# Japanese Dependency Analysis Based on SVMs and CRFs

Huiwei Zhou, Tong Yu, Degen Huang

**Abstract**—This paper presents a method of Japanese dependency structure analysis based on Support Vector Machines (SVMs) and Conditional Random Fields (CRFs). Cascaded chunking model based on SVMs has been proposed and has achieved high accuracy. It parses a sentence deterministically only deciding whether the current segment modifies the segment on its immediate right hand side based on SVMs. We present a method of Japanese dependency structure analysis based on CRFs. We consider Japanese dependency structure analysis as a sequential labeling problem and apply CRFs to label whether each segment modifies the segment on its immediate right hand side. Furthermore, we combine SVMs and CRFs to improve the accuracy of Japanese dependency analyzer. Experiments using the Kyoto University Corpus show that the presented method outperforms previous systems.

*Keywords*—Conditional Random Fields (CRFs), Japanese dependency analysis, sequential labeling, Support Vector Machines (SVMs)

#### I. INTRODUCTION

Dependency analysis has been recognized as a basic process in Japanese sentence analysis. And a number of studies have been proposed. Japanese dependency is usually in terms of relationship between phrasal units called bunsetsu segments (hereafter segments).

In recent years, as large-scale tagged corpora have become available, a number of statistical parsing techniques using such tagged corpora have been developed [1] [2] [3] [4]. The

Manuscript received December 31, 2006; revised March 11, 2007. This work was elaborated in Natural Language Processing Laboratory, Department of Computer Science and Engineering, Dalian University of Technology in CHINA.

Huiwei Zhou received the engineering degree in School of Electrical Engineering from Xi'an Jiaotong University in CHINA, master thesis degree from Graduate School of Information System from the University of Electro Communications in JAPAN. Actually she is a lecturer in Department of Computer Science and Engineering, Dalian University of Technology in CHINA. Her scope of research are Natural Language Processing, Machine Learning and Machine Translation(corresponding author to provide phone: 0086-411-84708140; fax: 0086-411-84706706; e-mail: zhou\_huiwei@ 163.com).

Tong Yu is a master in Department of Computer Science and Engineering, Dalian University of Technology in CHINA. His scope of research are Natural Language Processing, Machine Learning and Machine Translation (e-mail: yttjdl@yahoo.com.cn).

Degen Huang received the engineering and PhD degrees in Department of Computer Science and Engineering from Dalian University of Technology in CHINA. Actually he is a professor in Department of Computer Science and Engineering, Dalian University of Technology in CHINA. His scope of research are Natural Language Processing, Machine Learning, Data Mining and Machine Translation (e-mail: huangdg@dlut.edu.cn). previous dependency analysis is divided into two approaches. One approach is based on a statistical model [1] [2] [3]. These models need to calculate the probabilities for all possible dependencies in a sentence to obtain the optimal set of dependency. It is not efficient. The other approach is a cascaded chunking model [4] based on SVMs [5]. The method is simple and efficient. It achieves high accuracy. It parses a sentence deterministically only deciding whether the current segment modifies the segment on its immediate right hand side and it applies SVMs to classify all possible pairs of segments into positive (dependent) or negative (non-dependent) examples.

Conditional random fields (CRFs) [6] are discriminative models applied to sequential labeling problems. CRFs can discriminate the correct sequence from all other candidate sequences without making independence assumption for features. They are considered to be the state-of-the-art framework to date. Empirical successes with CRFs have been reported recently in part-of-speech tagging [6], shallow parsing [7], named entity recognition [8], Chinese word segmentation [9], and Information Extraction [10] [11].

In this paper, we propose an application of CRFs to Japanese dependency structure analysis. We consider Japanese dependency structure analysis as a sequential labeling problem and apply CRFs to label whether each segment modifies the segment on its immediate right hand side. Moreover, we combine SVMs and CRFs to improve the performance of Japanese dependency analyzer.

