
 

 

  
Abstract—This paper introduces a system for synthesizing 

fractional Gaussian noise (FGN) based on two approaches in the 
platform of MATLAB. One is empirical mode decomposition (EMD) 
and the other correlation method. The system can be used to simulate 
FGN and fractional Brownian motion (fBm), respectively. A 
comparison of theoretical and real autocorrelation of a synthesized 
realizations of FGN is illustrated between EMD-based simulation and 
correlation-based one. 
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I. INTRODUCTION 

ANY natural processes such as weather data, electrical or 
physiological measurements, and man made phenomena 

such as traffic flow data exhibit spectrums that have been 
observed to follow the 1/f law. In fact, fractional Brownian 
motion (fBm) is the only known correlation model that satisfies 
Wornell’s definition of 1/f processes [1]. One characterizing 
feature of fBm is its statistical self-similar property [2], and it 
absolutely depends on the Hurst index.  

In practice, however, it is difficult to generate fractional 
Gaussian noise (FGN) since FGN is too narrow for being 
accurately consistent with real traffic data on the Internet in the 
general sense [3] [4] [5].  

Ref. [6] presents a model of synthesizing FGN based on 
correlation. Ref [7] proposes an algorithm for generating FGN 
using Empirical Mode Decomposition (EMD). In this paper we 
introduces a simulation system designed and implemented by us 
that is based on MATLAB. The system can be used to 
synthesize FGN and fBm separately based on correlation and 
EMD with given Hurst index. 

We will introduce the structure and functions of our system in 
Section 2, present the simulation method based on EMD and 
correlation in Section 3 and in Section 4 respectively. A case of 
generating fractional processes is shown in Section 5 and 
conclusions in Section 6. 
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II. SYSTEM STRUCTURE AND FUNCTION 

A. System Structure 
The designed system integrates two newly raised methods: 

the EMD-based simulation and the correlation-based one. As 
known, the GUIDE groupware of MATLAB provides strong 
support on Graphical User Interface and perfect support on 
users’ demand. The system contains seven modules that are 
white noise simulating, method, distribution option, H value 
setting, fractional processes generating, sampling length setting 
and data exporting. 
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Fig. 1. System structure. 
 
Fig.1. is the flow chart of simulation. Using GUI-based 

MATLAB, we implement a system interface of the simulation 
of fractional Gaussian noise. Please refer to Fig.2. 

B. System Function 
Fig.2 shows the main interface of the simulation system. With 

white noise simulated, the user has alternative methods of 
EMD-based and correlation-based. The system can then be used 
to synthesize FGN and fBm with given H index. Users can set 
the sampling length via the module of sampling length setting 
and export generated processes through the module of data 
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exporting. Several formats of files, such as ‘.txt, .dat, .xls’, are 
supported.  

 

 
 

Fig. 2. System interface. 
 
Fig.2. represents a white noise generated by the simulation 

system. The data length is 5000 points. 

III. EMD-BASED SIMULATION OF FRACTIONAL PROCESSES 

A. Empirical Mode Decomposition 
FGN can be viewed as the increment process of fBm. It is 

self-similar with index H∈ (0,1). Thus, the autocorrelation of 
FGN in the continuous case is given by 

2
2 2 2[ ] [ 1 2 1 ]

2
H H H

Hr k k k kσ= + − + −      (1) 

White noise increments correspond to the special case of 
FGN realization for which H = 1/2. 

For any signal, s(t), EMD ends up with the following 
representation [8] 

1
( ) ( ) ( )

K
k K

k
s t C t r t

=
= +∑            (2) 

where ( )kC t  is the kth mode(or Intrinsic Mode 

Function(IMF)) of the signal, and ( )Kr t stands for residual 
trend. 
 Fig.3. is an example of decomposition. The signal is a White 
noise realization of data length N = 1024. The white noise has 
seven IMFs and a residual signal representing a negligible trend. 

It is shown in [9] that the IMF variance of FGN is expected to 
be an exponentially decreasing function of the IMF index. Thus, 
we have 

(2 2){ ( )}k k H
H HVar C t ρ −∝             (3) 

where ( )k
HC t  is the kth IMF of process s(t), 2Hρ ≈  for all H 

[9]. Hence, (3) leads to 
(2 2){ ( )} 2k k H

HVar C t −∝            (4) 
Using this property, we can get the EMD-based method for 

generating fractional processes. 
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Fig. 3. EMD of a white noise realization (N = 210), white noise 
denote ( )tξ (H = 1/2). 

 
The decomposition of ordinary Gaussian noise (as in Fig.1), 

H = 1/2, by use of EMD ends up with IMFs with variance 
progression. So we get: 1/ 2{ ( )}k k

HVar C t ρ −∝ [9]. Then, we can 
generate fractional Gaussian noise by summing all IMFs with 
appropriately weighting factors. The method above is called 
‘H-dependent EMD reconstruction’. 

B. H-dependent EMD Reconstruction 
Steps of the algorithm, 
1. Initialization. Generate ordinary Gaussian noise, ( )tξ , H = 

1/2. 
2. Decomposition. Decompose ( )tξ  with EMD method to 

generate the K IMFs 1/2 ( )kC t ，k = 1 , … , K of ( )tξ . 
3. Reconstruction. Weight each IMF of rank k by factor 

( )2 /k kβ σ < > , where H is the expected Hurst index, and 
reconstruct new fractional process ( )H tξ  by the following 

EMD reconstruction, where kσ  stands for standard 
deviation of the kth IMF: 

( 1)
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Parameter β  is related with index H for respectively FGN or 
fBm processes synthesis. 
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Fig. 4. Flow chart of EMD reconstruction. 
 

