

Abstract—This paper is devoted to the speech synthesis and

development of a speech synthesizer for a mobile cell phone. The
presented results are a part of a more complex project for multimedia
reading of short messages (SMS) on the mobile phone. After
receiving the SMS a talking head based on a sender’s photo will
appear on the screen and animate the reading while the speech will
be synthesized in parallel. This work further analyzes an
implementation of the speech synthesizer – this means loading the
database, synthesis, creating the annotation file and creating the
output sound signal. The final synthesized speech utterance is played
together with the face animation of the talking human face

Keywords—diphones, mobile phone, speech synthesis

I. INTRODUCTION
ITH the rising of the hardware power of mobile devices
(including phones) the human computer interaction

(HCI) has started to develop quite a lot of new mobile
applications in the last decade. The goal of this effort is to
integrate multiple input-output modalities into one interface.
In this interface the speech modality is processed by automatic
speech recognition (ASR) and text-to-speech (TTS) synthesis
systems. Depending on the implemented complexity couple of
modes of speech interaction has emerged: embedded systems
that run locally on the mobile devices [1][2][3], client-server
systems that put most of the load on a remote server [4][5], or
those that are capable of both these modes [6]. Some examples
of speech enabled applications that make use of these modes
are: personal speech assistants [1], mobile assistants for the
blind [2], working city guides and navigation systems [6],
web-based multimodal services [5], applications for
documenting traffic accident reports [3], or speech-based
inventory and time management services [4].

Although that the progress in telecommunications and in
mobile phones during the last years is huge, the speed and the
memory of mobile phones will still be less powerful than
those of standalone PCs. That is why a couple of works
emerged, that were handling the problem of adapting up-to-

Manuscript received January 31, 2007. This work was supported by Slovak
Grant Agency under grants VEGA 1/3110/06, AV 123/06, and AV020/07.

G. Rozinaj is with the Slovak University of Technology in Bratislava,
Faculty of Electrical Engineering and Information Technology, Department of
Telecommunications, Ilkovičova 3, 81219 Bratislava, Slovakia (phone: +421-
2-68279414; fax: +421-2-68279601; e-mail: gregor.rozinaj@stuba.sk).

R. Talafová , J. Čepko and J. Vrabec are with the same institution as G.
Rozinaj (e-mail: renata.talafova@gmail.com, jozef.cepko@stuba.sk,
vrabec@ktl.elf.stuba.sk).

R. Talafová is also with Siemens-PSE, Dúbravská cesta 4, 84537
Bratislava, Slovakia.

date TTS systems for mobile devices [7][8][9]. The main goal
of these works is to balance the demands of achieved speech
quality against CPU and memory load.

The purpose of this paper has been to create an application
for reading short messages in cell phones. The idea of such an
application is not new and there have been some systems
developed already, working both as embedded [10][11] and
client-server based [12]. However, the application presented
here is a combination of the speech synthesis and the face
animation. Speech part is represented by speech synthesizer
and animation is represented by 3D model of human face.
After the SMS has been received, application starts to
synthesize the text and the output acoustic signal is played
together with the animation. This paper describes a concrete
type of service and its implementation in mobile phone.

II. FACE ANIMATION
The human face can be modeled and animated by many

methods. For choosing the best method we need to define
requirements for module of animation for mobile phone. The
list of requirements for module of animation is:

• The animation has to by continuous and performance
optimized, because of running on mobile phone.

• The animation has to run synchronous with synthesized.
• The quality of the animation should be the best, final

animation should be as similar to reality as possible.
There two basic approaches: two-dimensional and three-

dimensional and real time animation and forward calculated
animation. Current mobile phones are fast enough for real
time three-dimensional animation, so we decided use this
approach in our work.

The real time animation allows users an interactive
intervention to animation and reduces the time necessary for
the preparation of the animation. The disadvantage of this
method is its quality of an image. The calculation of each
image should not be longer than approximately 0.05s, because
there should be at least 20 images per second (20 FPS –
frames per second).

The advantage of this method is evident. Quality of three-
dimensional modeling is better than the quality of two-
dimensional approach. This animation models the reality more
naturally. In our animation it is possible to turn around the
human face and the model is illuminated according to a real
geometry.

There are many various techniques for modeling human
face in space, for example polygonal modeling, modeling by
parametric areas, sub-division modeling.