# II. SVMS AND CRFS

#### A. Support Vector Machine (SVM)

Support Vector Machine (SVM) [5] is one of the binary linear classifiers introduced by Vipnik. Suppose *l* training examples  $(\mathbf{x}_i, y_i)$ ,  $(1 \le i \le l)$  are given, where  $x_i$  is a feature vector in *n* dimensional feature space,  $y_i$  is the class label {+1, -1} (positive or negative) of  $x_i$ . SVM finds a hyperplane  $(\mathbf{w} \cdot \mathbf{x} + b) = 0$  which separate the training examples and has maximum margin between two hyperplane  $(\mathbf{w} \cdot \mathbf{x} + b) \ge 1$ and  $(\mathbf{w} \cdot \mathbf{x} + b) \le -1$ . The optimal hyperplane with maximum margin can be found by solving the following quadratic programming problem. (1)

min

in 
$$\frac{1}{2} \|\mathbf{w}\|^2$$

subject to  $y_i(w \cdot x_i + b) \ge 0$ , i = 1, 2, ..., lThe decision function can be written as:

The decision function can be written as:

$$f(x) = \operatorname{sgn}\left[\sum_{x_{i} \in sv} \alpha_{i} y_{i} (x_{i} \cdot x) + b\right]$$
(2)

Where  $\alpha_i$  is the Lagrange multiplier corresponding to each constraint. The Kernel function  $K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$  can reduce the computational overhead when the training example x is projected onto a high dimensional space by using projection function  $\phi$ . Among the many kinds of Kernel functions, the *d*-th polynomial kernel:  $K(x_i, y_j) = (x_i \cdot x_j + 1)^d$  is used. Where *d* is the dimension of the polynomial functions.

Further more, the optimization problem can be written into the following maximum problem.

$$L(\alpha) = \sum_{i=1}^{l} \alpha_{i} - \frac{1}{2} \sum_{i, j=1}^{l} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i} \cdot x_{j})$$
(3)

Finally, the label of an unknown example is decided by the following function:

$$f(x) = \operatorname{sgn}\left[\sum_{x_i \in sv} \alpha_i y_i K(x_i \cdot x) + b\right]$$
(4)

SVM estimate the label of an unknown example whether sign of f(x) is positive(+1) or negative(-1).

#### B. Conditional Random Fields (CRFs)

Conditional random fields (CRFs) [6] are undirected graphical models trained to maximize a conditional probability. In the special case the graph structure is a linear chain, which corresponds to a finite state machine, and is suitable for sequence labeling. Let  $X = (X_1, X_2, ..., X_n)$  be some observed input data sequence, such as a sequence of words in a sentence. Let  $Y = (Y_1, Y_2, ..., Y_n)$  be some sequence of states. CRFs define the conditional probability of a state sequence given an input sequence as

$$P(Y \mid X) = \frac{1}{Z_X} \exp(\sum_{i=1}^n \sum_k \lambda_k f_k(Y_{i-1}, Y_i, X, i))$$
(5)

Where Zx is a normalization factor over all state sequences,

$$Z_X = \sum_{Y \in Y^N} \exp\left(\sum_{i=1}^n \sum_k \lambda_k f_k(Y_{i-1}, Y_i, X, i)\right)$$
(6)

 $Z_X$  is the sum of the "scores" of all possible state sequences.  $f_k(Y_{i-1}, Y_i, X, t)$  is an arbitrary feature function over its arguments, and  $\lambda_k$  is a learned weight for each feature function  $f_k$ . The feature functions can measure any aspect of a state transition,  $Y_{i-1} \rightarrow Y_i$ , and the entire observation sequence, x, centered at the current time step, t.

The most probable label sequence for an input sequence X is then given by

$$\hat{Y} = \underset{Y \in Y^{N}}{\arg \max} P(Y \mid X) = \arg \max \Lambda \bullet F(Y, X)$$
(7)

which can be determined using the Viterbi algorithm.

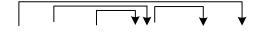
CRFs are trained using the maximum likelihood—maximizing the conditional probability of a set of

label sequences. The log-likelihood of training set  $T = \{\langle X_i, Y_i \rangle i = 1, ..., N\}$  is written

$$L_{\Lambda} = \sum_{i} \log P_{\Lambda}(Y_{i} | X_{i})$$
  
= 
$$\sum_{i} \log(\sum_{Y \in Y^{N}} \exp(\Lambda \bullet [F(Y_{i}, X_{i}) - F(Y, X_{i})]))$$
  
= 
$$\sum_{i} [\Lambda \bullet F(Y_{i}, X_{i}) - \log(Z_{X_{i}})]$$
  
(8)

CRFs can be trained by traditional iterative scaling algorithms, such as GIS and IIS [12] or quasi-Newton methods [13].