IV. CORRELATION-BASED MODEL FOR SYNTHESIZING 
FRACTIONAL GAUSSIAN NOISE 

A. Simulating White Noise 
Let w(t), ( )W ω and ( )wS ω be a white-noise function, its 

spectrum and the power spectrum, respectively. Then, 

( )W ω = F[w(t)]= ( ) j tw t e dtω∞ −

−∞∫          (7) 

where F is the operator of Fourier transform. 
Let wr  be w’s autocorrelation. Then, 

( ) [ ( ) ( )]wr E w t w tτ τ= +             (8) 
Thus, we have, 

( ) [ ( )]w wS WW F rω τ= =             (9) 
Suppose w(t) is the unit white noise, ( ) 1wS ω = .Then, 

( ) ( )wr τ δ τ=                 (10) 
Let h(t) and ( )H ω  be the impulse function and system 

function of a linear filter respectively. 
Then, 

( ) ( ) ( )y t w t h t= ∗                (11) 
where * mean the operation of convolution. 

Thus, the steps of synthesizing fractional processes by 
filtering white noise are: simulating white noise first and then 
synthesizing h(t) based on a given correlation structure. 

Let θ  be a real random function with arbitrary distribution. 
Then, 

( )( ) jW e θ ωω =                 (12) 
is a Fourier transform of white noise. Thus, a white-noise 
function can be given by 

1 1( ) [ ( )]
2

j j tw t F W e e dθ ωω ω
π

∞−

−∞
= = ∫        (13) 

In the discrete case, 
( ) IFFT[ ( )]w n W ω=              (14) 

where IFFT represents the inverse of fast Fourier transform 
(FFT). 

Thus, according to (14), we can accurately simulate a white 
noise w(n). 

B. Generating FGN from White Noise 
Simulating x with a desired autocorrelation xr  can be 

regarded as synthesizing a simulator h [6], 
y xr r=                    (15) 

From (11), we can get, 2( ) ( )yS Hω ω= . Let ( ) ( )y xS Sω ω= . 
Then, 

0.5( ) [ ( )]xH Sω ω=               (16) 
Therefore, 

1 0.5{[ ( )] }xh F F r−=               (17) 
 

Simulating a
white noise w(n)

y

Set H value

h(n)

w(n)

Convoluting

Generating a
sequence with
given ( )Hr k

Computing h(n) by :
1 0.5{[ ( )] }xh F F r−=

 
 

Fig. 5. Flow chart of correlation-based model. 
 
where 1F −  is the inverse of F. Consequently, the output of 
simulator is given by 

1 0.5{[ ( )] }xy w F F r−= ∗             (18) 
Equation (18) is the solution of synthesizing FGN according to a 
given correlation structure. 

V. A COMPARISON BETWEEN THE SIMULATED FRACTIONAL 
PROCESSES 

Fig.4 and Fig.5 show the computation procedures of 
EMD-based simulation and correlation-based computational 
model, respectively. Therefore, we generate several fractional 
processes with our designed system that is implemented in the 
platform of MATLAB. 
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Fig. 6. Examples of generated fractional processes (5000 data points). 
(a). FGN simulated by EMD, H = 0.2. (b). FGN simulated by 
correlation, H = 0.2. (c). fBm simulated by EMD, H = 0.2. (d). FGN 
simulated by EMD, H = 0.8. (e). FGN simulated by correlation, H = 
0.8. (f). fBm simulated by EMD, H = 0.8. 

 
According to (1), Fig.7 represents the comparison of 

theoretical and real autocorrelation of FGNs with different 
values of H index H = {0.6, 0.7, 0.8, 0.9}. These FGNs are 
respectively generated by EMD-based simulation and 
correlation-based computation model. 
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(a) H = 0.6       (b) H = 0.6 
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(c) H = 0.7       (d) H = 0.7 
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(e) H = 0.8       (f) H = 0.8 
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(g) H=0.9       (h) H=0.9 

 
Fig. 7. Examples of theoretical and real autocorrelation of FGNs 
generated by EMD-based simulation and correlation-based 
computation model. (a). The autocorrelation of FGNs simulated by 
EMD, H = 0.6. (b). The autocorrelation of FGNs simulated by 
correlation, H = 0.6. (c). The autocorrelation of FGNs simulated by 
EMD, H = 0.7. (d). The autocorrelation of FGNs simulated by 
correlation, H = 0.7. (e). The autocorrelation of FGNs simulated by 

EMD, H = 0.8. (f) The autocorrelation of FGNs simulated by 
correlation, H = 0.8. (g). The autocorrelation of FGNs simulated by 
EMD, H = 0.9. (h). The autocorrelation of FGNs simulated by 
correlation, H = 0.9. 
 

In Fig.7, the solid lines imply the theoretical autocorrelations 
and dotted lines the autocorrelations of FGNs obtained by EMD 
and correlation, respectively. 

VI. CONCLUSION 
We have addressed a simulation system of FGN in the 

platform of MATLAB. The methods based on EMD and a given 
function of correlation have been interpreted. The simulation 
results have been demonstrated. The system can be used to 
simulate FGN and fBm with the selection by users. The present 
system may be a promising tool for FGN simulation. 
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