
 

 

  
Abstract— In this paper, a novel matrix free Finite Volume 

Method based on Galerkin Approach is introduced for solution of 
weak form of two dimensional Cauchy equilibrium equations of 
plane strain solid state problems on linear triangular element meshes. 
The developed shape function free Galerkin Finite Volume structural 
solver explicitly computes stresses and displacements in Cartezian 
coordinate directions for the two dimensional solid mechanic 
problems under either static or dynamic loads. The accuracy of the 
introduced algorithm is demonstrated by comparison of computed 
results of two cantilever beams under static concentrated and 
uniformly distributed loads with analytical solutions. The 
performance of the solver is presented in terms of convergence 
behavior of the method. In order to present the applicability of the 
introduced method to solve dynamic problems, the computed 
displacements of a storage tank frame under oscillating 
hydrodynamic load is compared with the reported data in the 
literature. 

 
Key-Words— Explicit Galerkin Finite Volume Method, 

Unstructured Linear Triangular Element, Computational Solid 
Mechanics 

I. INTRODUCTION 

In the numerical analysis of the behavior of huge liquid-
storage tanks, treatment of large-scale matrices becomes a 
burden owing to the hydrodynamic interaction between two 
different media, structure and liquid. In order to overcome 
such a problem, it is common to split the dynamic system into 
two separate problem regions [5]. Stresses and deformation of 
structural part of a storage tanks under seismic vibrations can 
be computed by replacing the effect of internal liquid by 
equivalent hydrodynamic load. Therefore, using empirical 
relations for estimation of distributed hydrodynamic load such 
as those proposed by Zanger and Westergard are one of the 
common techniques in dynamic fluid-structural interaction. 

    Over the last five decades a wide variety of numerical 
methods have been proposed for the numerical solution of 
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partial differential equations. Among them the Finite Element 
Method (FEM) has firmly established itself as the standard 
approach for problems in Computational Solid Mechanics 
(CSM), especially with regard to deformation problems 
involving non-linear material analysis [1,2]. 

It is well known that numerical analysis of solids in 
incompressible limit could lead to difficulties. For example, 
fully integrated displacement based lower-order finite 
elements suffer from volumetric locking, which usually 
accompanies pressure oscillation in incompressible limit [4]. 
Also there are some difficulties for producing stiffness matrix 
and shape function in order to increase the convergence rate.  

Although certain restrictions on mesh configuration had to 
be imposed to avoid locking, these restrictions were less 
severe than those of the equivalent FEM meshes. Numerical 
calculation with meshes consisting of triangular cells showed 
excellent agreement with analytical results. Meshes consisting 
of quadrilateral FVM cells displayed too stiff behavior, 
indicating a locking phenomenon [4]. 

The FVM developed from early finite difference techniques 
and has similarly established itself within the field of 
computational fluid dynamics (CFD) [7,1]. However, similar 
to the FEM, the FVM integrates governing equation(s) over 
pre-defined control volumes [2], which are associated with the 
elements making up the domain of interest and therefore, 
preserve the conservation properties of the equations. 
Although, the Finite Volume Method (FVM) was originally 
developed for fluid flow and heat and mass transfer 
calculations [6], recently, it is generalized for stress analysis in 
isotropic linear and non-linear solid bodies. Therefore, the 
interest for FVM application to the structural analysis 
problems involving incompressible materials has grown 
during the recent years. From the results of several benchmark 
solutions, the FVM appeared to offer a number of advantages 
over equivalent finite element models. For instant it can be 
stated that, unlike the FDM solution, FVM solution is 
conservative and incompressibility is satisfied exactly for each 
discretised sub-domain (control volume) of the computational 
domain [4]. In principle, because of the local conservation 
properties the FVMs should be in a good position to solve 
such problems effectively.  

Over the last decade a number of researchers have applied 
FVMs to problems in CSM [11] and it is now possible to 
classify these methods into two approaches, cell-centered and 
vertex-based ones. In this paper, the explicit approach 
introduced is based on Galerkin approach with a kind of 
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matrix free vertex base FVM on meshes of linear triangular 
elements. The accuracy of the introduced method is assessed 
by comparison of computed stresses and displacements for 
two classical cantilever beams under static concentrated and 
uniformly distributed loads with analytical solutions and the 
performance of the solver is demonstrated in terms of 
convergence behavior of the method to the steady state 
condition. Then the structural frame of a storage tank under 
oscillating hydrodynamic pressure on its side walls, is 
performed by application of the introduced matrix free FVM 
and the computed results are compared with the data reported 
by the previous researchers [3].  