Multimedia SMS Reading in Mobile Phone
R. Talafová, G. Rozinaj, J. Čepko, and J. Vrabec

W

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 1, 2007 12

For the face animation following methods are known:
interpolation, parameterization, simulation of muscles, etc.

A. Models and visemes
The foundations of the model of the human face and its

visemes that we use, was taken from the project FaceGen [14].
Both the model and the visemes are in the object (OBJ)
format, which means the files include not only the model, but
also the texture which belongs to it.

OBJ files are stored in the resource part of the application

(in the jar file, the file produced by Java in a specific format).
Every time the application is launched, each OBJ file is read
and its nodes and polygons are stored in the main memory. So
we already have the whole face available. The eyes are
represented by two separate models. After all objects are
loaded, they are matched with each other.

The viseme, we are referring to is a deformed model of the

face. This is not just any kind of the deformation; it is the
deformation as if the face was saying the given phoneme. The
model of the visemes still has the same number of nodes,
which have the same numbering scheme and are connected
with the same lines as the neutral model. The only change is
the position of the nodes. Because of this simplification we
are able to perform an easy interpolation of the nodes and the
orthogonal.

The animation itself is realized by the before mentioned
viseme interpolation. The neutral model is read from the file
(together with the other models and visemes). The

interpolation is performed between these models.
 The animation is also based on a time (this is a real time

type of animation). In the beginning the time is set to zero.
The time is counted in each step of the animation and it also
determines how the model is deformed. The deformation is
also based on a factor, which is a number between 0 and 1.
Number 1 means a 100% match (or correlation) with the
second viseme and number 0 means 100% correlation with the
first viseme. The nodes in the animation for the factors
between 0 and 1 are determined by the interpolation.

B. Interpolation of visemes
We use interpolation in order to get the positions of the

nodes and the normals of our model in a certain time. To
simplify things, we are looking only for the interpolation
between the two visemes, and not for a function that would
represent the best approximation sequence.

The interpolation will be done in the form of function C(x):
BxfAxfxC ∗−+∗=))(1()()(, 0 ≤ x < 1 (1)

where:
C(x) – is the position of the node we want to get by
interpolation,
A – is the coordinate of the previous model,
B – is the coordinate of the model we want to get,
f(x) – is the interpolation function, while D(f) = <0; 1> and
H(f) = <0; 1>,
x – is the parameter which represents normalized time, where.
x = (t-t1) / (t2-t1),
t – is the time,
t1 – is the time of beginning of the interpolation, where C(x) =
A,
t2 – is the time of the end of the interpolation, where C(x) = B.

The function f(x) has been empirically chosen. It is a special
function that meets certain needed criteria, such as the
animation should not be linear and has to look smooth.

Following considerations have to be also true: f(0)=0 and
f(1)=1. There are also other requirements, for example the
derivation in 0 and 1 has to be equal zero.

These conditions make sure, that the transition between

Fig. 3 interpolating function, required non-linearity

Fig. 2 face visemes

Fig. 1 neutral face model and face texture

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 1, 2007 13

visemes will be smooth and non linear. It will be changing fast
from the beginning and gradually slowing, until it reaches the
desired viseme. We could also use a linear interpolation
function, however this would cause a very uniform face
motion and the face movement would not be very natural.

Fig. 3 shows the nonlinearity of the interpolation function
f(x). The function which meets these criteria is for example:
f(x) = (-cos(x*π) + 1) / 2. (2)

III. SPEECH SYNTHESIS AND SYNTHESIZER
The idea that a machine could generate speech has been in

minds of people for some time already, but the realization of
such machines has really been practical only within the last 50
years. The rise of concatenative synthesis began in the 70s,
and has largely become practical as large-scale electronic
storage has become cheap and robust. Before 1980, research
in speech synthesis was limited to the large laboratories that
could afford to invest the time and money for hardware. By
the mid-80s, more labs and universities started to join in as the
cost of the hardware dropped. By the late eighties, purely
software synthesizers became feasible; however the speech
quality was still decidedly inhuman. And although we are now
at the stage were talking computers are with us, there is still a
great deal of work to be done.

Speech synthesis means creating human-like speech using a
machine, which is known as speech synthesizer.

There are several types of these synthesizers, but each is
made to do the same: to reproduce the given text in the
clearest and most understandable manner. There are four basic
approaches:

• Synthesis using units
• Formant synthesis
• Articulation synthesis
• HMM synthesis
On Fig. 4 we can see a block diagram of a general

synthesizer. Of course this diagram is simplified to our needs
and some elements (such as a feedback found in some
learning synthesizers, etc.) are omitted.

