
 

 

   
Abstract— The magnetically induced flow was examined 

numerically using a computational code based on the finite element 
method with the streamline-upwind/pressure-stabilized Petrov-
Galerkin approach. The mathematical model considers an 
incompressible isothermal unsteady flow with a low frequency and 
low induction magnetic field. The validation of the magnetic force 
calculation was carried out on a cylindrical cavity, where the time-
dependent electric potential and current density distribution can be 
derived analytically. The flow under the rotating magnetic field was 
simulated for the axisymmetric cylindrical and non-axisymmetric 
square cavity. The effect of the different geometries on the 
distribution of the time-averaged magnetic force and magnetically 
driven rotating flow were discussed. 
 

Keywords— Finite element methods, magnetic forces, rotating 
flows, stabilization techniques. 

I. INTRODUCTION 
Various kinds of magnetic fields such as rotating (RMF) or 

traveling magnetic field (TMF) are successfully applied in 
metallurgical and single crystal growth processes [10]. In 
order to use these techniques effectively, an in-depth 
knowledge about the effects of the magnetic field on 
electrically conducting fluids is needed. The fact, that 
experimental approaches are mainly too expensive for such 
investigations then a numerical simulation was found to be an 
attractive way for extensive magnetically driven flow studies. 
An overview of results achieved mainly by numerical 
simulations can be found e.g. in [2],[3],[5],[9], and [13].  

The paper is organized as follows: in Section 2, the 
mathematical model is introduced. The numerical approaches 
dealing with the finite-element discretization and stabilization 
techniques are illuminated. Section 3 reports on the code 
validation. The consequence of the axisymmetric and non-
axisymmetric shape of the container on the flows is presented 
and is discussed in Section 4. 

II. PROBLEM FORMULATIONS 
The container, bound by electrically insulated walls the 
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characteristic length L and the height H, is filled by an 
electrically conducting fluid with the density ρ, kinematical 
viscosity ν and electrical conductivity σ. The fluid inside is 
stirred by the rotating magnetic field with a magnetic 
induction B and frequency ω. The incompressible viscous 
flow is governed by the Navier-Stokes equation and the 
continuity equation taking a form as  
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with Dirichlet and Neumann type boundary conditions 
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where the velocity u and time t are scaled by ν/L, L2/ν, the 
pressure p by ρν2/L2 and an external mean body force f is 
scaled by ρν2/L3. 

For the calculation of the magnetic body force, the low-
frequency and the low-induction RMF condition are assumed. 
To satisfy these conditions, the magnetic Reynolds number 
Rm and the shielding parameter S have to be in relation to that 
of 1≤=<<= RSuRRm μσωμσ , where μ  denotes the 
magnetic permeability. Using Ohm's law, the current density 
is in 
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where Φ and A denote the dimensionless electric potential 
and the vector potential, and j is the dimensionless current 
density. The Taylor number is defined as follows: 
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where B0 is an amplitude of the magnetic field induction 

and L is  the characteristic length. The characteristic length is 
either the radius of the container R (cylindrical cavity) or half 
the side length A (square container).  

To determine the electric potential Φ in (5), we can exploit 
that 0=⋅∇ j  and at boundaries 0=⋅nj . Thus, the equation 
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for electric potential derived on the basis of Ohm's law is in 
this form  
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with the Neumann type boundary condition 
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 For the infinite-length container, 0=∂Φ∂ n , otherwise 

tAn n ∂∂−=∂Φ∂ . 
 

Practically, the time-dependent Lorentz force distribution is 
computed using (5), (7), and (8). Nevertheless, this body force 
can be divided further into two parts; the time-dependent and 
the mean part, respectively.  

Under considerations that the interaction parameter is 
12 <<= ρωσBN  only the mean part of the magnetic body 

force has a significant effect on the magnetically induced fluid 
flow and the fluctuating part can be neglected [7] and [8]. 
Thus, the mean part of the magnetic body force is calculated 
and averaged in the frame of the one time step instead of the 
time-consuming calculation in every time step. To find details 
about the averaging of the magnetic force in respect to the 
accuracy we refer to [6]. 