  

II. GOVERNING EQUATION 
The universal law governing any continuum undergoing 

motion is given by general form of Cauchy’s equilibrium 
equations: 

 
bSu T += σρ                                                  (1) 

 
Where σ  is the stress tensor, b is the body force, ρ  is the 

material density and u  is the acceleration. 
For two dimensional problems, T

yx uuu ),(=  is the 

displacement vector and T
xyyyxx ),,( σσσσ =  is tensor 

vector. The operator TS  for two-dimensional problems is 
defined as, 
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So, the matrix form of Cauchy equations for two-

dimensional problems is: 
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For stress-strain relationship, the common Hook equation 

can be used as, 
 

εσ D=                                                                 (3) 
 
Where D is the constitutive property matrix and for plane 

strain problems is: 
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Here, υ  is the Poison ratio and E  is the Young modules 

of elasticity. So the Cauchy’s equilibrium equations in two 
Cartesian coordinate directions can be written as: 
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Where for plane strain problems: 
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III. DISCRETIZATION 
In order to obtain the discrete form of the Cauchy’s 

equation in i direction, the following form is used: 
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In which the stresses are defined as: 
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By application of the Variational Method, after multiplying 

the residual of the above equation by the test function ω  and 
integrating over a sub-domain Ω  (Figure 1), in the absence of 
body forces we have, 
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Where, i direction stress vector is defined 

as jiF iii
ˆˆ

21 σσ += .  
The terms containing spatial derivatives can be integrated 

by part over the sub-domain Ω  and then equation 6 may be 
written as, 
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Fig.1 Sub-domain with area nΩ  

  
According to the Galerkin method, the weighting function 

ω  can be chosen equal to the interpolation functionφ . In 
finite element methods this function is systematically 
computed for desired element type and called the shape 
function. For a triangular type element (with three nodes), the 
linear shape functions, kφ , takes the value of unity at desired 
node n, and zero at other neighboring nodes k of each 
triangular element (Figure 2): 

 

 
Fig.2. A linear triangular element 

 
Therefore, the summation of the term γω ].[ iF  over the 

boundary of the sub-domain nΩ  is zero.  
The right hand side (RHS) of the equation (7) can be 

discretized as: 
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Where klΔ  is normal vector of the side k opposite to the 

node n and iF~  is the i direction piece wise constant stress 
vector at the centre of element associated with the boundary 
side k (inside the sub-domain nΩ  with N boundary sides) 

For a sub-domain formed by linear triangular elements 
sharing node n, the left hand side (LHS) of the equation (7) 
can be written in discrete form as:    
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A finite difference approach is applied for discretizaton of 

the time derivative of i direction displacement, iu . Hence, the 
LHS of equation (7) can be written as, 
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The final discrete form the equation (7) is obtained as, 
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Considering direction i=1 as x an i=2 as y, the stresses 1i

~σ  , 

2i
~σ  are computed as, 
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Where kA  is the area of triangular element (with m=3 

sides) associate with boundary side k of the sub-domain 
nΩ (Figure 3): 
 

 
Fig.3: Triangular element with area kA  within the sub-

domain nΩ  

IV. LOCAL TIME STEPPING 

The time step ntΔ for each control volume can be 
computed as: 
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Where c is wave velocity. According to the wave velocity, 

gained by equation (14): 
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Here, nr  is the average radius of equivalent circle that 

matches with the desired control volume ( nnn Pr /Ω= ).  For 
any control volume n this radius can be computed using area 
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2D control volume. 
Due to the variations in sizes unstructured control volumes 

calculations, the allowable time step for computation of 
dynamic problems for the entire mesh is limited to the 
minimum associated with the smallest control volume of the 
domain. However, the large variation in grid size for the 
unstructured mesh will slow down the computations. 

 In present work, the local time step of each control volume 
is used for computation of static problems. In this technique to 
accelerate the convergence to steady state conditions, the 
computation of each control volume can advance using a 
pseudo time step which is calculated for its own control 
volume. The use of local time stepping greatly enhances the 
convergence rate. 

