisymmetric problems, the displacement field is 
assumed to be defined by the two components of the 
displacement vector in direction Or and Oz. Only three 
components of strain and stress tensors are independent in 
both plane stress and plane strain cases and four components 
for the axisymmetric problems due to the radial deformation. 

The equilibrium equations for axisymmetric problems are: 
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where σr , σz  τrz are the stress components, and fr, fz  are 
components of the volume force vector [10]. 

Temperature strain is determined by the coefficients of 
thermal expansion and temperature difference between 
strained and strainless states. Components of the thermal 
strain for axisymmetric problem and orthotropic material are 
defined by the following equation [10]: 
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where αz , αr , αθ  are the coefficients of thermal expansion 
along the corresponding axes for orthotropic material, and ΔT 
is the temperature difference between strained and strainless 
states. 

For linear elasticity, the stresses are related to the strains by 

the constitutive law (Hooke's law): 
})0{}]({[}{ εεσ −= D     (18) 

where [D] is a matrix of elastic constants (Young's 
modulus, Poisson's ratio, shear modulus), and {ε0} is the 
column vector for the initial thermal strain. 

VIII. SOME INDUSTRIAL APPLICATIONS 
In any electromagnetic device there are power losses that 

are transformed in heating so that the modelling of device 
involves coupled mathematical models. In electrical 
engineering the coupled electromagnetic and thermal fields 
represent both desirable phenomena and undesirable 
phenomena. Two examples illustrate this assertion: induction 
heating and the high-voltage (HV) electrical transformers.  

Induction heating describes the thermal conductivity 
problem in which the heat is generated by eddy currents 
induced in conducting materials, by a varying magnetic field. 
Induction heating is an efficient procedure for bulk-heating 
metals to a set temperature [5]. The heating is generated by 
the eddy-currents induced from a separate source of 
alternating current.  

 
Fig.3 - Device for induction heating 

 
Figure 3 shows a long cylindrical workpiece excited by a 

close-coupled axial coil [6]. The device has a cylindrical 
symmetry so that the problem can be reduced to a 2D-problem 
in the plane Orz. An axial section is presented in Fig. 4 with: 
1- the workpiece, 2 – the air and 3 – the coil. The coil is 
assimilated with a massive conductor. In this case we cannot 
ignore the eddy currents in the coil. We consider a low-
frequency current in the coil so that the penetration depth is 
large. In this case we can decompose the whole domain of the 
field problem into overlapped subdomains for the two 
coupled-fields.  The domain for the magnetic field can be 
reduced to a quarter of the device bounded by a boundary at a 
finite distance from the device. For the thermal field we 

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2,Volume 1, 2007 174



 

 

consider the workpiece as the analysis domain. The 
penetration depth of the magnetic field in the workpiece 
imposes the overlapping domains for the two fields [6]. The 
numerical model is considered in a cylindrical co-ordinates 
with the vertical axis Or and the horizontal axis Oz. 

The mathematical model for the electromagnetic field using 
A-formulation is a 2D-scalar model in (r-z) plane: 
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For the harmonic-time case, mathematical model for 
electromagnetic field is: 
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Fig. 4 – Axial section of the device 
 
As the second example we consider a three-phase 

transformer in oil where the coils and limbs have rotational 
symmetry about the axis of the limb, that is, a transformer 
with cylindrical windings. The windings are wound on former 
cylinders and a mounted concentrically to the stepped leg of 
the core. An axisymmetric model is represented in Fig. 1 (an 
axial section by a surface perpendicular to symmetry plane). 
Because of the geometrical symmetry, only a half of the 
window is used for analysis (see Fig. 2). The tank wall is 
made of mild steel and symmetry axis denoted by 1 is axis Oz 
in a cylindrical co-ordinate system Orz. The two transformer 
windings, LV (low voltage) and HV (high voltage), can be 
balanced (as in our example) or unbalanced. The low voltage 
windings are usually placed next to the core. The high voltage 
windings are either mounted separately or wound directly over 
the low voltage windings (as in our example). There is a gap 
between the HV and LV windings, which is used for axial 
cooling of the windings.   

 
Fig. 4 - The analysis domain for the transformer 

 
The transformer under consideration is a 400 MVA, three-

phase, wound core, oil immersed, power transformer, shown 
in the Fig. 4. In Fig. 5 the meshed domain for triangular finite 
element model is shown with the horizontal axis as rotation 
axis [10]. The considered transformer has the voltage ratio 
400 kV/24 kV.  

We consider the particular case of isotropic elastic material 
so that in relation (18) D is a symmetric matrix whose entries 
are functions of only two independent parameters. These 
parameters are either Young's modulus E and Poisson ratio ν, 
or the bulk B and shear G moduli. The following relations 
hold among these parameters: 
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Fig. 5 - The meshed domain 

 

 
 

Fig. 6 - Magnetic field lines 
 

The stress problem is the determination of the displacement 
vector δ of the strain field ε and stress tensor produced in the 
device by the magnetic field and temperature field. In Fig. 6 
the field lines for the magnetic problem are shown. We 
analysed the case of high permeability for tank and yoke so 
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that a Neumann's boundary condition was considered. The 
vectors of Lorenz force are plotted in Fig. 7. 

 
 

 
 

Fig. 7 - Vectors of Lorenz's forces 
 

 
 

Fig. 8 - Displacement vectors 
 
The absolute value of displacement is computed with the 

relation: 
22
rz δδδ +=  

where δz and δr are the components along coordinate axes. 
In Fig. 8 the displacement vectors are shown [10]. The 

force at the end of the winding builds up principally in the 
axial direction. During a short-circuit, the windings turns, turn 
insulation and spacers are subjected to alternate compression 
and relaxation. 

IX. CONCLUSION 
The problem of coupled fields in electrical engineering is a 

complex problem in terms of computing resources. In practice 
the coupled fields are treated independently in some 
simplified assumptions. The accuracy of the numerical 
computation is poor. With the new computer architectures, a 
multidisciplinary research is possible. Some iterative 
procedures were presented with emphasis on the coupled 
problems. 

In coupled problems a hierarchy of decomposition can be 
defined with a substantial reduction of the computation 
complexity. The finite element method was used for the 
numerical result. The program Quickfield was used in our 
target examples [10]. 

In our future research we shall extend our results to coupled 
magnetic, thermal and stress analysis for important devices 
from the energy distribution systems as the electrical cables 

and reactors. More, we have in our projects some important 
objectives as optimal design of the electromagnetic devices 
using coupled models and gradient techniques. Also, we 
published some works in the area of CAD for optimal control 
of the heat transfer in large-power cables [4].  

We shall extend the results of this research to electrical 
transformers with non-linear magnetisation curves. In some 
previous works we presented the computation of the 
electrodynamic forces in the large power transformers using 
uncoupled models [4]. This approach was a design basis for 
many designers motivated by the computation complexity and 
a limited computing power of the conventional computers. 
With the new computers we can use coupled models for 
transformers and other devices of high voltage and large 
power. 

In this work we limited our presentation to conventional 
algorithms. But FEM has an inherent parallelism in any stage: 
pre-processing, processing and post-processing. These 
features will be exploited in our next software. We developed 
our own software for mesh generation using multiblock 
method with good results for parallel computing [9]. 
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