
 

 

  
Abstract—This paper presents a new approach for the design of 

three-dimensional (3-D) FIR digital filters using the McClellan 
transformation method and an integral squared error (ISE) criterion. 
We concentrate our investigations on the design of 3-D filters having 
cone-shaped magnitude responses. Analytical closed-form relations 
for transform parameters and 1-D cut-off frequency are developed. In 
order to find an optimal solution for the transform parameters, we 
apply minimization of the ISE function based on the double 
integration in the frequency domain. All derived relations are 
expressed in terms of the desired angle of inclination of the cone 
filter. Design of a scaled transformation function is also discussed. 
Several examples are presented to show the effectiveness of the 
proposed technique. 
 

Keywords—Integral squared error criterion, McClellan 
transformation, Scaled transform function, 3-D FIR digital filters. 
 

I. INTRODUCTION 
T is known, that the McClellan transformation is an 

efficient tool in designing multidimensional (M-D) digital 
filters. Especially methods for two-dimensional (2-D) filters 
are very well developed in the literature. This transform is 
easy to apply; it gives also an efficient 2-D implementation 
structure with minimum number of multiplications and good 
round-off noise performance [1]. The original transform 
method uses a linear-phase 1-D prototype filter, which is 
mapped by a transformation function to designed 2-D filter. 
Different optimality criteria have been applied in realization 
of these methods, e.g. the integral squared error (ISE) criterion 
for 2-D zero-phase FIR fan filters [2], [3]. Pei and Shyu [4] 
proposed a 2-D least-squares (LS) contour mapping with a 
simultaneous determination of the optimal 1-D cut-off 
frequency. Other 2-D approaches using McClellan transform 
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and LS criterion are discussed in [5]-[7]. The coefficients of 
the M-D transform are obtained in [8] using LS optimization 
along to a series of contour points. A 3-D ellipsoidal 
frequency response is constructed as an example.  

Many application areas require 3-D digital filters instead of 
2-D filters (e.g. 3-D visual systems, medical diagnoses, 3-D 
seismic data processing, etc.). Some of the methods for design 
of 3-D filters are created as an extension of 2-D approaches. 
Several McClellan transform based methods for 3-D filters 
have been developed, as well [9]-[11].  

In this work, we propose a new design technique for 3-D 
FIR lowpass filters with cone-shaped characteristics using the 
ISE criterion and 3-D first order McClellan transform. As a 
result, the new analytical formulas for the transform 
parameters will be derived leading to the effective 
computation procedure.  

This paper is organized as follows. Section II presents the 
theoretical background of the new approach. We consider the 
calculation of transform parameters and 1-D cut-off frequency 
and describe the minimization of the ISE function. Next 
section deals with the design of a scaled transform. Simulation 
results and some accuracy issues are discussed in Section IV. 
Finally, in Section V we present the conclusions. 

II. DESIGN APPROACH FOR 3-D FIR FILTERS 

A.  The McClellan transform 
The M-D McClellan transformation uses the following 

relation:  
   ),...,,()cos( M21 ωωωω F=  ,               (1) 

where F(ω1,ω2,...,ωM) is M-D transform function and ω is the 
1-D frequency variable.  

Let us define the following first order 3-D transform 
function: 
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which is one choice from the original McClellan transform of 
(I,J,K)-order: 
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We consider in our approach a 1-D zero-phase FIR filter of 
odd length 2N+1 with a frequency response: 
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where the coefficients a(n) can be expressed in terms of the 
impulse response samples of the 1-D filter. With [ ]xTn

 is 
denoted the n-th order Chebyshev polynomial [12] defined by 
the following recursive relation: 
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Then, the 3-D frequency response is obtained using the 
McClellan transformation (1): 
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The function F3(ω1,ω2,ω3) should satisfy the condition 
∣F3(ω1,ω2,ω3)∣≤ 1 for all frequencies ω1, ω2, and ω3 in the 
interval [−π, π] (as the cosine function ∣cos(ω)∣≤ 1). This 
transform is known as scaled or “well-behaved” transform.  