## III. JAPANESE DEPENDENCY ANALYSIS BASED ON SVMS AND CRFS


## A. Cascaded Chunking Model

We define a sentence as a sequence of segments  $B = \langle b_1, b_2, ..., b_m \rangle$  and its syntactic structures as a sequence of dependency patterns  $D = \langle dep(1), dep(2), ..., dep(m-1) \rangle$ , where dep(i) = j means that segment  $b_i$  depends on (modifies) segment  $b_j$ . In this frame-work, we suppose that the dependency sequence satisfies the following constrains.

- 1. Except for the rightmost one, each segment depends on exactly one of the segments appearing to the right.
- 2. Dependencies do not cross each other.

Cascaded chunking model has been applied to Japanese dependency analysis [4]. Japanese dependency analysis using cascaded chunking is as follows:

1. Put an O tag on all segments since the dependency relation of each one is undecided.



(Mother bought many thing for me.)

| 母は 私に いろいろな物を 買ってくれました。<br>Mother me many thing buy<br>Initialization |         |         |         |                |  |
|-----------------------------------------------------------------------|---------|---------|---------|----------------|--|
| Input: 母は                                                             | 私に      | いろいろな   | 物を      | 買ってくれました。      |  |
| Tag: O                                                                | 0       | 0       | 0       | 0              |  |
| Input: 母は<br>Tag: O                                                   | 私に<br>O | D(Del.) | 物を<br>D | 買ってくれました。<br>O |  |
| <br>Input:母は 私に 物を 買ってくれました。<br>Tag: O D(Del.) D O                    |         |         |         |                |  |
| Input: 母は 物を 買ってくれました。<br>Tag: O D(Del.) O                            |         |         |         |                |  |
| Input: 母は 買ってくれました。<br>Tag: D(Del.) O                                 |         |         |         |                |  |

Input: 買ってくれました。 O(Finish)

Fig. 1. Example of the parsing process with cascaded chunking model

- 2. For each segment with an O tag, decide whether it modifies the segment on its immediate right hand side. If so, the O tag is replaced with a D tag.
- 3. Delete all segments with a D tag that are immediately followed by a segment with an O tag.
- 4. Terminate the algorithms if a single segment remains, otherwise return to step 2 and repeat.

Fig. 1 shows an example of the parsing process and the result. It is simple and efficient. It parses a sentence deterministically only deciding whether the current segment modifies the segment on its immediate right hand side. Taku Kuto used SVMs to determine whether a pair of segments is in a dependency relation or not because of their state-of-the-art performance and generalization ability.

In this paper, we propose a method combining SVMs with CRFs to determine whether a pair of segments is in a dependency relation or not.

#### B. Cascaded Chunking Model Based on SVMs

In order to use SVMs for dependency analysis, we adopt a sample method: we take a pair of segments that are in a dependency relation as a positive data, and a pair of segments that are not in a dependency relation as a negative data.

In training, the model simulated the parsing algorithm by consulting the correct answer from the training annotated corpus. In testing, the model consults the trained system and parses the input sentence with the parsing algorithm.

| TABLE I             |                                                                             |                                                                                                                                                                                                                                                             |  |  |
|---------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                     | FEATURES USED IN SVMS                                                       |                                                                                                                                                                                                                                                             |  |  |
| Static<br>Features  | left/right segments                                                         | Head Word (surface-form,<br>POS, POS-subcategory,<br>inflection-type,<br>inflection-form), Functional<br>Word (surface-form, POS,<br>POS-subcategory,<br>inflection-type,<br>inflection-form), brackets,<br>quotation-marks,<br>punctuation-marks, position |  |  |
|                     | Between two segments                                                        | in sentence (beginning, end)<br>Distance (1,2-5,6-),<br>case-particles, brackets,<br>quotation-marks,<br>punctuation-marks                                                                                                                                  |  |  |
| Dynamic<br>Features | The segments which<br>modify the current<br>candidate modifee or<br>modifer | Form of inflection<br>represented with Functional<br>Representation                                                                                                                                                                                         |  |  |
|                     | The segment which is<br>modified by the current<br>candidate modifee        | POS and POS-subcategory<br>of Head word                                                                                                                                                                                                                     |  |  |

The features used in SVMs are shown in Table I. The features include static features and the dynamic features.