III. NUMERICAL APPROACHES 

The finite element discretization space of Ω  with boundary 
Γ  is consisted of eΩ , where e=1,2,…, eln  and eln  is the 
number of elements. For velocity and pressure, we define the 
finite element trial function space denoted as h

uS  and h
pS , and 

weighting function h
uυ  and h

pυ . These function space are 

selected for H1h(Ω), where H1h(Ω) is the finite-dimension 
function space over Ω. Equation (1) and (2) can be formally 
integrated in time and is written as follows: find h
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where the residual r  is defined as 
 

.2 pt ∇+∇−−⋅∇+∂= ufuuur         (10) 
 
The overbar denotes the time averaged over the time 

interval given by tn and tn+1. To the standard Galerking 
formulation of (1) and (2); the SUPG (streamline-
upwind/Petrov-Galerkin) and PSPG (pressure-
stabilizing/Petrov-Galerkin) terms are added.  An appropriate 
choice for SUPGτ  and PSPGτ  is given by [12] and [11]. Both 
stabilization terms represent weighted residuals, and therefore 
maintain the consistency of the formulation 

The magnetic body force can be trivially calculated if the 
current density field is known. The right side of (5) is applied 
for the calculation of the current density field and it is 
integrated as follows: find h

j
h S∈j  such that h

j
h υ∈∀w , 

where h
jS  represents the finite element trial function space 

and h
jυ  weighting function 
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The boundary integral is zero because of 0=⋅nj . The time 

derivation of the vector potential is known for a particular 
type of the magnetic field. The electric potential must be 
calculated based on (7), and after integration takes the form: 
find hh SΦ Φ∈  such that hhq Φ∈∀ υ , where hSΦ  represents 

the finite element trial function space and h
Φυ  weighting 

function 
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In this equation, the boundary integral vanishes because of 

the Neumann type boundary for the electric potential (8). 
The integrated Equation (9) is further split into a velocity 

(predictor) and a pressure (corrector) step. The predictor step 
for velocity is solved explicitly using the Jacobi iterative 
method, the corrector step involving the pressure equation is 
solved implicitly by the Conjugated gradient method. The 
equation (11) and (12) are solved iteratively by the Jacobi 
method. 

For the time averages, the second-order Adams-Bashforth 
method is applied. The calculation of the mathematical model 
is fully parallelized. The created computational grid is 
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decomposed into a specific number of partitions using the 
METIS package [1] (see Figure 1). 

 
Fig.1 computational grid decomposed into 16 grid partitions 
 
For handling of computational grids, the MG grid library 

[4] was used which provides a data structure and basic 
procedures. 

IV. CODE VALIDATIONS 
The code validation was divided into two significant steps. 

The first part of the code validation is focused on the 
mathematical model describing an effect of the magnetic field 
on the electrically conducting fluids. The second part was 
dealing with the flow solver itself. The flow solver was 
validated by various test cases such as unsteady laminar flows 
in the channel, the Stokes flow in the cylindrical infinite-
length containers etc. These tests confirmed the second-order 
accuracy in space and time.  

How the code can capture an onset of the flow stability was 
presented in [3]. Briefly, the results obtained were in good 
agreement with the results based on high-order computational 
methods [2]. The mathematical model for the magnetic force 
calculation was examined on the cylindrical finite-length 
container exposed by a rotating magnetic field. Considering 
the low frequency/induction RMF condition and the 
cylindrical container, the current density and electrical 
potential can be derived analytically and taking a form 
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Where 1J  is the Bessel function of the first kind and and 

nλ is the zeros of their first derivative, respectively. The 

function nc  is defined as follows: 
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The analytical expression of the equation for calculation of the 
current density components e.g. in the y-component is taking 
the form  
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and in the z-component 
 

).cosh()(
1

1 zrJcrj n
n

nnnz λλλ∑
∞

=

−=             (16) 

 
 

     
 

Fig.2 contours of the electric potential calculated by the 
analytical form (left) and using the mathematical model          
(right) 

 
Figure 2 shows a good agreement of the electric potential 

distribution calculated based on the analytical expression by 
Equation (13) and (12). 
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Fig. 3 contours of the y-component of the current density 

field calculated analytically (left) and using the mathematical 
model (right) and depicted in the yz- slice 

 
Figure 2 shows a good agreement of the electric potential 

distribution calculated based on the analytical expression and 
by Equation (12). 
 