The 3-D surfaces created by transformation (1) will be 
called isopotential surfaces. It is known that: (i) the function 
F3(ω1,ω2,ω3) determines the shapes of isopotential surfaces of 
the designed 3-D filter, and (ii) the values along these surfaces 
are fixed by means of the 1-D prototype frequency response. 

The problem now is how to calculate the transform 
coefficients introduced in (2), so that the designed 3-D 
frequency response to approximate the ideal one. The ISE 
criterion will be used as an optimality criterion. 

B. Determination of transform parameters and 1-D cut-off    
frequency 

We focus our attention on 3-D filters with a particular 
symmetry class, namely with a conical type of the magnitude 
response. The ideal double cone filter oriented in ω3-direction 
is shown in Fig. 1. On the surface of the cone we have: 
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where γ is the slope of the cone. Below, we denote the angle 
of inclination of the cone with θ:  

)arctan(γθ =    
as the angle between the surface of the cone and (ω1,ω2)-
plane. The angle θ is an important parameter in the input 
specifications of designed 3-D cone filters. 

We impose below the following conditions on the function 
F3(ω1,ω2,ω3): 
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These conditions are necessary to realize a true mapping 
from 1-D lowpass prototype to 3-D lowpass filter. With the 
first one we transform 1-D point ω=0 into the point of the 
passband of the cone (0,0,π). By analogy, the π-point (1-D 
plane) is mapped into the stopband point (π,π,π) from 3-D 
plane. As the point (π,0,0) is outside of the cone surface, we 
assume the validity of the third condition from (4). Finally, the 
following system of equations is obtained having 8 unknown 
transform parameters: 

1
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 We can express now three of the parameters as a function 
of the rest five: 
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By substituting (5) in (2), we rewrite the transform function 
as a function of 5 parameters (t011, t111, t100, t110, and t101): 

. )cos())cos()cos()(cos(
))cos()cos()(cos(

))cos()cos()cos(1(
))cos()cos()cos(1(

))cos()cos()cos()cos(1(
),,(

3312101

213110

123100

321111

3223011

3213

ωωωω
ωωω

ωωω
ωωω

ωωωω
ωωω

−++
+++

++++−+
+++

++−−=
=

t
t
t
t
t

F

     

(6) 

Let us denote the cut-off frequency of 1-D prototype with 
ω0. We formulate our approximation problem as follows: to 
determine transform parameters from (6) and optimal 
frequency ω0 under given angle of the cone θ∈(0,π/2), such 
that the isopotential surface corresponding to ω0 approximates 
the cone surface defined by (3). The similar design problem 
was considered in [2], but applied for 2-D FIR fan filters. 

To solve the above problem, at first we define the following 

Fig. 1 The ideal frequency response of a 
cone filter (with γ=1) 
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deviation function on the cut-off isopotential surface: 
03213321 ),,(),,( cFE −= ωωωωωω ,         (7) 

considering only small values of cosine arguments: 
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The parameter c0 from (7) corresponds to the cut-off 
isopotential surface and therefore determines the frequency 
ω0. The approximation (8) applied in our approach leads to 
better accuracy of designed filters for small values of the 
frequencies (see Fig. 2 for graphical illustration).  

Using expressions (6)−(8) and after some calculations, we 
get the following relation from the equation E(ω1,ω2,ω3)=0: 
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where the values of r and H are calculated as: 
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As we stated in our approximation task, we wish the cut-off 
isopotential surface (i.e. the surface for ω=ω0) to be as close 
as possible to the equation (3) describing the cone surface. 
Assuming this equivalence between (3) and (9), we get: 

r
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and the parameters c0 and r are finally determined as: 
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In order to reduce the approximation error (considering the 
expression for H) and also by using the above result for r, we 
found that: 
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Therefore, by substituting relations (11) in (6), we can 
express the transform function in terms of only one unknown 
parameter (t111) and angle θ: 
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where the value of r is given by (10).                               
The equation of cut-off isopotential surface can be obtained 

by solving F3(ω1,ω2,ω3)=c0 for the frequency ω3 as a function 
of ω1 and ω2: 
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This expression can be further optimized as follow: 
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taking into account that c0=−cos(2θ)=2r−1. We prove also 
that the following relation holds: 

( ) 03 0,0,0 cF = . 
This may be explained by the fact that the isopotential cut-off 
surface passes through the origin of a 3-D plane. Several cut-
off isopotential surfaces obtained for different angles θ will be 
plotted in Section IV. 