## C. Cascaded Chunking Model Based on CRFs

In order to use CRFs for dependency analysis, we cast Japanese dependency structure analysis problem as one of sequence tagging: the segments that modify the segments on their immediate right hand side are given the D tag, otherwise are given the O tag. The task of determining whether the current segment modifies the segment on its immediate right hand side becomes a matter of assigning a sequence of tags to the input sequence of Japanese sentence.

And then delete all segments with a D tag that are immediately followed by a segment with an O tag according cascaded chunking model. Terminate the algorithms if a single segment remains, otherwise repeat to assign a sequence of tags

| FEATURE TEMPLETES USED IN CRFS                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                    |  |  |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Unigram                                                                     | Unigram $\langle hp1_i \rangle, \langle hp2_i \rangle, \langle hcf_i \rangle, \langle hct_i \rangle, \langle hbw_i \rangle, \langle fp1_i \rangle, \langle fp2_i \rangle,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                    |  |  |
| basic                                                                       | $< fcf_i >, < fct_i >, < fbw_i >, < hp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\langle fcf_i \rangle, \langle fct_i \rangle, \langle fbw_i \rangle, \langle hp1_i \rangle, \langle hp2_i \rangle, \langle hcf_i \rangle, \langle hct_i \rangle,$ |  |  |
| features                                                                    | $< hbw_j >, < fp1_j >, < fp2_j >, < f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $cf_j >, , ,$                                                                                                                                                      |  |  |
|                                                                             | < <i>brackets</i> <sub>i</sub> $>$ , $<$ <i>brackets</i> <sub>j</sub> $>$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                    |  |  |
|                                                                             | $\langle quotation-marks_i \rangle$ , $\langle quotation-marks_j \rangle$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                    |  |  |
|                                                                             | <punctuation-marks<sub>i&gt;,</punctuation-marks<sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |  |  |
|                                                                             | <punctuation-marks<sub>j&gt;, <p< td=""><td>0</td></p<></punctuation-marks<sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                  |  |  |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , <position in<="" j="" of="" segment="" td="" the=""></position>                                                                                                  |  |  |
|                                                                             | sentence (beginning, end)>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                    |  |  |
|                                                                             | <case-particles<sub>i&gt;,<case-pa< td=""><td></td></case-pa<></case-particles<sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                    |  |  |
| Dynamic                                                                     | The segments which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <form inflection<="" of="" td=""></form>                                                                                                                           |  |  |
| Features                                                                    | modify the segment <i>i</i> and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | represented with Functional                                                                                                                                        |  |  |
|                                                                             | j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Representation>                                                                                                                                                    |  |  |
|                                                                             | The segment which is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <pos head="" of="" word="">,</pos>                                                                                                                                 |  |  |
|                                                                             | modified by the segment j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <pos-subcategory head<="" of="" td=""></pos-subcategory>                                                                                                           |  |  |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | word>                                                                                                                                                              |  |  |
| Bigram                                                                      | $< hp1_i, hp1_j >, < hp2_i, hp2_j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | >,                                                                                                                                                                 |  |  |
| basic                                                                       | $< hcf_i, hcf_j >, < hct_i, hct_j >,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |  |  |
| features                                                                    | $< hbw_i, hbw_j >, < fp1_i, fp1_j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |  |  |
|                                                                             | $\langle fp2_i, fp2_j \rangle, \langle fcf_i, fcf_j \rangle, \langle fcf_i \rangle, \langle fcf_j \rangle, \langle fcf_$ | $fct_i, fct_j >,$                                                                                                                                                  |  |  |
|                                                                             | $< fbw_i, fbw_j >,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                    |  |  |
|                                                                             | $< hbw_i, hpl_i, hbw_j hpl_j >,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                    |  |  |
|                                                                             | $< fbw_i, fp1_i, fbw_j, fp1_j >,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    |  |  |
|                                                                             | $< hp1_i, hp2_i, hp1_j hp2_j >,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                    |  |  |
|                                                                             | < <i>hbw<sub>i</sub></i> , <i>hp1<sub>i</sub></i> , <i>hp2<sub>i</sub></i> , <i>hbw<sub>j</sub></i> , <i>hp1<sub>j</sub></i> , <i>hp2<sub>j</sub></i> >,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                    |  |  |
|                                                                             | $< fbw_i, fp1_i, fp2_i, fbw_j, fp1_j, fp2_j >,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                    |  |  |
|                                                                             | $< hbw_i, hp1_i, hp2_i, hcf_i, hct_i, hp1_j, hp2_j >,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                    |  |  |
|                                                                             | $\langle fbw_i, fp1_i, fp2_i, fcf_i, fct_i, fp1_j, fp2_j \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    |  |  |
|                                                                             | $< hp1_i, hp2_i, hbw_j, hp1_j, hp2_j, hcf_j, hct_j >,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                    |  |  |
|                                                                             | $< fp1_i, fp2_i, fbw_j, fp1_j, fp2_j, fcf_j, fct_j >,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                    |  |  |
|                                                                             | $< hbw_i, hp1_i, hp2_i, hcf_i, hct_i, hbw_j, hp1_j, hp2_j, hcf_j, hct_j >,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                    |  |  |
| $< fbw_i, fp1_i, fp2_i, fcf_i, fct_i, fbw_j, fp1_j, fp2_j, fcf_j, fct_j >,$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                    |  |  |