However, virtually every synthesizer consists of following
parts:

• Entry text input, analysis
• Preprocessing
• Synthesis
• Post processing
• The synthesized speech

In our implementation of the speech synthesizer for mobile

phone we have decided to use the diphone synthesis and
naturally the diphone database. The major advantage of this
solution is in its size. Slovak language can be sufficiently
covered by only 1550 diphones and this makes the size of the
solution very reasonable (especially compared to other
approaches).

IV. DIPHONE SYNTHESIS
A diphone consists of two following phonemes. The

boundaries of the diphone are in the middle of these sounds.
This means, that a diphone length is not double, as one might
suspect, but approximately the same as length of one
phoneme. The advantage of using diphones and not phonemes
is that they better represent the change between sounds,
because their boundaries are in the middle of sounds where
the characteristic time curve is stable.

In the theory, the number of diphones is the square of
number of phonemes (all combinations of two phonemes is a
square). However, the real number is lower, because the
particular language does not use, or does not utilize all of
them. We can get the real number of diphones by closely
studying the language [13].

A. Creating database
Before starting the diphone synthesis, the diphone database

has to be created. This database consists of real speech
recordings which are broken into small parts – diphones.
There are two options how to create and record this database.
Either to choose words, which will cover all diphones from a
dictionary, or use some other approach. These words need not
to have a meaning; the aim is to have the smallest possible set
of recordings.

Of course, the better is the recording quality, the better is
the speech output. Therefore it is advisable to use a studio
quality recording. Usually, the recording can not be done at
once, because the narrator would get tired and the recording
quality would deteriorate. Therefore it is important to ensure
the same conditions (sound reflections, time of the day,
hardware, etc.) during the sessions.

The choice of the narrator is also very important. Voice
professionals are the best choice. The appropriate people for
this job usually come from television or radio environment –
someone who earns living by speaking.

As already mentioned, the database is not recorded at once,
because the narrator would get tired and the recording quality
would deteriorate.

The recording has to be further processed to get the final
database. It has to be replayed to check for any errors. The
next step is a process called labeling. This means that the
diphone boundaries have to be set and marked down;
otherwise the machine would not know where to find them.

There are several labeling methods. The easiest and slowest
one is manual labeling. From automatic or semi automatic
methods of labeling, we mention labeling based on DTW and
acoustic model labeling.

The labeling should also include equalizing the recording

 1. Entry input text,

analysis
2. Preprocessing 3. Synthesis

4. Post processing 5. The synthesized
speech

Fig. 4 block diagram of a general synthesizer

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 1, 2007 14

samples. We do the amplitude equalizing because it is not
desirable to have the volume change in the middle of a word –
that is what would happen if two diphones have different
sound level. They have to be attached at the same amplitude
level.

The amplitude equalizing is not the only one technique we
use for quality enhancement of the synthesized speech. We
consider also a phase equalizing, which is even more
important. All the boundaries have to be in approximately
same phase. If the phase would be opposite, we could
experience lot of noise and various acoustic clicks [13].

The results of these steps are an acoustic database – in our
case in a WAV format. An index file is a natural part of the
database. It is actually a list of diphones with their boundaries
in WAV file.

B. Implementation of diphone synthesizer
The design of the synthesizer is shown on Fig. 5. In this

figure the principle of the speech synthesis has been described
in a very simple form, and it shows how the synthesizer
works.

The input text has to be synthesized into the speech. But at

first it has to be broken down into so called SAMPA alphabet.
SAMPA (Speech Assessment Methods Phonetic Alphabet) is
a phonetic translation which uses only printable ASCII
characters. In the first step all characters are retyped to
SAMPA. In the second step the result from the first step is
retyped according to all rules for pronunciation for Slovak
language. These rules were taken from [15]. For example
word košeľa will be written as „ko(S)E(L)a“.

Before we get to the synthesis, the database has to be
loaded. In our case, this is done right after the start of the
application. As the database is in WAV format, the program
has to find the data part and save it in the memory. It also
loads the index file with the list of phonemes and diphones
and its boundaries. In the tables (Table I and Table II) are
examples of the part of index file with phonemes and also
diphones.

Explanation to the Table I:
• SAMPA phoneme – the name of the phoneme from the

index file. The file contains all phonemes in the same
order like they are stored in the database.

• Offset – the value represents a start of a group of
diphones that have the same first phoneme.