V. INITIAL CONDITIONS 
For static problems, an external load is considered as a 

global source term of Cauchy equations and is added to the 
LHS of described FVM formulation. Considering the linear 
shape function in each triangular cell, the value of the external 
load at the central node of the control volume is integrated 
over the control volume and considered at its central node.  
Fig.4 illustrates the area of the control volume which 
associates with the imposed load by considering the linear 
shape function in each triangular cell: 

 
Fig.4 Imposing force area 

 
But sudden imposing the external load would cause some 

problems for the computational procedure. In order to 
overcome the problem, gradual load imposing is implemented 
in the present model using a relaxation coefficient which 
varies from 0.0 to 1.0 during some computational iteration.  
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Where, Istep is the iteration number at desired stage of the 

computation, L is a length scale that can be assumed as the 
distance between maximum displacement and the centre of 
external load or constraint (support location). 

For dynamic problems, the still initial condition is 
considered for the structure. However, for the storage tank 
case, firstly the hydrostatic condition is satisfied similar to the 
steady state problems. Then, the time dependent analysis 
would start. 

VI. STATIC TEST CASES 
The present structural solver is verified by two static test 

cases which are two cantilever beams under concentrated and 
distributed loads. 

 
A. Cantilever Beam under Point Load 
A standard problem in structural mechanics is that of a 

fixed-free cantilever supporting an applied load at the free end 
[9,1]. The fixed-free cantilever is shown  in Fig.4. Here b=2.0 
is the breadth, L=20.0 the length of the cantilever and F the 
applied load. It is assumed that the depth d=1.0. The static 
solution to this problem is available [9] and [8] as: 

 

3

3

y Edb
FL4d −=                                                           (16) 

 
Where, E is Young’s modulus and d is the height of the 

cantilever beam.  
Note that the gravity effect is not considered in this study. 

The static solution given by the above equation is independent 
of Poisson’s ratio, Therefore, it is applicable to a cantilever 
undergoing pure flexure, i.e. no axial loads are supported and 
the out of plane load on the cantilever is zero. Thus for 
comparison with the analytic solution a zero Poisson’s ratio is 
assumed.  

The fixed-free cantilever is considered under a load of 
200N at its free end, as depicted by Fig. 5.  
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Fig. 5: Schematic of flexural deformation test of fixed-free 
cantilever 

 
Table 1 Test case 1 cantilever beam specification 

2D Fixed-free specification                   value 
Load, F                                                200 N 
Length, L                                            20.0 m 
Breadth, b                                            2.0 m 
Density, ρ                                      2600.0 kg/m3 
Young’s modulus, E                         10 MPa 
Poisson’s ratio, υ                                   0.0 

 
With the parameters as given in Table 1, equation 16 gives 

the static displacement in y direction at the tip of the cantilever 
as 0.08 m.  
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Fig.6. Converged results for tip displacements (80*8 mesh)    
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Fig.7. Convergence of the logarithm of root mean squre of the 

displacements  (80*8 mesh) 
 
In order to provide a better understanding about the effects 

of gradual load imposing technique, the convergence behavior 
of the computed displacements are shown in Fig.6 and the 
root mean square of the computed displacements are shown in 
Fig.7. As can be seen the logarithm of root mean square errors 
of displacements increase by gradual activation of the load in 
the initial stages of the computation. Then the logarithm of 
root mean square errors computed displacements present a 
decrease up to 7 orders of magnitude when the load is fully 

imposed. 
The error percentages for the numerical solutions of the 

problem on various meshes *with various grid spacing sizes) 
are tabulated in table 2.  

 
Table 2.Cantilever beam error report 

 
Computed displacements and stresses contours are 

illustrated in following figures (Fig.8 and Fig.9).  
Uy
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b) horizontal displacement contours 

Fig.8 Color coded maps of computed displacements 
 

Elements 
Vertical 

displacement at 
free end 

Error for 
computed 

values 
20*2 triangular -0.05968 25.4% 
40*4 triangular -0.072169 9.78% 
80*8 triangular -0.077522 3.09% 
100*10 
triangular 

-0.0786 1.7% 

200*20 
triangular 

-0.08007 0.08% 
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a) xxσ  stress contours 
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b) yyσ  stress contours 
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c) xyσ  stress contours 

Fig.9 Color coded maps of computed stresses 
 

B.  Cantilever Beam under Uniform Distributed Load 
The two dimensional cantilever, shown in Fig. 10, is 

considered under uniform load. Wall specifications are shown 

in Table.3 with 100 m
N  uniform load. 