 $f_k(Y_{i-1},Y_i,X,i)$ 

 $x_i = \langle hp1_i, hp2_i, hcf_i, hct_i, hbw_i, fp1_i, fp2_i, fcf_i, fct_i, fbw_i \rangle$   $x_j = \langle hp1_j, hp2_j, hcf_j, hct_j, hbw_j, fp1_j, fp2_j, fcf_j, fct_j, fbw_j \rangle$ where  $hp1_i/hp1_j$  and  $hp2_i/hp2_j$  are the POS and POS-subcategory of head word,  $hcf_i/hcf_j$  and  $hct_i/hct_j$  are the inflection-type and inflection-form of head word,  $hbw_i/hbw_j$  are the surface-form of head word,  $fp1_i/fp1_j$  and  $fp2_i/fp2_j$  are the POS and POS-subcategory of functional word,  $fcf_i/fcf_j$  and  $fct_i/fct_j$  are the inflection-type and inflection-form of functional word,  $fbw_i/fbw_j$  are the surface-form of functional word

to the remained sequence of the sentence.

Feature templates used in CRFs are shown in Table II.

## D. Cascaded Chunking Model Based on SVMs and CRFs

We combine SVMs with CRFs to analysis Japanese dependency structure. We apply SVMs and CRFs to assign a sequence of tags to the input sequence of Japanese sentence. If the SVMs based tag is the same with the CRFs based tag for a segment *i*, put that tag on the segment. If the SVMs based tag is different from the CRFs based tag for a segment *i*, we assign the

tag of the segment *i* according to the export value of SVMs model and CRFs model.

The separate hyperplane of SVMs classifier is H. The distance  $d(d \ge 0)$  from a pair of segments  $f_{ij}$  to the separate hyperplane H is defined as:

$$d = \left| \sum_{k,l; f_{kl} \in SV_s} \alpha_{kl} y_{kl} K(f_{kl} \cdot f_{ij}) + b \right|$$
(9)

The tagging probability P(i) of segment *i* based on CRFs is defined as:

$$P(i) = \frac{1}{Z_x} \exp(\sum_k \lambda_k f_k(Y_{i-1}, Y_i, X, i))$$
(10)

We assign the tag of the segment *i* according to the distance *d* of SVMs model and the tagging probability P(i) of CRFs model. There are four conditions:

(1)  $d < \varepsilon_{SVM}$  and  $P(i) < \varepsilon_{CRF}$ 

We consider the SVMs based tag and the CRFs based tag are both unbelievable.

(2)  $d > \varepsilon_{SVM}$  and  $P(i) < \varepsilon_{CRF}$ 

We consider the SVMs based tag is believable and the CRFs based tag is unbelievable.

(3)  $d < \varepsilon_{SVM}$  and  $P(i) > \varepsilon_{CRF}$ 

We consider the SVMs based tag is unbelievable and the CRFs based tag is believable .

(4)  $d > \varepsilon_{SVM}$  and  $P(i) > \varepsilon_{CRF}$ 

We consider the SVMs based tag and the CRFs based tag are both believable.

