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Numerical Experiments
with a Population Shrinking Strategy

within a Electromagnetism-like Algorithm
Ana Maria A. C. Rocha and Edite M. G. P. Fernandes

Abstract—This paper extends our previous work done with a
modified Electromagnetism-like (EM) algorithm to a benchmark
global optimization collection of test problems. The EM algorithm
is a population-based stochastic method that uses an attraction-
repulsion mechanism to move sample points towards optimality.
The modifications include a local search based on the original
pattern search method of Hooke and Jeeves and a shrinking
strategy that aims to reduce the population size as the iterative
process progresses. Performance profiles are used to compare
the proposed modifications with the original EM algorithm
considering the average number of function evaluations and the
best function value.

Index Terms—Global optimization, Electromagnetism-like
algorithm, Population shrinking, Performance profiles.

I. INTRODUCTION

WE consider the problem of finding a global solution of
the problem:

min f(x)
s.t. x ∈ Ω,

(1)

where f : Rn → R is a nonlinear function and Ω = {x ∈
Rn : −∞ < lk ≤ xk ≤ uk < ∞, k = 1, . . . , n} is a
bounded feasible region. We also assume that the derivatives
are not available. To solve a global optimization problem like
(1), Birbil and Fang [4] proposed the electromagnetism-like
(EM) algorithm. This is a population-based stochastic search
method that simulates the electromagnetism theory of physics
by considering each sampled point as an electrical charge. The
method utilizes an attraction-repulsion mechanism to move
a population of points towards optimality. To improve the
accuracy of the solutions, the EM algorithm incorporates a
random local search that is applied to the best point in the
population [3].

Recently [12], we proposed a modification to the EM
algorithm using the well-known derivative-free pattern search
method of Hooke and Jeeves [7] as a local search procedure.
In general, we were able to achieve better accuracy results,
although at a cost of function evaluations. Population-based
methods are computationally expensive as they require large
number of function evaluations. While this is not a critical
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issue in some problems, there are practical engineering
applications where function evaluations are costly and should
be avoided. One way to reduce the total number of function
evaluations is to define a population with less points.

Beginning the iterative process with rather small populations
does not seem a good strategy as population-based methods
rely on the random scatter of the points in the feasible region
to search for promising regions, as well as to prevent the
algorithm to get stuck at nonglobal solutions.

However, a reduction of the population size at different
stages of the iterative process does not indeed affect
the algorithm convergence to the global solution. Better
accuracy solutions are obtained even with a reduction in the
computational requirements. Thus, this paper performs an
extensive practical evaluation of two modifications to the EM
algorithm of [4]:
(i) a pattern search method is used to provide at each

iteration a local search about the best point of the
population;

(ii) a population shrinking strategy is implemented to reduce
the number of points in the population whenever the
concentration of all points around the best point is
considered acceptable.

The remaining paper is organized as follows. Section II
introduces the original EM algorithm, Section III summarizes
the pattern search method of Hooke and Jeeves and Section IV
explains the main ideas of the population shrinking strategy.
Section V reports the numerical results and includes a
comparison of the proposed modifications with the original
EM algorithm. Some conclusions are drawn in Section VI.

II. ELECTROMAGNETISM-LIKE ALGORITHM

The EM algorithm starts with a population of randomly
generated points from the feasible region. Each point is
considered as a charged particle that is released to the space.
The charge of each point is related to the objective function
value and determines the magnitude of attraction or repulsion
of the point over the population. Points with lower objective
function values attract others while those with higher function
values repel. The charges are used to find a direction for each
point to move in subsequent iterations.

Throughout the paper, the following notation is adopted:
xi ∈ Rn denotes the ith point of a population; xbest is the
point that has the least objective function value; xi

k ∈ R is the
kth (k = 1, . . . , n) coordinate of the point xi of the population;
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m is the number of points in the population; Nmax
ls denotes

the maximum number of local search iterations; and δ is a
local search parameter, δ ∈ [0, 1].

The EM mechanism is schematically shown in Algorithm 1
and relies on four main procedures Initialize, CalcF, Move and
Local.