• Begin – represents the first sample in database for this
phoneme.

• End – represents the last sample in database for this
phoneme.

• Middle – represents the middle sample in database for
this phoneme.

Explanation to the Table II:
• SAMPA diphone – the name of the diphone from the

index file. The file contains all diphones in the same
order like they are stored in the database.

• Begin – represents a start of the diphone in the group of
diphones starting with the same phoneme (it’s like local
number). It means if we want to know the number where
the diphone begins in the database (global), we have to
add this value and the value of offset from the Table I.
For example the phoneme U_^ starts on a sample number
40543 (Table I). But if we want to know where the group
of diphones is starting with U_^, we have to go to the
sample number 231356 (offset). Than according second
letter in the diphone the relevant samples are found. For
the diphone U_^ t we get values like that: beginning add
offset from Table I and begin from Table II
(231356+3561 = 234917).

• End – represents where the diphone in the database ends
in the group of diphones starting with the same phoneme
(it is like a local number). The global value for the end
we get in the same way like for the beginning, it means
the adding offset from Table I and end from Table II
(231356+4505 = 235861).

The algorithm of the synthesis is very simple, because the
text is in SAMPA and the database is loaded. For each
diphone we check if it is in the database. If it is so, samples
are taken from the database and stored. If diphone is not in
database, it is replaced with the two phonemes from which a
diphone is composed. For each phoneme we do not take all
samples, just half of them. It is because like we said before,
the duration of the diphone should be approximately of the
same length as the phoneme. For example, for the diphone En
(we suppose it is not in the database) samples for E are taken
from “middle” to “end”, samples for n are taken from “begin”
to “middle”. We do this for the whole text which should be

TABLE I

EXAMPLE OF INDEX FILE FOR PHONEMES

SAMPA
phoneme Offset Begin End Middle

a~ 277423 51098 55381 53259
O 202295 33532 34505 34041

U_^ 231356 40543 42386 41450

Fig. 5 synthesizer design

TABLE II

EXAMPLE OF INDEX FILE FOR DIPHONES

SAMPA
diphone Begin End

O _ 2326 4334
O x 4335 5771

U_^ t 3561 4505

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 1, 2007 15

synthesized. When the program finishes going through the
whole text, and audio output is created and written in a WAV
file.

The WAV file consists of two basic parts, a header and a
data segment. The header consists of so called RIFF
descriptor, which contains general file information and a part
called FMT. This part describes the format of the data part.
The format of a WAV file can be seen on Fig. 6.

The fields of the WAVE format have the following

meaning:
ChunkID – contains ASCII characters of RIFF,
ChunkSize – the length of the file except first two fields (size
– 8 bytes),
Format – contains ASCII characters of WAVE,
Subchunk1ID – contains ASCII characters of FMT,
Subchunk1Size – 16 for PCM,
AudioFormat – 1 for PCM, linear quantization, other values
for non linear compression,
NumChannels – 1 mono, 2 stereo,
SampleRate – sample frequency (Hz) – 16 000,
ByteRate –
SampleRate*NumChannels*BitsPerSample/8 – 32000,
BlockAlign – 2,
BitsPerSample – number of bits per sample – 16,
Subchunk2ID – contains ASCII characters for data,
Subchunk2Size –
size of sub chunk, Samples*NumChannels*BitsPerSample/8,
Data – values of stored data from -32 768 to 32 767.

After creating the output WAVE file, this file can be played
on the mobile phone.

C. Synchronization with face animation
The synthesized text has to be synchronized with the

speaking face.
We use an annotation file (*.ano) which is a simple text file

containing phonemes with its time marks (boundaries). The
values are determined individually for each phoneme or the
phoneme from the index file. From this file we take numbers
of samples for the beginning and the end and using the
sampling frequency determine the start time and the length of
the maximum.

In the table (Table III) is a sample of this file for the Slovak
word „kráľov“.

Explanation to the Table III:
• Internal phoneme – represents the character of the

viseme (a shape of the mouth for the face animation)
which the application uses for selection. It is made by a
conversion from SAMPA using a mapping table of
SAMPA characters to visems.

• Begin – time when the viseme starts
• Rise time – time period, when the mouth or the phoneme

are opened to maximum
• Maxim length – a duration of phoneme’s maximum.

Visually, this is the time, when the mouth does not move
(or the movement is not significant)

• Weight – from <0,1>. The higher the weight, the more
visible the viseme [16].