For condition (2), put the SVMs based tag on the segment i. For condition (3), put the CRFs based tag on the segment i. For condition (1) and (4), we put the SVMs based tag on the segment i.

We can control the dependency accuracy by adjust the threshold  $\mathcal{E}_{SVM}(0 < \mathcal{E}_{SVM} < 1)$  and  $\mathcal{E}_{CRF}(0 < \mathcal{E}_{CRF} < 1)$ .

## IV. EXPERIMENTS AND DISCUSSION

#### A. Experiments Setting

We use Kyoto University text corpus (Version 3.0) consisting of articles of Mainichi Newspaper. The sentences from the articles on January 1st, 3rd to 9th are used for the training data, and the sentences from the articles on January 10th are used for the test data. Our experiments are under the condition d = 3 (dimension of the polynomial functions used for the Kernel function).

#### **B.** Experimental Results

The experimental results are shown in Table III. Table III shows the method based on SVMs and CRFs outperforms the

| RESULTS BASED ON NN-LSVM |               |              |  |
|--------------------------|---------------|--------------|--|
| Mothed                   | Dep. Acc. (%) | Sen. Acc.(%) |  |
| Sole SVMs                | 89.86         | 49.14        |  |
| Sole CRFs                | 87.31         | 42.24        |  |
| Combining SVMs and CRfs  | 90.03         | 49.29        |  |

cascaded chunking model based on sole SVMs [14] and sole CRFs. We have proposed an improved SVMs-NN-LSVM [14] to increase the dependency accuracy. NN-LSVM pruned those samples that unused or not good to improve the classifier's performance. In this paper, we also pruned the training samples using NN-LSVM. The CRFs based method is not as good as the SVMs based method.

Table IV shows that the approach combining SVMs and CRFs achieved higher dependency accuracy and sentence accuracy than the sole SVMs based method when  $\mathcal{E}_{SVM} < 0.4$ . This means that the CRFs based method performs better than the SVMs based method near the separate hyperplane of SVMs

| TABLE IV              |          |  |
|-----------------------|----------|--|
| DECLUTE DACED ON SVMC | AND CDEC |  |

|                     |                     | SED ON SVMS AND CR |               |
|---------------------|---------------------|--------------------|---------------|
| ${\cal E}_{ m SVM}$ | ${\cal E}_{ m CRF}$ | Dep. Acc. (%)      | Sen. Acc. (%) |
| 0.1                 | 0.1                 | 90.03              | 49.29         |
| 0.1                 | 0.3                 | 90.03              | 49.29         |
| 0.1                 | 0.5                 | 90.01              | 49.29         |
| 0.1                 | 0.7                 | 90.00              | 49.29         |
| 0.1                 | 0.9                 | 89.99              | 49.29         |
| 0.2                 | 0.1                 | 89.94              | 49.29         |
| 0.2                 | 0.3                 | 89.94              | 49.29         |
| 0.2                 | 0.5                 | 89.92              | 49.29         |
| 0.2                 | 0.7                 | 89.96              | 49.29         |
| 0.2                 | 0.9                 | 89.94              | 48.89         |
| 0.3                 | 0.1                 | 89.86              | 48.56         |
| 0.3                 | 0.3                 | 89.86              | 48.56         |
| 0.3                 | 0.5                 | 89.86              | 48.56         |
| 0.3                 | 0.7                 | 89.97              | 49.16         |
| 0.3                 | 0.9                 | 89.96              | 49.03         |
| 0.4                 | 0.1                 | 89.80              | 48.29         |
| 0.4                 | 0.3                 | 89.80              | 48.29         |
| 0.4                 | 0.5                 | 89.80              | 48.29         |
| 0.5                 | 0.1                 | 89.57              | 47.82         |
| 0.5                 | 0.3                 | 89.57              | 47.82         |
| 0.5                 | 0.5                 | 89.57              | 47.88         |

#### classifier.

However, the approach combining SVMs and CRFs cannot performance better than the sole SVMs when  $\varepsilon \ge 0.4$ .