 
 

Fig. 4 contours of the z-component of the current density 
field calculated analytically (left) and using the mathematical 
model (right) depicted in the yz-slice 

 
Analogous to the electrical potential, Figure 3 and 4 show 

good agreement of the calculated y- and z-components of the 
time-depending current density field compared with the 
analytical solution both in the yz-slice and at the same time 
position. Because of the symmetry of the magnetic body force 
distribution in the azimuthal direction, the comparison in the 
x-component of the magnetic force in the xz-slice will be a 
qualitatively equivalent. The current density field is essential 
for the determination of the magnetic force calculation as 
demonstrated in Equation 5. 

V. RESULTS 
In order to demonstrate the practical applicability of the 

computational code for magnetically driven flows, two 
characteristic examples are chosen: the flow driven by the 
rotating magnetic field in an axisymmetric and non-
axisymetric cavity respectively. In both cases, the Taylor 
number Ta=1x104 is considered.  

 

A. Magnetic force distributions of RMF  
The influence of the type of the container on the magnetic 

force field is demonstrated in Figures 5 and 6. 

 
Fig. 5 contours of the Lorentz force in a axisymmetric 

cavity 
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Fig. 6 contours of the Lorentz force in the square container. 
 
In both containers, the maxima of the intensity of the 

magnetic body force are close to the vertical walls and the 
contours of the magnetic force distributions look similar. 
However, as is expected by the magnetic force definition, the 
intensity of the Lorentz force is higher at the corner of the 
square container (non-axisymmetric cavity). 

 

B. The flow driven by the RMF in an axisymmetric cavity 
 
The RMF generates a main rotating flow in the azimuthal 

direction and due to the imbalance between the magnetic 
forces and pressure; a weak secondary flow appears in the 
vertical direction [5]. 

Figure 7 and 8 show the main rotating flow in different 
horizontal slices irregularly extracted along the z-direction 
and in the vertical slice, respectively. At Ta=1x104, the 
velocity field is axisymetricaly and homogenously distributed. 
Up to the threshold of the critical Taylor number, the 
magnetically driven flow remains homogenous and 
axisymetric [2]. 

To find more about magnetically driven flows in the 
transitional or turbulent flow regime, we address to our older 
publications [5] and [3]. 

 

 
Fig. 7 magnetically driven flows in the cylindrical container 
 

 
Fig. 8 contours of the rotating flow in the cylindrical cavity 
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C. The flow driven by the RMF in a non-axisymmetric 
cavity 

 
While the wide range of various flow studies have been 

carried out in the last decades in the field of the magnetically 
driven flow in the cylindrical container, other shape of 
containers especially non-axisymmetric geometries stayed 
behind. Consequently, further work will be focused on the 
flow in the non-axisymmetrical geometry. 

 
Fig. 9 contours of the rotating flow at horizontal slices in 

the square container 
 
In general, using the finite-element code presented above, 

the time-averaged field of the magnetic force can be 
effectively calculated for any shape of the container. Figures 9 
and 10 depict the main rotating flow insight the square 
container. Obviously the contours of the velocity field are 
similar to the ones found in the cylindrical container, 
however, slight differences between both container shapes 
have been recognized revealing the significant impact of the 
non-axisymmetrical geometry on the resulting flows. 

To find more about this and other effects of the non-
axisymetrical geometry of the feature of the magnetically 
driven flows we address to [6]. 

 

 
Fig. 10 contours of the rotating flow at the vertical slice in 

the square container 
 

VI. CONCLUSION 
A computational code based on the finite-element method 

designed especially for the magnetically driven flows was 
presented. The mathematical model consisted of the Navier-
Stokes equations, continuity equation and equations for the 
calculation of the magnetic field. It was discretized using the 
Finite-Element Method with SUPG and PSPG stabilization 
techniques. These numerical approaches were validated on the 
number of various test cases e.g. the cylindrical container, 
where time-independent magnetic forces, electric current and 
electric potential can be derived analytically. The practical 
application of the computational code was presented on the 
problem of the RMF in two different containers, in the 
axisymmetric and non-axisymmetric cavity. The significant 
influence of both the different containers on the magnetic 
force distribution as well as magnetically driven flows was 
discussed briefly. 
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