Algorithm 1 (m, Nmax
ls , δ)

Initialize()
iteration ← 1
while termination criterion is not satisfied do

F ← CalcF()
Move(F)
Local(Nmax

ls , δ)
iteration ← iteration + 1

end while

The procedure Initialize aims to randomly generate m points
from the feasible region. Each coordinate of a point (xi

k, k =
1, . . . , n) is assumed to be uniformly distributed between the
corresponding upper and lower bounds, i.e.,

xi
k = lk + λ(uk − lk)

where λ ∼ U(0, 1). The objective function values are
computed for all the points in the population, and the point
with the least function value, xbest, is identified.

The procedure CalcF computes the force exerted on a
point via other points. First a charge-like value, qi, that
determines the power of attraction or repulsion for the point xi

is determined. The charge of the point is calculated according
to the relative efficiency of the objective function value of the
corresponding point in the population, i.e.,

qi = exp(−n
f(xi)− f(xbest)∑m

k=1(f(xk)− f(xbest))
),

for i = 1, . . . , m. The total force vector F i exerted on each
point is calculated by adding the individual component forces,
F i

j , between any pair of points xi and xj ,

F i =
m∑

j 6=i

F i
j , i = 1, 2, . . . , m

where

F i
j =

{
(xj − xi) qiqj

‖xj−xi‖2 if f(xj) < f(xi)

(xi − xj) qiqj

‖xj−xi‖2 if f(xi) ≤ f(xj)
.

The procedure Move uses the normalized total force vector
exerted on the point xi, so that feasibility can be maintained,
to move it in the direction of the force by a random step length
λ, i.e.,

xi
k =

{
xi

k + λ
F i

k

‖F i‖ (uk − xi
k) if F i

k > 0

xi
k + λ

F i
k

‖F i‖ (x
i
k − lk) otherwise

, k = 1, 2, . . . , n

for i = 1, . . . , m and i 6= best. The random parameter λ is
assumed to be uniformly distributed between 0 and 1. Note
that the best point, xbest, is not moved and is carried to the
subsequent iterations.

Finally, the procedure Local presented in [4] is a random
line search algorithm and is applied coordinate by coordinate
only to the best point to explore the neighborhood of that
point in the population. First, based on the parameter δ,
the procedure computes the maximum feasible step length,
δ(maxk(uk − lk)). Second, for each coordinate k, the best
point is assigned to a temporary point y to store the initial
information. Then, a random number is selected as a step
length and the point y is moved along that direction. If an
improvement is observed, within Nmax

ls iterations, the best
point is replaced by y and the search along that coordinate k
ends. The reader is referred to [3], [4], [5] for details.

The termination criterion can include various conditions,
such as solution accuracy, a limit on iteration evaluations
and/or a limit on objective function evaluations.

III. HOOKE AND JEEVES PATTERN SEARCH METHOD

Birbil and Fang [4] show that the procedure Local is
crucial in improving the accuracy of the computed solutions.
However, an increase in the number of function evaluations
has been observed. A local procedure applied to all points
in the population is costly in terms of function evaluations,
and has been noticed that only a small set of points should
be considered for a local refinement. Assuming that the local
search method is applied only on the best point of the
population, at each iteration, then a deterministic direct search
method with guaranteed convergence properties seems indeed
the most appropriate.

One of the most popular direct search methods that can be
used as a local procedure in the EM algorithm context is the
pattern search (PS) method [2], [9], [14]. This method has been
applied to unconstrained optimization and then successfully
extended to bound constrained [10], as well as to equality
constrained problems [11]. We chose to implement the original
Hooke and Jeeves pattern search method [7], [14].

To generate feasible points in this local search procedure,
the pattern search method is applied to the penalty-type
function

P (x) ≡
{

f(x) if x ∈ Ω,
∞ otherwise,

instead of f(x). Any generated trial point that is not feasible
will never be accepted since the corresponding function value
is ∞.

This pattern search method carries out two types of
moves: the exploratory move and the pattern move. A brief
explanation follows. The exploratory move carries out a
coordinate search about the best point, with a step length
of δ. If at the new point, y, P (y) < P (xbest), the iteration
is successful. Otherwise, the iteration is unsuccessful and δ
should be reduced by a factor of εδ . If the previous iteration
was successful, the vector y − xbest defines a promising
direction and a pattern move is then implemented, meaning
that the exploratory move is carried out about the point
y + (y− xbest) instead of y. Then, if the coordinate search is
successful, the returned point is accepted as the new point;
otherwise, the pattern move is rejected and the coordinate
search is carried out about y. The minimum step length
allowed is δmin.
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IV. A POPULATION SHRINKING STRATEGY

The purpose of implementing a population shrinking
strategy is to reduce the number of points in the population,
as the iterative process progresses, and consequently to reduce
the overall number of objective function evaluations. Since the
accuracy of the results should not be affected, the crucial point
here is to choose the best way to shrink the population, i.e.,
to decide when and how to shrink the population. When the
concentration of all the points in the population around the
best point is considered acceptable, it seems that some points
could be discarded without affecting the convergence to the
solution.