| TABLE V<br>Comparison with the related work     |                                |                         |                      |  |
|-------------------------------------------------|--------------------------------|-------------------------|----------------------|--|
| Model                                           | Training Corpus<br>(# of days) | Dependenc<br>y Acc. (%) | Sentence<br>Acc. (%) |  |
| Combining SVMs<br>and CRFs                      | Kyoto Univ. (8)                | 90.03                   | 49.29                |  |
| Improved SVM[14]                                | Kyoto Univ. (8)                | 89.86                   | 49.14                |  |
| Cascaded chunking[4]                            | Kyoto Univ. (8)                | 89.29                   | 47.53                |  |
| Probabilistic<br>(ME)[1]                        | Kyoto Univ. (8)                | 87.14                   | 40.60                |  |
| Probabilistic<br>(ME + posterior<br>context)[2] | Kyoto Univ. (8)                | 87.93                   | 43.58                |  |

## C. Comparison with Related Work

The results of our model and the recent Japanese Dependency Analysis model (cascaded chunking [3], ME [1], ME + posterior context [2]) are summarized in Table V. Dependency accuracy and sentence accuracy are improved combining SVMs and CRFs.

#### V. CONCLUSION

This paper proposed an application of CRFs to Japanese dependency structure analysis. We consider Japanese dependency structure analysis as a sequential labeling problem and apply CRFs to label whether each segment modifies the segment on its immediate right hand side. Furthermore, this paper presented a method for Japanese dependency analysis that combining SVMs and CRFs. Experiments show that the approach combining SVMs and CRFs outperforms the sole SVMs based method and the sole CRFs based method. We achieve higher dependency accuracy (90.03%) and sentence accuracy (49.29%) with a small training set. Since the CRFs based method performs better than the SVMs based method near the separate hyperplane of SVMs classifier.

#### REFERENCES

- Kiyotaka Uchimoto, Satoshi Sekine, and Hitoshi Isahara, "Japanese Dependency Structure Analysis Based on Maximum Entropy Models," In *Proc. of the EACL*, 1999, pp. 196-203.
- [2] Kiyotaka Uchimoto, Masaki Murata, Satoshi Sekine, and Hitoshi Isahara, "Dependency Model using posterior context," In *Proc. of Sixth International Workshop on Parsing Technologies*, 2000, pp. 321-322.
- [3] Taku Kuto and Yuji Matsumoto, "Japanese Dependency Structure Analysis Based on Support Vector Machines," In 1999 Joint Sigdat Conference on Empirical Methods in Natural Language processing and Very Large Corpora, 2000, pp. 18-25.
- [4] Taku Kuto and Yuji Matsumoto, "Japanese Dependency Analysis using Cascaded Chunking," In *Proc. of CoNLL*, Taipei, Taiwan, 2002, pp. 63-69.
- [5] Vapnik, V.N., *The Nature of Statistical Learning Theory*. Springer-Verlag, Berlin, 1995.
- [6] John Lafferty, Andrew McCallum, and Fernando Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," In *Proc. of ICML*, 2001, pp. 282-289.
- [7] Fei Sha and Fernando Pereira, "Shallow parsing with conditional random fields," In *Proc. of HLT-NAACL*, 2001, pp. 213-220.
- [8] Andrew McCallum and Wei Li, "Early results for named entity recognition with conditional random fields, feature induction and webenhanced lexicons," In *Proc. of CoNLL*, 2003, pp. 188-191.
- [9] Fuchun Peng, Fangfang Feng, and Andrew McCallum, "Chinese segmentation and new word detection using conditional random fields," In *Proc. of COLING*, 2004, pp. 562-568.
- [10] Fuchun Peng and Andrew McCallum, "Accurate information extraction from research papers," In *Proc. of HLT/NAACL*, 2004.
- [11] David Pinto, Andrew McCallum, Xing Wei, and W. Bruce Croft, "Table extraction using conditional random fields," In *Proc. of SIGIR*, 2003, pp. 235-242.
- [12] Della Pietra, Stephen, Vincent J. Della Pietra, and John D. Lafferty, "Inducing features of random fields," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 1997, Vol.19, No.4, pp. 380-393.
- [13] Dong C. Liu and Jorge Nocedal, "On the limited memory BFGS method for large scale optimization," *Mathematical Programming*, 1989, Ser. B, Vol 45, Iss 3, pp. 503-528.
- [14] Huiwei Zhou, Wei Li, and Degen Huang, "Japanese Dependency Analysis Using NN-LSVM," JSCL-2005, Nanking, 2005, pp. 295-301.