V. EVALUATION
In order to evaluate the implemented system two aspects

must be taken into account; the achieved quality of the talking
head, and the computational load of the synthesis process on
the mobile phone.

Since at SMS reading, when user cannot use the visual
modality, the quality of the animation is not as crucial as the
quality of the synthesized speech, we have used standard
speech MOS tests to evaluate the quality of the talking head.
The MOS results are obtained by averaging the results of a set
of subjective tests where a number of listeners rate the heard
speech quality. The MOS ranges from 1 (worst) to 5 (best).
Unfortunately, the results of these tests are not completed so
far, and thus are not suitable for publication, however the
temporal results seems promising. More than seventy amateur
evaluators generated 3.3878 MOS.

The computational footprint of the application may be
viewed from two sides: its size and its speed. Since the

TABLE III

EXAMPLE OF ANOTATION FILE

SAMPA Internal
phoneme

Begin
[s]

Rise
time [s]

Maxim
length

[s]
Weight

k k 0.4560 0.0298 0.0298 0.5000
r r 0.5156 0.0647 0.0647 0.5000
a: a 0.6451 0.0194 0.0389 0.5000
L l 0.7034 0.0192 0.0192 0.5000
O o 0.7417 0.0157 0.0157 0.5000

U_^ u 0.7731 0.0480 0.0480 0.5000

endian File offset
(bytes) Field name Field size

(bytes)

big 0 Chunk ID 4

little 4 ChunkSize 4

big 8 Format 4

The "RIFF"
chunk

descriptor

big 12 Subchunk1ID 4

little 16 Subchunk1Size 4

little 20 AdioFormat 2

little 22 NumChannels 2

little 24 SampleRate 4

little 28 ByteRate 4

little 32 BlockAlign 2

little 34 BitsPerSample 2

The "fmt"
sub-chunk

big 38 Subchunk2ID 4

little 40 Subchunk2Size 4

little 44 Data

Su
bc

hu
nk

2S
iz

e

The "data"
sub-chunk

Fig. 6 Wave file format

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 1, 2007 16

limitations on memory space have greatly diminished in the
last years, we were able to improve the quality by enhancing
the speech coding using PCM coded 16 kHz/16 bit sampled
signal. The comparison of the size of the database with other
available TTS for mobile devices is shown in Table IV. It may
be seen that our database is the largest one; however, it is due
to its phoneme/diphone content and higher quality signal
coding (e.g. PCM instead of A-law).

Although that in [7] is argued that it is favorable not to load

the database into the memory, [8] expects diphone processing
to be accelerated if the database is taken into RAM. Having
speed as a priority and following the [8] assumption we load
the database into the memory at the start of the application.
We have tested and compared the speed of our synthesis in a
mobile phone and the results are given in Table V. The
leading synthesis’ times of our synthesizer are not just results
of faster CPU, but they are consequence of the database load
into RAM, and the direct PCM coding. Plus, it must be
emphasized that the results for our synthesizer were generated
in an emulator; the real phone performs even faster, however,
in this case it is hard to measure the delay with a high
accuracy. Similarly as in [7] and [8], we have observed that
noticeable delays occur when a short sentence precedes a long
one

.

VI. CONCLUSION
In this paper we presented a Slovak language speech

synthesis application for a mobile phone. The application is
combined with a speaking face animation and presents a
possible future development for future mobile communication.

The type of the created application is Java Midlet, very
similar to an applet class, but assigned for cell phones.
Application is installed from JAR file. JAR is an archive and
contains compiled classes.

The application can be very easy modified for needs of a

mobile phone. This will be necessary for older types of mobile
phones, which have limited memory for applications - in this
case the database is loaded like external file, and it is not a
part of the JAR file. This philosophy results in a smart
modification of the database in case of any required changes.

In the future, with the expansion of the mobile phone
memory, the database can be extended, because the present
database contains only the most used diphones of Slovak
language. With higher memory space we shall be able to
cover not only all diphones in the database but to add some
more frequent triphones, as well. Adding some triphones may
solve the problem of unnatural sounds in the concatenation of
problematic pairs of diphones. That can improve the quality of
output acoustic signal; the speech will be more fluent and
natural.

REFERENCES
[1] Comerford, L., Frank, D., Gopalakrishnan, P., Gopinath, R., Sedivy, J.

The IBM Personal Speech Assistant, International Conference on
Acoustics, Speech, and Signal Processing, 2001. Vol. 1, pp. 1-4. Utah.
2001.