One way to measure the concentration of the points in the
population around the best point is to compute the spread of
the function values with respect to the best value, represented
by SPR and defined as

SPR =
(∑m

i=1(f(xi)− f(xbest))2

m

)1/2

.

Thus, this quantity is used to decide when to shrink the
population. Since, in practice, the SPR does not monotonically
decrease as the iterative process converges to the solution,
the idea is to shrink the population, at a particular iteration,
whenever the SPR of that iteration is below a certain
percentage of the SPR of a reference iteration (SPRref ). We
define the reference iteration as the first iteration of the set
of iterations that have the same population of that particular
iteration. Thus, the population is shrunk if

SPR < ε SPRref (2)

holds. In practice, ε = 0.1 proved to be a good choice. When
condition (2) holds, the population is halved, and the reference
iteration is updated. We remark that the proposed shrinking
process is only activated when the population has at least 2n
points. The algorithm that corresponds to this EM mechanism
with the shrinking strategy is as follows:

Algorithm 2 (m, Nmax
ls , δ, ε)

Initialize()
iteration ← 1
SPRref ← Compute(SPR)
while termination criterion is not satisfied do

F ← CalcF()
Move(F)
Local(Nmax

ls , δ)
if m > 2n then
Compute(SPR)

if SPR < ε SPRref then
m = m/2 and discard m points
SPRref ← SPR

end if
end if
iteration ← iteration + 1

end while

V. NUMERICAL EXPERIMENTS

Computational tests were performed on a PC with a 3GHz
Pentium IV microprocessor and 1Gb of memory. We compare
the original EM algorithm, as described in Section II, with the
proposed modifications. There are 4 codes to be compared. To
simplify the notation we use the following abbreviations: EM
(original EM algorithm); EM-Shri (original EM algorithm
with the inclusion of the shrinking strategy); PS (EM with
the Hooke and Jeeves pattern search algorithm); PS-Shri
(EM with the Hooke and Jeeves pattern search algorithm
and the shrinking strategy). In our numerical experiments we
use a collection of 50 benchmark global optimization test
problems, produced in full detail in the Appendix B of [1].
Some problems are defined for different values of n, giving a
total of 64 problems.

The algorithms terminate when the number of function
evaluations exceeds Nmax

fe or when the relative error in the
best objective function value, with respect to fglobal (global
objective function value), is less than 0.01%. The values for
the constants are: Nmax

fe = 100n2, Nmax
ls = 10, δ = 0.001,

and in the pattern search method δmin = 1 × 10−8 and
εδ = 0.1.

Since problem dimensions in the test set vary from 2 to 30,
we decided to use the number of points in the initial population
dependent on n. Thus, we set m = min{200, 10n}.

A. Illustration of the shrinking strategy

We choose the Goldstein and Price (GP) problem, with
fglobal = 3 at (0,−1), to illustrate the behaviour of the
population shrinking strategy. The problem has one global
solution and three local solutions. The initial population has
m = 20 points. In this experiment, all random quantities were
obtained with the seed number set to 0.

We show in Fig. 1 and 2:

i) the location of the randomly generated points in the
initial population, represented by H, with the best point
represented by ×;

ii) the location of the points in the final population,
represented by ¥, with the best point represented by +;

iii) the location of the known global solution represented
by o.

The graph on the left of Fig. 1 shows the initial and final
populations of the EM algorithm. It takes 8 iterations to reach
the solution, 256 function evaluations and fbest = 3.000004.
The graph on the right illustrates EM-Shri and the population
of 20 points is reduced to 10 points after the first iteration
and reduced to 5 points in iteration 6. The algorithm takes
11 iterations to reach the solution, 179 function evaluations
and fbest = 3.000073. On the left of Fig. 2, we may
observe the initial and final populations of the PS algorithm.
It takes 5 iterations to reach fbest = 3.000004, after 306
function evaluations. On the right, the PS-Shri algorithm
takes 6 iterations to reach fbest = 3.000013, and 350 function
evaluations. Here, the population is reduced to 10 points after
the first iteration and reduced again to 5 points in iteration 5.
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Fig. 1. Initial and final populations in EM and EM-Shri algorithms.
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Fig. 2. Initial and final populations in PS and PS-Shri algorithms.