C. An application of the ISE criterion 
According to the results obtained in the previous section, 

the transform function (12) is expressed in terms of the 
parameter t111 (for small values of the cosine arguments). In 
order to find an analytical solution for this coefficient, we 
define the ISE function M(t111) as: 
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where ( )33121 ),,(, ωωωωω fE =  is our deviation function from 
(7) determined in terms of ω1 and ω3 with the following value: 
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In above consideration, we expressed cos(ω2) as a function 
of ω1 and ω3 using equations (3) and (8): 
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Now we can reformulate our 3-D cone filter optimization 
problem as follows: to find the value of t111 that minimizes the 

Fig. 2 The cosine function cos(x) plotted in the 
interval [-π, π] and its approximation 
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ISE function defined by (15) under given angle θ of the cone. 
The minimization is with respect to one parameter and 
therefore the analytical solution can be found. In order to 
determine the double integral in (15), we use the following 
statement: 
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which allow us to decompose the above task into solving a set 
of single integrals (with respect to ω3 and ω1). After analytical 
evaluation of all elementary integrals included in (17), we 
establish the following final result: 
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The final step in our derivations is to determine this optimal 
value of the coefficient t111 for which the first derivative of M 
is equal to zero: 
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This value of t111 is expressed as a function of desired angle θ 

and is a solution of our optimization task (15). Therefore, the 
transform function (12) is fully determined. 

The transform coefficient t111 plotted as a function of the 
angle θ is given in Fig. 3. Its value varies in a range between 
zero and −0.2666. We would like to have values of t111 closer 
to zero (see the last term of expression for H). According Fig. 
3, we can expect that our method will show better error 
performance for smaller values of θ. A detailed consideration 
on the accuracy of the method is presented in Section IV. 

III. SCALED TRANSFORM FUNCTION 
As we discussed in the previous section, we are looking for 

the properly scaled transform function. Our investigations 
show that F3(ω1,ω2,ω3) specified by (12) needs a special 
scaling procedure, because its extremal values are: 
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That means that ⎪F3min⎪>1 and the condition for scaled 
function ⎪F3(ω1,ω2,ω3)⎪≤ 1 is not fulfilled. We apply below 
the scaling scheme proposed by Mersereau et al. [13] to get a 
scaled transform function: 
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where the values of t111  and r are obtained in the previous 
section. 

The scaling method [13] is originally developed for 2-D 
filters, but our investigations proved, that it is also applicable 
for 3-D case. The shapes of the surfaces obtained with the 
scaled function (22) are the same as those with non-scaled 
function F3(ω1,ω2,ω3) defined by (12). Hence, the equation of 
isopotential cut-off surface obtained with the function (22) is 
the same as this one with the non-scaled function (14). 

The 1-D cut-off frequency associated with the scaled 
function can be determined as [13]: 
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The relation (23) indicates the optimal value of the 
frequency ω0 and will be used in our design methodology.   

We have to point out that the method presented in this work 
differs from the approach [14] in the following main items: (i) 
three input conditions are imposed instead of four as in [14], 
(ii) the ISE criterion is applied, and (iii) the new relations for 
transform parameters are proposed.   

IV. DESIGN METHODOLOGY AND EXAMPLES 
All results given in this section are obtained using a Matlab 

simulation based on the derived expressions. The graphical 
view of the isopotential cut-off surfaces (for different angles 
θ) is shown in Fig. 4(a),(b). The plots are generated using 
expression (14). Fig. 4(a) presents also a comparison between 
the surfaces obtained with our method and method [14] 
without LS-optimization. The results show a better 
approximation to the cone surface for angles below 45° (π/4 
radians) with the new method.  The shapes of the surfaces for 
both methods are very close for angles above 45°. 