[2] Gaudissart, V., Ferreira, S., Thillou, C. SYPOLE: Mobile Reading
Assistant for Blind People, Proc. of the 9th SPECOM 2004. St.
Petersburg, Russia. 2004.

[3] Dusan, S., Gadbois, G., J., Flanagan, J. Multimodal Interaction on PDA's
Integrating Speech and Pen Inputs, EUROSPEECH 2003. pp. 2225-
2228. Geneva, Switzerland. 2003.

[4] Kondratova, I. Speech-enabled Mobile Field Applications, Internet and
Multimedia Systems and Applications, IMSA 2004. Hawaii, USA. 2004.

[5] Roessler, H., et al. Multimodal interaction for mobile environments. In
Proc. of International Workshop on Information Presentation and
Natural Multimodal Dialogue. Verona, Italy. 2001.

[6] Johnston, M., Bangalore, S., Vasireddy. G. MATCH: Multimodal
Access To City Help, in Workshop on Automatic Speech Recognition
and Understanding. Madonna di Campiglio, Italy. 2001.

[7] Tóth, B., Németh, G. Challenges of Creating Multimodal Interfaces on
Mobile Devices, Proceedings of ELMAR-2007. pp. 171-174. Zadar,
Croatia. 2007.

[8] Keller, E. Simplification of TTS Architecture vs. Operational Quality.
Proceedings of EUROSPEECH '97. Paper 735. Rhodes, Greece. 1997.

[9] Black, A., Lenzo, K. Flite: A Small Fast Run-Time Synthesis Engine,
4th ISCA Speech Synthesis Workshop. pp. 157-162. Scotland. 2001.

[10] Németh, G., Kiss, G., Tóth, B. Cross Platform Solution of
Communication and Voice / Graphical User Interface for Mobile
Devices in Vehicles, Biennial on DSP for in-Vehicle and Mobile
Systems. Portugal. 2005.

[11] Gros, J., Mihelic, F., Pavesic, N., Zganec, M., Mihelic, A., Knez, M.,
Mercun, A., Skerl, D. The Phonectic SMS Reader, Text, Speech and
Dialogue: 4th International Conference, TSD 2001. Železna Ruda,
Czech Republic. 2001.

[12] Farrugia, P. J. Text to Speech Technologies for Mobile Telephony
Services, MSc. Thesis, Faculty of Science, University of Malta. pp. 160,
2005.

[13] Black, A. W., Lenzo, K. A. Building Synthetic Voices, Language
Technologies Institute, Carnegie Mellon University, Retrieved October
12, 2007, from http://festvox.org/bsv.

[14] Vajaš, M., Rozinaj G. Facial Animation During Speech Performance,
IASTED International Conference on Communications, Internet and
Information Technology (CIIT 2004). St. Thomas, USA. 2004.

[15] Cerňak, M., Rozinaj, G. Forward Masking Phenomenon in
Concatenative Speech Synthesis, 4th EURASIP Conference EC-VIP
MC’03. pp. 691-694. Zagreb. 2003.

[16] Vajaš, M. Modelling of Talking Face, MSc. thesis, FEI STU Bratislava.
69 pp. 2005. In Slovak.

[17] Michalko, O. Diphone Synthesis of Slovak Speech, MSc. thesis, FEI
STU Bratislava. 69 pp. 2007. In Slovak.

TABLE V

COMPARISON OF SYNTHESIS TIMES OF SOME MOBILE TTS SYSTEMS (IN
SECONDS PER SENTENCE). SHORT SENTENCE HAS 50-100 CHARACTERS, LONG

SENTENCE HAS 100-400 CHARACTERS

System short sentences long sentences

Hungarian TTS [7]
Nokia 6680 (220MHz) 0.15 0.467

Presented synthesizer
Nokia N95 (330MHz) 0.171 0.271

 approx. 7
 sec. long sentences

LAIPTTS [8] PPC (80 MHz) < 3

TABLE IV

SIZE OF DATABASES OF SOME MOBILE TTS SYSTEMS

Database Storage
size

Hungarian TTS [7] 11 kHz /8 bit, A-law (diphone) 1.5 MB
Flite (mobile Festival) [9] 8 kHz (diphone) < 4MB

LAIPTTS [8] (Mons (Belgium) diphone database) 4.7MB
Presented synthesizer 16 kHz /16 bit, PCM

(phoneme/diphone) 6.16MB

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 1, 2007 17