In previous work [13], we tested the shrinking strategy
only on problems of dimension 2. They were two multi-
modal functions (includes the GP problem) and three uni-
modal functions. In two problems, the shrinking strategy was
not activated since condition (2) was never achieved. Here,
we extend the implementation of the algorithms to the 64
problems in the test set. The population was never shrunk on
33 problems when running EM-Shri, and on 41 problems
when running PS-Shri.

B. Performance profiles

To evaluate and compare the performance of the four
electromagnetism-like algorithms (EM, EM-Shri, PS and
PS-Shri) on the set of selected global problems, we use
performance profiles as outline in [6]. The performance
profile plot represents the cumulative distribution function of
a performance ratio, which is computed from an appropriate
metric. Dolan and Moré in [6] proposed the use of the
computing time required to solve a problem, but other metrics
can be used. Using the performance profile plot one can
compare how well the implementation of an algorithm can
estimate the optimum relative to the others.

A brief explanation of this performance assessment follows.
Let P be the set of all problems and S the set of solvers -

implementation of the algorithms - used in the comparative
study. Let m(p,s) be the performance metric of solver s ∈ S
when solving problem p ∈ P , according to the termination
criteria previously defined. Every problem is solved 30 times
with each solver, with different seed numbers (based on
time) to randomly generate the initial population. Our first
experience uses the average number of function evaluations,
over the 30 runs, as the performance metric.

Thus, the performance ratios used in this comparative study
are defined by

r(p,s) =
m(p,s)

min{m(p,s) : s ∈ S}
for p ∈ P, s ∈ S , and the overall assessment of the
performance of a particular solver s is given by

ρs(τ) =
1

nP
size{p ∈ P : r(p,s) ≤ τ}

where nP is the number of problems in the set P . The "size"
is the number of problems in the set such that the performance
ratio r(p,s) is less than or equal to τ for solver s. Thus, ρs(τ)
is the probability (for solver s ∈ S) that the performance ratio
r(p,s) is within a factor τ ∈ R of the best possible ratio.

If one is interested in the best assessment of the solvers, then
fbest, the best function value found by solver s on problem p,
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Fig. 4. Performance profile on the best function value.

over the 30 runs, should be used as the performance metric.
However, in this case min{m(p,s) : s ∈ S} can be zero for
a particular problem, or even negative, and the performance
ratios used in this comparative study should then be given by

r(p,s) =





1 + m(p,s) −min{m(p,s) : s ∈ S},
if min{m(p,s) : s ∈ S} < ε

m(p,s)

min{m(p,s):s∈S} , otherwise
,

for ε = 0.00001 (see [15] for a more complete discussion).
The value of ρs(1) gives the probability that the solver s

will win over the others in the set. However, for large values of
τ , the ρs(τ) measures the solver robustness. The solver with
largest ρs(τ) is the one that solves more problems in the set
P .

The performance plots presented in Fig. 3 summarize the
comparison on the selected 64 problems of the average number
of function evaluations (Nfe). We may conclude that the
PS-Shri algorithm is indeed the best one relative to the
others. The introduction of the shrinking strategy improves
efficiency of the PS algorithm. In the EM version, the shrinking
strategy seems to slightly improve robustness.

When the comparative study is concerned with the best
function value fbest (fbest = min(f i

best), i = 1, . . . , 30), the

algorithms EM-Shri and PS-Shri do not differ very much.
The performance plots turn out to be very similar, see Fig. 4,
except the ones corresponding to EM and PS algorithms. For
large values of τ (τ > 80) the algorithm PS solves all the
problems to optimality.

C. Error behavior on the problem Neumaier 3

The performance of the proposed modifications to the EM
algorithm is herein further examined on a problem that has
varied dimension sizes. To show the algorithms behavior as
n increases, we selected the problem Neumaier 3, represented
by NF3 in [1]. This problem has global minima that can be
expressed as

fglobal = −n(n+4)(n−1)
6 ,

for xglobal
k = k(n + 1− k), k = 1, . . . , n.