The following methodology has been used for design of 3-
D FIR cone filters:  

• Determination of the 1-D cut-off frequency using relation 
(23) under given angle θ; 

• Design a zero-phase 1-D FIR lowpass filter (we apply a 
McClellan-Parks algorithm in our examples). In this step, we 
create at first a linear-phase FIR filter with the desired 
magnitude response, and then by shifting the impulse response  
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Fig. 4(a) The isopotential cut-off surfaces plotted for angles 30° and 40° (0.167π and 0.222π). 
The plots on the first row are obtained with the new method; second row – method [14] 
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we get the corresponding zero-phase filter; 

• Calculation of transform parameter t111 (see the 
expression (19)) in order to obtain the scaled transform 
function (22); 

• Using the presentation of a 1-D frequency response in 
terms of the Chebyshev polynomial (given in Section II) and 
relation (1), we design our 3-D cone filter response. The result 
for the transform function from the previous step is applied. 

Fig. 5 presents several 3-D magnitude responses plotted for 
ω3=constant (as an example we choose ω3=ω0). Different 
angles of the cone filter are examined. The cut-off frequencies 
of the corresponding 1-D prototypes have the following 
values: ω0=0.4238π (θ=42°), 0.2649π (θ=58°), 0.2028π 
(θ=65°), and 0.1192π (θ=75°). The coefficient t111 computed 
by using (19) is: t111=−0.1969 (θ=42°), −0.2226 (θ=58°), 
−0.2330 (θ=65°), and −0.2530 (θ=75°). These results are 
obtained with 1-D prototypes of length 2N+1=33 and 
transition band 0.1π. As we expected, the 3-D magnitude 
responses are equiripple (because 1-D equiripple prototypes 
determine the values along isopotential surfaces). 

 In order to evaluate the accuracy of the method, we draw 
the deviation function E for the scaled transform function: 

)cos(),,(),,( 03213321 ωωωωωωω −= SFE          (24) 

in terms of ω1 and ω2 (for ω3=constant). The graphical results 
(angles 25° and 40°) for both methods under consideration are 
shown in Fig. 6. A better error performance with the new 
method can be detected, essentially for bigger frequencies. 
This can be explained with the application of the ISE criterion 
(15) including double integration for the full frequency range 
of ω1 and ω3. 

We observe that both methods lead to very close deviation 
functions only for small frequencies. It was proved that the 
following relations hold for these two methods: 
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In order to estimate more precisely the accuracy, we 
calculated also the mean deviation function as a mean value 
between 50 different functions E: 
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∑
=

=
=
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km
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k
E

N
E ωωωωω                 (25) 

where Nm=50 and the ωk are equally spaced frequencies in the 
interval [-π, π]. Several plots of Emean as a function of ω1 and 
ω2 determined for given angle θ are presented in Fig. 7. These 
graphics confirm all conclusions for the accuracy of our 
method stated above.  

V.   CONCLUSION 
In this paper, the application of the ISE criterion for design 

of the McClellan based 3-D cone FIR filters is shown. The 
analytical closed-form expressions for transform coefficients 
and 1-D cut-off frequency are derived. Several design 
examples are presented using the new relations. 

The graphical results (for cut-off isopotential surfaces, 3-D 
magnitude responses, and deviation function) show a good 
error performance of the method. The comparison between the 
new approach and method [14] proves the improvement of the 
accuracy (in particular for filters with angles below 45°). 

The proposed method enjoys very short computation time 
without time-consuming iterative procedures. It can be also 
extended to design of other types of 3-D FIR filters (e.g. with 
spherical and elliptical responses).  
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Fig. 7 The mean deviation function Emean for different angles θ 
(new method – upper plots; method [14] – lower plots) 

-4
-2

0
2

4

-4
-2

0

2
4

-0.5

0

0.5

1

frequency w1

Angle 25°

frequency w2

M
ea

n 
D

ev
ia

tio
n 

fu
nc

tio
n 

E
m

ea
n

INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 1, 2007 25


	mmmas-14-parti-I.pdf
	mmmas-14-Part-II.pdf