 
Fig.10. Cantilever under uniform distributed load 

 
 The displacement of wall’s tip computed by following 

equation  [10]: 
 

EI
wLdx 8

4

=                                          (17) 

 
Analytical solution using the above equation shows 0.03m 

displacement on tip and by application of the present Galerkin 
finite volume method (GFVM) structural solver  0.0301m 
horizontal displacement is computed using a 200*20 
triangular mesh. Computed results present 0.33% error in x 
direction displacement. Some samples of computed tress 
contours are plotted in Fig.11. 

 
Table 3. Wall Specification 

2D Wall specification                      value 
Load, W                                                100 N 
Length, L                                            2.0 m 
Breadth, b                                            0.2 m 
Density, ρ                                      2600.0 kg/m3 
Young’s modulus, E                         10 MPa 
Poisson’s ratio, υ                                   0.0 
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a) xyσ                b) yyσ                  c) xxσ  

Fig.11. Stress contours on the wall  
 

VII. DYNAMIC TEST CASE 
A rectangular storage tank, oscillated with seismic loads, is 
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utilized for investigation of introduced method performance in 
solution of dynamic problems. The storage thank under 
oscillating load, for which experimental measurements are 
available [3], is shown in Fig.12 and its specifications are 
presented in Table 4. 

 
Fig.12. Oscillating tank 

 
Table 4. Storage tank structure specifications[3]. 
Parameters Value 

Young’s modulus, E 21 MPa 

Density, ρ  7850 ⎟
⎠
⎞⎜

⎝
⎛

3m
kg  

Poison ratio, υ  0.3 
Area 0.05 2m  

 
It is assumed that the water volume is conserved in the tank. 

Therefore, the increase in water level on the right vertical side 
wall is followed by decrease in water level of the other side 
water. As a function of water level, the opposite directions 
hydrostatic and hydrodynamic distributions of the horizontal 
pressure loads are imposed on both walls at each incremental 
the time of oscillation. Sloshing and free surface waves effects 
are assumed to be negligible. So, the Zanegar [12] and 
Westergard [13] global relations for the hydrodynamic load 
distributions are applied. An unstructured mesh with 1633 
nodes and 2592 triangular elements applied to simulate the 
storage tank structure behavior during the oscillation time 
(Fig.13).  
  

 
Fig.13. unstructured mesh applied for GFVM solver 

 
In order to impose the fixed boundary conditions, zero 

displacements are imposed at lower boundaries of the mesh. 
After computation of stresses and deformation under 
hydrostatic load using local time stepping, the time dependent 
(dynamic) computations are performed using global minimum 
time step of the domain.  

 In figure 14, the time history of deformations of top right 
wall (point A in Fig. 12) computed by imposing hydrostatic 
and two hydrodynamic load distributions are compared with 
the reported experimental measurements. As can be seen the 
computed results presents good agreements with experimental 
measurements. 
 

Comparison of Computed Results with GFVM Solution 
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 Fig.14. Horizontal deformation of point A 
 

The computed stress contours at t=6.97 (s) are 
demonstrated in the following figures (Fig. 15). 
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Fig.14 : Computed results for oscillating storage tank 
 

VIII. CONCLUSION 
A vertex base Galerkin Finite Volume method for explicit 

matrix free solution of two dimensional Cauchy equations is 
introduced in this paper. This computational model solves 
stress and deformation of solid mechanics under static and 
dynamic loads. The performance of described the 
computational solid mechanic algorithm is examined for 
various size of the meshes for a cantilever beam under a point 
load. Since there is no interpolation function in the numerical 
formulation of the present solver, the fine meshes provide 

more accurate results than the coarse meshes.  
The present model is examined for some plane strain 

structural problems. After verification of the model for static 
concentrated and uniformly distributed loads on two 
cantilever beams, it is applied for solution of stresses and 
deformations an oscillating storage tank frame under 
hydrodynamic loads estimated by two empirical relations. The 
comparison of the computed results of static and dynamic 
problems with analytical solution and experimental 
measurements presents promising agreements.    

The new explicit matrix and shape function free numerical 
method with light computational work load can easily be 
extended to three dimensions and be applied for solving large 
deformations of real world solid mechanics problems with 
complicated geometries. 
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