Our analysis uses five values of n: 10, 15, 20, 25, 30. To
measure the accuracy of the solutions found by the algorithms
we use the mean absolute error (MAE) defined by

MAE =
|fglobal − favg|

n

where favg is the average value of the best function values
obtained over the 30 runs.

Table I lists values of fglobal, fbest, favg , MAE, Nfe

(average number of function evaluations, over the 30 runs),
m and mfinal (the average number of points in the final
population, over 30 runs). Note that the initial population has
m = min{200, 10n} points.

The effect of the problem dimension on the algorithms
performance is not surprising since some global optimization
algorithms have poor searching ability as n increases.

The algorithms based on the shrinking strategy achieve
in general the lowest numerical errors. Using MAE as a
measurement of error, Fig. 5 shows how the errors grow from
n = 10 to n = 30. We may observe that with the original EM
algorithm the error grows faster with n than with the other
algorithms. The shrinking strategy has reduced the dependency
of the algorithm on n. This is particularly important in the EM
algorithm. We also note that a significant reduction on the
Nfe is obtained when the shrinking strategy is coupled with
the PS algorithm, see Table I. We would like to point out
that the fbest values obtained by the PS-Shri algorithm are
extremely close to the analytical results.

VI. CONCLUSIONS

We have presented a detailed comparative study of two
types of modifications to introduce in the Electromagnetism-
like algorithm given in [4] for solving the global optimization
problem (1). Our results demonstrate favorable performance
of the proposed modifications.

The original Hooke and Jeeves pattern search method is
proposed as a procedure Local within the EM algorithm, and
a population shrinking process is incorporated in the algorithm
so that the population can be reduced over the iterative process.
Fewer objective function evaluations are required and the
convergence rate of the resulting algorithm is not affected.
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TABLE I
PERFORMANCE OF PROPOSED MODIFICATIONS TO EM ALGORITHM ON PROBLEM NEUMAIER 3

n code fglobal fbest favg Nfe MAE m mfinal

10 EM -210 -206.62341 -199.02158 10066 1.09784 100 100
PS -209.99193 -209.98659 6607 0.00134 100

EM-Shri -209.98218 -209.97975 8167 0.00203 12
PS-Shri -209.99328 -209.98618 4436 0.00138 12

15 EM -665 -643.38018 -622.90264 22567 2.80649 150 150
PS -664.94572 -664.93901 17421 0.00407 150

EM-Shri -664.83907 -664.77173 22517 0.01522 18
PS-Shri -664.94919 -664.93874 11385 0.00408 18

20 EM -1520 -1398.81653 -1366.80792 40100 7.65960 200 200
PS -1519.86269 -1519.67868 39437 0.01607 200

EM-Shri -1518.32553 -1517.88224 40024 0.10589 25
PS-Shri -1519.86621 -1519.85636 27585 0.00718 25

25 EM -2900 -2678.89641 -2608.16469 62643 11.67341 200 200
PS -2899.71944 -2896.58852 62696 0.13646 200

EM-Shri -2881.94390 -2878.90144 62539 0.84394 50
PS-Shri -2899.74243 -2899.69538 57611 0.01218 50

30 EM -4930 -4520.75077 -4425.00997 90121 16.83300 200 200
PS -4927.98962 -4919.48719 90342 0.35043 200

EM-Shri -4871.86254 -4864.56731 90039 2.18109 50
PS-Shri -4929.54779 -4928.43544 89923 0.05215 50

Error behavior for Neumaier 3 problem
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Fig. 5. MAE behavior on problem Neumaier 3 (for 5 values of n)

When the performance assessment of the algorithms is
based on the average number of function evaluations, the
shrinking strategy is more effective when coupled with the
EM algorithm based on the Hooke and Jeeves pattern search
local procedure. If one is interested in the performance
assessment of the best function value then the shrinking
strategy significantly improves the EM algorithm performance.

Another important conclusion that we can draw from our
numerical experiments is that the shrinking strategy reduces
the dependency of the algorithm on the number of variables of
the problem. This strategy seems rather appropriate for solving
large global optimization problems with bounded variables.

To further reduce the need for large sets of points in the
initial population we intend to apply the number-theoretic
method, a deterministic process that produces a set of
uniformly scattered points in the feasible region [8]. It seems
that this new process has the ability to explore the search space
uniformly and requires in practice reduced number of function
evaluations.
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